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Abstract: This study seeks to investigate the local reinforcement of low carbon cast steel specimens
with WC–metal matrix composites (WC–MMCs), to obtain a new material effective in competing
with hard alloy steels. For this purpose, a powder compact of tungsten carbide (WC) and iron (Fe)
was prepared and placed in the mold cavity before casting. The reactions that occurred with the
molten steel led to the formation of the WC–MMC and, consequently, to the local reinforcement of
the steel. The microstructure of the WC–MMC reinforcement was characterized by scanning electron
microscopy (SEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and electron
backscatter diffraction (EBSD). The results showed a microstructural variation throughout the depth
of the reinforcement. In the surface region, most of the original WC particles retain their polygonal
morphology, but towards the base metal, the dissolution of the WC particles increased with the
formation of (Fe,W)6C carbides. Closer to the base metal, dendritic eutectic carbides of (Fe,W)6C and
fine (Fe,W)23C6 precipitates in a matrix of martensite were formed. The mechanical properties of the
reinforcement were evaluated by hardness and ball-cratering abrasion tests. The results revealed a
significant increase in hardness, being three times harder than the base metal, and a decrease of 39%
in the wear rate.

Keywords: casting; ex situ technique; local reinforcement; low carbon steel; metal matrix composite;
tungsten carbide

1. Introduction

Low carbon cast steels contain less than 0.2 wt.% carbon and alloying elements in a
concentration that can reach a value of 8.0 wt.% [1]. Typically, non-alloyed low carbon steels
are produced with the nominal composition of 0.16% C, 0.50% Mn, 0.05% P, 0.06% S, and
0.35% Si [1–3]. Among other applications, such steels are usually used on metallic structures,
components for the automotive industry, pumps and valves for the oil and gas industry,
and pressure vessels for energy production, mainly due to their manufacturing facility, low
cost, mechanical properties, and weldability [4–6]. However, low carbon cast steels have low
wear resistance and, therefore, under wear conditions, they have to be replaced by alloyed
steels, which are costly. Alternatively, a surface heat treatment, a thermal spray coating,
or a less traditional approach with a metal matrix composite (MMC) reinforcement can be
applied to improve their surface properties [7,8]. The development of MMC reinforcements in
components produced by casting is particularly attractive since it can lead to the surface wear
resistance increase by one-step processing [7,8]. Such approach is easy to perform and can be
applied to components with any geometry or dimensions, in addition, it is highly efficient
and requires low-cost investment [2,3,9,10]. Despite the existing literature providing several
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studies on the reinforcement of Cr-alloyed steel [11–15], Mn-steel [16–18], and medium
carbon steel [19], only four studies have described the process of locally reinforcing low
carbon steel castings and all with TiC–MMC [20–23]. Sui et al. [14] studied Cr-alloyed steel
reinforced with a surface composite, a mixture of WC particles and Ni60WC25 powders. The
microstructural analysis revealed the formation of the Fe3W3C phase in the reinforcement.
The volume fraction of Fe3W3C particles increased with the Ni60WC25 amount (up to
35 vol%), and, simultaneously, an extensive dissolution of WC particles occurred, which
decreased the wear resistance. Zhang et al. [16] fabricated a composite coating of WC-
Hadfield steel and concluded that the WC particles partially dissolved and Fe3W3C and
M23C6 phases precipitated in the composite zone. Later, Zhang et al. [19] produced a similar
composite reinforcement with a medium carbon steel as base alloy; in this study, a 7 mm
thick composite zone was formed, with about 32 vol% WC, and with a hardness 2.4 times
greater than the steel. Regarding local reinforcement in low carbon steels, Sobula et al. [23]
produced a TiC-steel composite coating using an in situ approach, increasing wear resistance,
measured by weight loss, by four to six times compared to the cast alloy. In a more recent
study, Olejnik et al. [22] investigated the addition of Fe to a Ti and C powder mixture to
produce a TiC-low carbon steel composite and concluded that the addition of 30 wt.% Fe
enabled control of the quality of the reinforcement resulting in the best hardness.

The main objective of this study is to improve the surface wear resistance of a low
carbon cast steel, GP280GH ISO 4991 [24], with a metal matrix composite reinforced with
WC (WC–MMC) to obtain a new material effective in competing with hard alloy steels along
with its excellent weldability, being this topic slightly explored up to now, and representing
one innovative solution. This work presents a comprehensive characterization of the phases
formed in the composite zone, which is a key issue for obtaining high-quality reinforced
components. For this purpose, mixtures of WC and Fe powders were used, the Fe powder
acting as a flux to improve infiltration between the molten metal and the WC particles.

2. Materials and Methods
2.1. Production of the Reinforced Cast Specimens

The reinforced specimens were fabricated using the pressureless casting technique
described in detail in one of our previous studies [25]. This procedure involved the
following main steps:

1. Selection and weighing of Fe (99.0 wt.% purity) and WC (99.0 wt.% purity) powders
from Alfa Aesar, ThermoFisher (Kandel, Germany) GmbH, fully characterized in the
cited reference [25];

2. Mixing and homogenization of Fe and WC powders (in a volume fraction of 60:40) in
a Turbula shaker–mixer (Willy A. Bachofen AG, Muttenz, Switzerland) for 7 h;

3. Cold pressing of the mixture; in this step, the mixture of powders was uniaxially cold-
pressed at 230 MPa in a metallic mold to produce green compacts with a parallelepiped
shape (31 mm × 12 mm × 7 mm);

4. Casting: at this step, the green compacts were inserted in specific locations of the mold
before the pouring of the molten low carbon steel at 1620 ◦C; the chemical composition
of the metal was analyzed by optical emission spectrometry (MAXx LMM05, Spectro,
Germany) and was in correspondence with the ISO 4991 standard [24], presented in
Table 1;

5. Normalization heat treatment; cylindrical specimens with 45 mm diameter were cut
by electrical discharge machining to obtain 5-milimeter-thick samples that were heat-
treated at 930 ◦C for 30 min as specified in ISO 4991 standard [24]; this is a common
heat treatment for stress relief and structure refining of the cast components.

Table 1. Nominal chemical composition (wt.%) of the low carbon cast steel [20].

C Si Mn Cr Ni Cu Fe

0.22 0.43 0.91 0.10 0.09 0.03 Balance
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2.2. Microstructural Characterization

After the metallographic preparation of the samples and chemical etching with
2% Nital and Vilella’s reagent, the microstructure was characterized by scanning elec-
tron microscopy (SEM) with energy dispersive spectroscopy (EDS), using a FEI Quanta
400 FEG and a FEI Quanta 650 FEG (FEI Company, Hillsboro, OR, USA), both with an
energy-dispersive detector. Electron backscatter diffraction (EBSD) analysis has been used
to assist with phase identification. To complement the microstructural characterization,
X-ray diffraction (XRD, Cu Kα radiation, Bruker D8 Discover, Billerica, MA, USA), with
a scanning range (2θ) of 5◦ to 80◦ was performed. The volume percentage of carbides in
the composite was measured using ImageJ (v.1.52, Wayne Rasband, National Institutes of
Health, Bethesda, MD, USA), an open source image analysis software, and EDS maps at
500× magnification, since OM and BSE-SEM images did not provide adequate contrast to
distinguish carbides from the matrix.

2.3. Mechanical Characterization

The mechanical response of the reinforced specimens was evaluated by hardness
and ball-cratering abrasion tests. Seven Vicker’s hardness tests were performed on each
specimen, according to the ISO 6507-1:2018 standard [26], applying a nominal force of
294.2 N in a universal hardness tester DuraVison 20 (EMCO-TEST Prüfmaschinen GmbH,
Kuchl, Austria). Additionally, hardness profiles across the composite zones were made
using a nominal force of 49.0 N.

The ball-cratering tests were carried out in a Plint TE66 micro-scale abrasion tester
(Plint & Partners Ltd., Newbury, UK), according to the ISO 26424:2008 standard [27], as
described in a previous study [28]. The specimens with a thickness of 5 mm were tested
using a slurry of SiC abrasive particles on a rotating steel ball bearing and sliding distances
of 7.9, 15.7, 23.6, and 31.4 m.

The wear craters were measured by optical microscopy (OM) using a Leica DM4000 M
with a DMC 2900 camera (Leica Microsystems, Wetzlar, Germany) and image processing
software (ImageJ v.1.52) and analyzed by SEM.

3. Results and Discussion
3.1. Microstructural Characterization of the Reinforced Cast Specimens

The microstructure of the composite and its interface with the base metal is shown
in Figure 1. Three distinct regions are observed in the composite. The region next to the
surface (CZ1), with a depth of 5.4 mm, exhibits a large number of original WC particles
with a polygonal shape, as confirmed by EDS in Figure 2. Below the CZ1, a narrower region
(CZ2) with a depth of 0.5 mm is characterized by plate shape particles rich in tungsten
(W) and Fe (Figures 1b and 2). The CZ3 zone, with a depth of 1.5 mm, shows a dendritic
microstructure composed of W- and Fe-rich precipitates (see Figures 1b and 2). The interface
between the composite and the base metal is clearly distinguished in Figure 1c, showing
good bonding without voids or discontinuities along with its thickness of 0.3 mm.

XRD analysis permitted to identify the phases present in the microstructure, revealing
several types of carbides (M6C and M3C) in addition to the original WC particles (Figure 3).

The properties of the resulting metal matrix composite reinforced with WC (WC–
MMC) are determined by the morphology and distribution of the phases in the microstruc-
ture and, therefore, a detailed SEM analysis was performed (see Figures 4 and 5). The
SEM analysis included using the EBSD characterization technique to corroborate the phase
identification (Figure 6). The CZ1 region exhibits a high content of original WC particles (in
white), homogeneously dispersed in the matrix, as indicated in Figure 4a,b. It is clear that
some of those particles have partially dissolved, acting as nucleation sites for the (Fe,W)6C
precipitation at the interface of WC particles and the matrix. The (Fe,W)6C particles were
identified by means of EBSD, as shown in Figure 6e. This is in line with the findings from
a study on WC–MMC produced by laser melt injection, where (Fe,W)6C is formed by a
peritectic reaction involving the liquid substrate (steel) and the injection WC particles [29].
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Other studies [14,16,25] also reported this occurrence. The percentage of (Fe,W)6C along
with WC corresponds to 59% of the CZ1 composite area.

In the CZ2 zone, there are only a few WC particles (Figure 4c,d). The greater dissolution
of the original WC particles could have arisen from the higher temperature in this region
that is further away from the cold mold wall. Consequently, a high number of plate-shaped
(Fe,W)6C carbides (Figure 4d) have formed as described for the CZ1 zone. Comparatively,
the total percentage of carbides is lower and corresponds to 36% of the CZ2 area.

The CZ3 region shows a much more complex microstructure. The SEM images indicate
the absence of WC particles, meaning that the present phases were formed from a liquid
enriched in W and carbon (C) due to the dissolution of the original WC particles. The mi-
crostructure exhibits essentially dendritic eutectic carbides of (Fe,W)6C and some massive
carbides of (Fe,W)3C. These phases were confirmed by EBSD, as shown in Figure 6d,e. The
dendritic morphology of the (Fe,W)6C phase was also showed by Sui et al. [14]. Regarding
their quantification, since the massive carbides exhibit a contrast similar to the matrix, it
was only possible to measure the dendritic eutectic carbides, corresponding to 19% of the
composite area.
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Figure 1. SEM–BSE images of the microstructure of the reinforced specimen, showing: CZ1—nearest
to the surface (a), a transition region, with three distinct zones: CZ1, CZ2—intermediate, and CZ3—
next to the base metal (b), and the interface with the steel (c).



Materials 2022, 15, 6199 5 of 11

Materials 2022, 15, x FOR PEER REVIEW 4 of 12 
 

 

 

Figure 1. SEM–BSE images of the microstructure of the reinforced specimen, showing: CZ1—nearest 

to the surface (a), a transition region, with three distinct zones: CZ1, CZ2—intermediate, and CZ3—

next to the base metal (b), and the interface with the steel (c). 

 

Figure 2. SEM–BSE images of the microstructure of the CZ1 (a) and CZ2 (b) and CZ3 (c). EDS ele-

mental mapping (d–i) of W (red) and Fe (blue). 

Figure 2. SEM–BSE images of the microstructure of the CZ1 (a) and CZ2 (b) and CZ3 (c). EDS
elemental mapping (d–i) of W (red) and Fe (blue).
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Figure 4. SEM images of the microstructure of the WC–MMC: CZ1 with a high content of original
WC particles (a); (Fe,W)6C precipitation next to the WC particles (b); CZ2 evidencing a high number
of (Fe,W)6C carbides with plate shape (c) and growth of (Fe,W)6C from the WC particles partially
dissolved (d); CZ3 exhibiting essentially dendritic eutectic carbides of (Fe,W)6C and some massive
carbides of (Fe,W)3C (e), and the same at higher magnification (f); bonding interface, showing the
pearlite lamellar structure (g), and the base metal with a ferritic microstructure with a few pearlite
colonies (h).

Concerning the matrix of CZ1 and CZ2, small colonies of lamellar pearlite are present,
as shown in Figure 5. The EBSD patterns (Figure 6a) also indicate the presence of ferrite in
these regions.
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According to the CZ3 region, the matrix is essentially martensite (Figure 5b), as
confirmed by EBSD analysis (Figure 6c). Such matrix variation along the reinforcement
region can be explained by the progressive enrichment in C and W across its depth. This
enrichment, which results from the dissolution of the original WC particles, suppresses
ferrite formation and triggers the martensitic transformation [30,31]. In addition, small
globular particles have precipitated in the matrix, which were identified as (Fe,W)23C6
by the EBSD technique (Figure 6f). The size and shape of these particles suggest this
precipitation occurred during the post-casting heat treatment and which is expected to
increase the hardness of the composite.

The microstructure of the interface between CZ3 and the base metal is essentially
composed of pearlite, promoted by the C and W enrichment of the base metal (Figure 4g).
This region with intermediate characteristics between the CZ3 and the base metal con-
tributes to a smooth change of the properties, having a beneficial effect on the integrity of
the reinforcement. Finally, the base metal shows the typical microstructure of a low carbon
cast steel composed of ferrite with a few pearlite colonies (Figure 4h).
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Figure 5. SEM–SE image of the CZ1, showing the α matrix with small colonies of lamellar pearlite
and globular precipitation of (Fe,W)23C6 (a); and SEM–BSE image of the CZ3, evidencing the matrix
of martensite, revealed with Vilella’s reagent, with a fine precipitation of (Fe,W)23C6 (b).
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Figure 6. Indexed EBSD patterns corresponding to the phases present at the composite: ferrite (α) (a)
and WC (b), both detected in the CZ1 and CZ2 composite zones; martensite (α’) found in the CZ3
region (c); and (Fe,W)3C (d), (Fe,W)6C (e) and (Fe,W)23C6 (f) detected in the matrix of the composite.
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3.2. Mechanical Characterization of the Composite Reinforcement
3.2.1. Hardness Results

The hardness of the WC–MMC next to the surface (CZ1) is three times higher than the
hardness of the base metal, 504 HV 30 and 161 HV 30, respectively. This result is in line
with the study by Zhang et al. [19] on medium carbon steel that reported a hardness of the
composite zone 2.4 times harder than that of the base steel. A large variation in hardness
is also found along with the depth of the composite due to the microstructural variation.
According to the hardness profile shown in Figure 7, the highest values observed in the
CZ3 zone (720 HV 5) are associated with the eutectic precipitation of (Fe,W)6C and fine
precipitation of (Fe,W)23C6 in the martensite matrix. The hardness decrease from this region
to the interface zone was attributed to the significant reduction of carbides precipitation.
At the interface bonding, the hardness is significantly higher when compared to the base
metal, explained by the pearlitic structure.
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3.2.2. Abrasion Wear Behavior

The results of the micro-abrasion wear test are shown in Figure 8 and refer only to the
CZ1 zone of the WC–MMC and the base metal since it was not possible to perform tests
on CZ2 and CZ3 due to their small dimensions. The volume of worn material V (mm3),
calculated using Equation (1), increases by increasing the sliding distance S (mm). However,
the increase is less pronounced for the WC–MMC than for the base metal.
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The Archard equation (Equation (2)) [32], and Czichos approach [33], were applied to
the analysis of the results, leading to the wear rate coefficient K (mm3N−1mm−1) obtained
from the slope of the straight line best adjusted to the experimental data. The WC–MMC
showed a wear rate 39% lower than the base metal.

V = π× b4

64 × R
b : crater mean diameter (mm); R : steel ball radius (mm) (1)

K = V × 1
S × N

N : applied load (2)

SEM analyses of the wear craters were performed to help the understanding of the
wear mechanisms involved. From the images in Figure 9, it is clear that the WC particles
resist the abrasion wear effectively, seeming that they have a protective effect against the
deformation and wear of the matrix. Similar behavior was observed in WC–composite
reinforcements on high carbon chromium steel [14], and Hadfield steel [16]. In addition,
the images do not reveal any pulled-out traces, indicating a good quality bonding between
WC particles and the matrix. The effect of smaller carbides on wear behavior is hard to
evaluate; however, (Fe,W)6C particles seem to be in relief upon the surrounding matrix.
The protective effect of the (Fe,W)6C phase was also reported by Sui et al. [14]. On the other
hand, a huge amount of grooves evenly spaced are seen on the worn surface of the base
metal (Figure 9a,b), indicating that plastic deformation is the predominant wear mechanism
owing to the soft ferritic–pearlitic microstructure.
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4. Conclusions

A low carbon cast steel was successfully reinforced with WC–MMCs, using a Fe–WC
preform prepared from a mixture of WC and Fe powders in a volume ratio of 40:60.

A particular characteristic of this WC–MMC reinforcement is the microstructural
variation throughout its depth, explained by the dissolution of the WC particles in the
liquid metal, leading to the precipitation of (Fe,W)6C carbides and, closer to the base metal,
dendritic carbides of (Fe,W)6C and fine (Fe,W)23C6 particles. The formation of graded
material, with microstructural and hardness gradients across the reinforcement and the
interface with the base metal, ensures good structural integrity of the resulting reinforcement.

This approach provided a wear rate decrease of 39%, and it may be well suited for low
carbon cast steel applications requiring wear surfaces for working under harsh conditions.

The results of this work evidenced high potential for industrialization in foundry
companies, although the feasibility of applying other powders’ ratio and their effect on the
mechanical properties can be studied in the future.
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