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Abstract: This paper provides a numerical solution to the vibration of a rotating cross-ply laminated
combined conical-cylindrical shell in the thermal environment. Its numerical discrete solution method
uses the meshless method. The combined shell assumed the temperature independence of material
property is divided to the fundamental conical and cylindrical shell substructures, and the theoretical
formulation for each substructure is derived based on the first order shear deformation theory
(FSDT) and Hamilton’s principle. The effects of the initial hoop tension and temperature change are
considered through the kinetic energy reflecting the effects of centrifugal and Coriolis forces and
additional strain energy by the nonlinear part of the Green–Lagrange strains. The substructures are
then assembled according to the continuity conditions. The boundary and continuity conditions are
simulated by introducing artificial virtual spring technology. The displacement component in the
theoretical formulation is approximated using a meshless Chebyshev-RPIM shape function. The
reliability of the method is verified by comparing with mature and reliable results. The free vibration
characteristics of the rotating combined conical-cylindrical shell structure under various sizes, speeds
and temperatures are given by numerical examples.

Keywords: meshfree method; laminated composite shell; rotating shell; free vibration analysis;
thermal effect

1. Introduction

In the aerospace field, laminated shell structures are widely used in the shell structures
of gas turbines and high-power aircraft engines [1–5]. In these high-end fields, the vibration
of the structure will bring huge economic losses, so it is necessary to study its free vibration
behavior before designing such a structure.

With the progress of computational science, many different methods such as the
Haar wavelet discretization method [6], geometric analysis (IGA) method [7], spectral-
Tchebychev solution technique [8], Ritz method [9,10] and finite element method [11–13]
are employed for dynamic characteristics analysis of the composite structures. Ye et al. [14]
derived the classical open shell formula on the basis of FSDT, and used Chebyshev polyno-
mial to construct the displacement shape function, and solved the free vibration frequency
of the open shell through the Rayleigh Ritz program. Caresta and Kessissoglou [15]
reported a wave solution for the free vibrational frequencies of a homogeneous compos-
ite conical-cylindrical shell, where the displacement component was approximated by a
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power series. Tornabene et al. [16] reported a method for dynamic analysis of laminated
hyperbolic shells and rotating panels on elastic foundations using GDQ. Li et al. [17]
reported a Jacobi Ritz method for solving the free vibrations of laminated hyperbolic ro-
tating shells with general boundary constraints. In addition, in recent decades, several
studies on the dynamic mechanical properties of rotating structures in thermal environ-
ments have been developed. Shakouri et al. [18] reported the vibrational behavior of
a conical shell of a functionally graded material with temperature-dependent material
properties during rotation. Afshari [19] extended the generalized differential quadrature
method to the solution of free vibration of a rotating conical shell reinforced by graphene
nanomaterials. Bhangale et al. [20] reported a finite element method for analyzing the
dynamics of functionally graded conical shells operating in high temperature environments.
Tian et al. [21] obtained the free vibration and forced vibration solutions of the combined
conical cylindrical shell by the dynamic stiffness method. Qin et al. [22] used the Rayleigh-
Ritz method which based on the energy variation principle to solve the free vibration
problem of a cylindrical shell-ring-plate coupling system. Singha et al. [23] analyzed the
free vibration characteristics of rotating pretwisted sandwich conical shells in a thermal en-
vironment based on high-order shear deformation theory by using a finite element method.
Talebitooti et al. [24] investigated the frequency behaviors of the joined conical-conical
panel structures based on FSDT by applying Hamilton’s principle. Soureshjani et al. [25]
investigated the free vibration behaviors of composite joined conical-conical shell in the
thermal environment by using a generalized differential quadrature method. Shi et al. [26]
proposed an analytical model for investigating the vibration characteristics of a functionally
graded conical-cylindrical coupled shell structure by using a spectro-geometric method.
Ghasemi et al. [27] investigated the influences of distribution, mass and volume fractions of
fiber, boundary conditions and lay-ups on the sensitivity of vibration behaviors of hybrid
laminates cylindrical shell according to Kirchhoff Love’s first approximation shell theory.
Liu et al. [28] focused on the influences of rotation on the frequencies and critical speed of
CNTs/fiber/polymer/metal laminates cylindrical shell based on Love’s first approximation
shell theory. Semnani et al. [29,30] analyzed the vibration behaviors of microshell under
varied working conditions by using a finite element method.

In addition to the above methods, the development of meshless theory provides a
brand-new idea for plate-shell vibration analysis. Based on the three-dimensional elastic
theory, Kwak et al. [31,32] proposed a meshless strong-form solution for the free vibration of
laminate shells. In their method, Chebyshev polynomials are introduced as basis functions
in the construction of shape functions. In the meshless approach, the establishment of
the system algebraic equations of the problem domain does not use a pre-defined mesh
for domain discretization, but instead uses nodes [33]. Zarei et al. [34] constructed the
displacement function of a prestressed laminate using meshless radial basis point interpo-
lation and analyzed its vibration characteristics. Mellouli et al. [35] used the same method
to build a vibrational analysis model of functionally graded carbon nanotube-reinforced
shells. Zhang et al. [36] introduced the vibrational behavior of carbon nanotube-enhanced
functionally graded triangular plates using a meshless method. Fallah and Delzendeh [37]
studied the free vibration of laminates with meshless finite volume method (MFV) as
the model solution method and moving least squares approximation to approximate the
displacement component. Kwak et al. [38] combined the Chebyshev polynomial with the
radial basis point interpolation method to construct the displacement shape function of the
open laminated cylindrical shell with elliptical section, and solved its natural frequency.

The purpose of this paper is to study the vibration properties of a rotating cross-
laminated conical-cylindrical shell in a thermal environment using meshless theory, con-
sidering that the combined structure is divided into cylindrical shell and conical shell
structure, and the cylindrical shell is a special conical shell. Therefore, the equations of
motion suitable for rotating conical shells are first established within the FSDT framework.
Then, the two substructures are assembled by the continuity equation to obtain the equation
of the overall structure. The effects of centrifugal force, Coriolis force, and temperature
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are considered in the equations of motion, and the displacement components involved are
approximated using a meshless TRPIM shape function. The accuracy and reliability of
the proposed method are verified through the convergence study and comparing with the
results of the literature and ABAQUS. Finally, the effects of parameters such as geometry,
temperature difference and rotational speed on the free vibration of the cross-ply laminated
composite conical-cylindrical shell structure are studied. To sum up, the investigations of
this paper can analyze the variation tendency of vibration characteristics of rotating cross-
laminated conical-cylindrical shell in the thermal environment and provide the theoretical
basis for the designation and manufacture of rotating cross-laminated conical-cylindrical
shell structures which are used in aircraft, missiles, submarines, etc.

2. Theoretical Formulations
2.1. Description of the Model

Figure 1 shows a model of laminated combined conical-cylindrical shell rotating with
rotating angular velocity Ω under the influence of temperature difference ∆T. The symbols
L1 and L2 denote the lengths of the two meridians. The thickness of the combined shell is
uniformly set to h. ϕ represent the semi-vertex angle of conical shell. The symbols R1 and
R2 represent the radii at both ends of the conical shell, respectively. The cylindrical shell is
connected at the big end of the conical shell, so the radius of the cylindrical shell is also R2.
The orthogonal curvilinear coordinate system (x, θ, z) is introduced into the middle surface
of each substructure. The orthogonal coordinate system o-xθz is established on the middle
surface of the substructure, then the radius R of the random position on the conical shell is
as follows:

R = R1 + x sin ϕ (1)

Figure 1. Geometry of rotating cross-ply combined conical-cylindrical shell in thermal environment.

2.2. Governing Equations and Boundary Conditions

According to the assumption of first-order shear deformation [39], the displacement
(u, v, w) of any position on the elastic structure can be represented by the displacement
(u, v, w, ψx, ψθ) of the mid-plane.

u(x, θ, z, t) = u(x, θ, t) + zψx(x, θ, t)
v(x, θ, z, t) = v(x, θ, t) + zψθ(x, θ, t)
w(x, θ, z, t) = w(x, θ, t)

(2)
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Combined with the linear elasticity theory, the relationship between the stress and
displacement of the shell is defined:

ε0
α

ε0
β

γ0
αβ

 =


1
A

∂u
∂α + v

AB
∂A
∂β + w

Rα
1
B

∂v
∂β + u

AB
∂B
∂α + w

Rβ
1
A

∂v
∂α −

u
AB

∂A
∂β + 1

B
∂u
∂β −

v
AB

∂B
∂α

,


χα

χβ

χαβ

 =


1
A

∂ψα

∂α +
ψβ

AB
∂A
∂β

1
B

∂ψβ

∂β + ψα
AB

∂B
∂α

1
A

∂ψβ

∂α −
ψα
AB

∂A
∂β + 1

B
∂ψα

∂β −
ψβ

AB
∂B
∂α

,

{
γ0

βz
γ0

αz

}
=

{
1
B

∂w
∂β + ψβ

1
A

∂w
∂α + ψα

} (3)

where ε =
{

ε0
α, ε0

β, γ0
αβ

}T
represents the normal strain and shear strain of the elastic el-

ement, and χ =
{

χα, χβ, χαβ

}T represents the bending and torsional curvature changes

of the elastic body. γ =
{

γ0
βz, γ0

αz

}T
denotes transverse shear strain. A and B denote the

Lamé parameters.

conicalshell : α = x, β = θ, A = 1, B = R, Rα = ∞, Rβ = R/cos ϕ

cylindricalshell : α = x, β = θ, A = 1, B = R, Rα = ∞, Rβ = R
(4)

The matrix form of the stress resultants-strain relationship of moderately thick cross-
ply conical shell is as N

M
Q

 =

A B 0
B D 0
0 0 Ac

εχ
γ

 (5)

where N =
{

Nα, Nβ, Nαβ

}T , the internal element represents the in-plane force. M ={
Mα, Mβ, Mαβ

}T , the element represents the bending moment, and Q =
{

Qβ, Qα

}T is the
shear force vector. A represents the tensile stiffness matrix, B is the bending stiffness matrix,
and D is the coupled tensile bending stiffness matrix. Ac denotes the shear stiffness matrix.
Their specific form is:

A =
N

∑
k=1

 Qk
11 Qk

12 Qk
16

Qk
12 Qk

22 Qk
26

Qk
16 Qk

26 Qk
66

(zk+1 − zk), B =
1
2

N

∑
k=1

 Qk
11 Qk

12 Qk
16

Qk
12 Qk

22 Qk
26

Qk
16 Qk

26 Qk
66

(z2
k+1 − z2

k

)

D =
1
3

N

∑
k=1

 Qk
11 Qk

12 Qk
16

Qk
12 Qk

22 Qk
26

Qk
16 Qk

26 Qk
66

(z3
k+1 − z3

k

)
, Ac = kc

N

∑
k=1

[
Qk

44 Qk
45

Qk
45 Qk

55

]
(zk+1 − zk)

(6)

Qk
11 =

Ek
1

1−µk
12µk

21
, Qk

12 = µk
21Qk

11, Qk
22 =

Ek
2

1−µk
12µk

21
, Qk

44 = Gk
23

Qk
55 = Gk

13, Qk
66 = Gk

12

where N denotes the number of laying layers of the laminate, kc = 5/6 is the shear correction

coefficient and the symbol Qk
ij denotes the elastic stiffness coefficient [38].

In the thermal environment, the thermal stress of the kth layer in the cross-layer is
expressed as follows:

σTk
x

σTk
θ

τTk
xθ

 = −

Qk
11 Qk

12 0
Qk

12 Qk
22 0

0 0 Qk
66


αk

11∆T
αk

22∆T
αk

12∆T


[

Qcxx
Qcθθ

]
= κs

[
A44 A45
A45 A55

]{
γ

p
θr0

γ
p
xr0

}
(7)
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where the thermal expansion coefficients αk
ij of the kth layer are given by

{
Aij, Bij, Dij

}
=

Nk

∑
k=1

zk+1∫
zk

Qk
ij

{
1, z, z2

}
dz (8)

where δk and αij denote the fiber angle of the kth layer and linear thermal expansion
coefficients along the principal axes of a layer, respectively.

The thermal strain can be written as nonlinear part of Green–Lagrange strain.

εNL
α =

(
1
A

∂u
∂α

+
1

AB
∂A
∂β

v +
w
Rα

)2
+

(
1
A

∂v
∂α
− 1

AB
∂A
∂β

u
)2

+

(
1
A

∂w
∂α
− u

Rα

)2

εNL
β =

(
1
B

∂u
∂β
− 1

AB
∂B
∂α

v
)2

+

(
1
B

∂v
∂β

+
1

AB
∂B
∂α

u +
w
Rβ

)2

+

(
1
B

∂w
∂β
− v

Rβ

)2

γNL
αβ =

(
1
A

∂u
∂α

+
1

AB
∂A
∂β

v +
w
Rα

)(
1
B

∂u
∂β
− 1

AB
∂B
∂α

v
)
+(

1
A

∂v
∂α
− 1

AB
∂A
∂β

u
)(

1
B

∂v
∂β

+
1

AB
∂B
∂α

u +
w
Rβ

)
+

(
1
A

∂w
∂α
− u

Rα

)(
1
B

∂w
∂β
− v

Rβ

)
(9)

Substituting Equations (2) and (14) into Equation (13)

εNL
x =

(
∂u
∂x

)2

+

(
∂v
∂x

)2

+

(
∂w
∂x

)2

+ z2
(

∂ψx

∂x

)2

+ z2
(

∂ψθ

∂x

)2

+ 2z
∂u
∂x

∂ψx

∂x
+ 2z

∂v
∂x

∂ψθ

∂x
(10)

εNL
θ =

1
R2

[(
∂u
∂θ

)2
+

(
∂v
∂θ

)2
+

(
∂w
∂θ

)2
+ 2 sin ϕ

(
u∂v
∂θ
− v∂u

∂θ

)
+ 2 cos ϕ

(
w∂v
∂θ
− v∂w

∂θ

)
+u2 sin2 ϕ + v2 + w2 cos2 ϕ + 2uw sin ϕ cos ϕ + 2z

(
∂u
∂θ

∂ψx

∂θ
+

∂v
∂θ

∂ψθ

∂θ

)
+2z sin ϕ

(
u∂ψθ

∂θ
− ψθ∂u

∂θ
+

ψx∂v
∂θ
− v∂ψx

∂θ

)
+ 2z cos ϕ

(
w∂ψθ

∂θ
− ψθ∂w

∂θ

)
+ 2zuψx sin2 ϕ

+2zvψθ + 2zwψx sin ϕ cos ϕ + z2
(

∂ψx

∂θ

)2
+ z2

(
∂ψθ

∂θ

)2
+ 2z2 sin ϕ

(
ψx∂ψθ

∂θ
− ψθ∂ψx

∂θ

)
+z2ψ2

x sin2 ϕ + z2ψ2
θ

]
γNL

xθ =
1
R

[
∂u
∂x

∂u
∂θ

+
∂v
∂x

∂v
∂θ

+
∂w
∂x

∂w
∂θ

+ z
∂u
∂x

∂ψx

∂θ
+ z

∂u
∂θ

∂ψx

∂x
+ z

∂v
∂x

∂ψθ

∂θ
+ z

∂v
∂θ

∂ψθ

∂x

+z2 ∂ψx

∂x
∂ψx

∂θ
+ z2 ∂ψθ

∂x
∂ψθ

∂θ
+ sin ϕ

u∂v
∂x
− sin ϕ

v∂u
∂x
− cos ϕ

v∂w
∂x

+ cos ϕ
w∂v
∂x

+z sin ϕ
u∂ψθ

∂x
− z sin ϕ

ψθ∂u
∂x

+ z sin ϕ
ψx∂v

∂x
− z sin ϕ

v∂ψx

∂x
+ z cos ϕ

w∂ψθ

∂x

−z cos ϕ
ψθ∂w

∂x
+z2 sin ϕ

ψx∂ψθ

∂x
− z2 sin ϕ

ψθ∂ψx

∂x

]
In the thermal field, the strain energy of the structure is expressed as:

U = Ue + UT = 1
2
s

Ω

(
Nxε0

x + Nθε0
θ + Nxθγ0

xθ + Mxχx
+Mθχθ + Mxθχxθ + Qθγθz + Qxγxz

)
Rdxdθ

+ 1
2
s

Ω

Nk
∑

k=1

Zk+1∫
Zk

(
σTk

x εNL
x + σTk

θ εNL
θ + 2τTk

xθ γNL
xθ

)
Rdzdxdθ

(11)
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Meanwhile, when the shell rotates, an initial hoop tension will be generated due to
centrifugal force, which will generate a part of the strain energy.

Uh =
1
2

2π∫
0

L∫
0

N0
θ εNL

θ Rdxdθ (12)

where N0
θ = ρhΩ2R2 is the initial hoop tension, the unit of ρ is kg/m3.

The kinetic energy is

T =
1
2

h∫
0

2π∫
0

L∫
0

ρ
→
v ·→v Rdxdθdz (13)

where
→
v is absolute velocity vector.

→
v =

.
→
r + Ω(− cos ϕ

→
i + sin ϕ

→
k )×→r (14)

where
→
r = U

→
i + V

→
j + W

→
k is the displacement vector.

When the shell is not affected by external force, according to the variational principle,
the equilibrium equation and boundary conditions of the heated rotating cross-layer shell
are deduced.

δ

t2∫
t1

(T −U −Uh)dt = 0 (15)

The obtained governing equations are expressed as:

Ku + C
.
u + M

..
u = 0 (16)

where the matrices C and M are expressed as:

M =


−I0 0 0 −I1 0

0 −I0 0 0 −I1
0 0 −I0 0 0
−I1 0 0 −I2 0

0 −I1 0 0 −I2



C =


0 2I0Ω sin ϕ 0 0 2I1Ω sin ϕ

−2I0Ω sin ϕ 0 −2I0Ω cos ϕ −2I1Ω sin ϕ 0
0 2I0Ω cos ϕ 0 0 2I1Ω cos ϕ
0 2I1Ω sin ϕ 0 0 2I2Ω sin ϕ

−2I1Ω sin ϕ 0 −2I1Ω cos ϕ −2I2Ω sin ϕ 0


(17)

where the inertia terms are

[I0, I1, I2] =

h/2∫
−h/2

ρ[1, z, z2]dz (18)

The boundary conditions obtained from Hamilton’s principle are expressed as:

Bcu = 0 (19)
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Combining Equations (21), (24) and (25), we can derive the governing equations and
boundary conditions for the cross-layer shell in the thermal physics field.

u (x, θ, t) = U(x) cos(nθ + ωt)
v (x, θ, t) = V(x) sin(nθ + ωt)
w (x, θ, t) = W(x) cos(nθ + ωt)
ψx (x, θ, t) = Ψx(x) cos(nθ + ωt)
ψθ (x, θ, t) = Ψθ(x) sin(nθ + ωt)

(20)

where ω and n denote the natural frequency and circumferential wave number, respectively.
Substituting Equation (20) into Equations (21) and (24), the one-dimensional gov-

erning equations and boundary conditions of rotating cross-ply conical shell in thermal
environment are obtained. (

Kx + ωCx −ω2m
)

U = 0 (21)

BxU = 0 (22)

where
U = [U(x) V(x) W(x) Ψx(x) Ψθ(x)]T (23)

Cx =


0 −2I0Ω sin ϕ 0 0 −2I1Ω sin ϕ

−2I0Ω sin ϕ 0 −2I0Ω cos ϕ −2I1Ω sin ϕ 0
0 −2I0Ω cos ϕ 0 0 −2I1Ω cos ϕ
0 −2I1Ω sin ϕ 0 0 −2I2Ω sin ϕ

−2I1Ω sin ϕ 0 −2I1Ω cos ϕ −2I2Ω sin ϕ 0

 (24)

2.3. Meshfree TRPIM Shape Function

The radial point interpolation method is a newly developed meshless method, which
is an important and widely used method for solving partial differential equations. The
unknown displacement function u(x) is approximated by using the RPIM difference of the
polynomials and can be defined as in [38].

u(x) =
nr

∑
i=1

Ri(x)ai +
np

∑
j=1

pj(x)bj = RT(x)a + PT(x)b (25)

where Ri(x) is the radial basis function (RBFS), and nr is the number of nodes of the point x
in the support domain. pj(x) is the polynomial in the space coordinate xT = (x, y), and np
represents the number of polynomials. If np = 0, it is a single radial basis function (RBFS),
otherwise it is an RBF with np polynomial basis functions added. Generally, for a one-
dimensional problem, the basis function of the polynomial is pj(x) = [1,x,...,xnp]T, and in a
two-dimensional problem, the polynomial basis is pj(x) = [1,x,y,...,xnp,xynp−1,...,yxnp−1,ynp]T.
However, using a power function polynomial basis is often inaccurate in solving differential
equations. Chebyshev polynomials have important applications in approximation theory.
Corresponding interpolation polynomials minimize the Longo phenomenon and provide
the best consistent approximation of polynomials in continuous functions. Therefore, this
study uses Chebyshev polynomials as interpolation basis functions.

P(x) = T(x) =
{

T0(x) T1(x) · · · Tp(x) · · ·
}T (26)

where
Tp(x) = cos[p cos−1(x)] , p = 0, 1, 2 · · · v (27)

The multi-quadrics (MQ) radial function with shape parameters αc and q are used in
this paper.

vRi(x) =
[
r2

i + (αcdc)
2
]q

(28)
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where ri denotes the distance between the supported point xJ (J = 1,2,nr) in the supported
domain and calculated node xI. For the one-dimensional problem in this paper ri = |xJ-
xI|, dc is a characteristic length related to the node spacing in the support domain of the
compute node. When the nodes are evenly distributed, dc is the distance between adjacent
nodes. Otherwise, dc is the average node spacing within the node distribution domain.

In meshless theory, the size of the local support domain will affect the interpolation
accuracy, and a suitable size of the supported domain should be selected [32]. The size of
the supported domain of the calculated node can be characterized as follows.

vds = αsdc (29)

where αs represents the scale factor of the support domain.
In order to determine the coefficient vectors a and b in Equation (30), a support field

for calculated node xI needs to be formed, which includes nr field nodes. Let Equation (30)
satisfy the calculation of n node values around point xI, which yields nr linear equations.
The matrix of these equations can be expressed as the following form.

Us = R0a + Tnt b (30)

where R0 represents the RBFs matrix and Tnt is the Chebyshev polynomial matrix [30]. The
coefficient vector a of RBFs is expressed as follow.

a =
{

a1 a2 · · · anr

}T (31)

The coefficient vector b of the Chebyshev polynomial basis function is written as
follow:

b =
{

b1 b2 · · · bnt

}T (32)

Since there are nr + nt unknowns in Equation (35), a unique solution cannot be ob-
tained, so it is necessary to add nr equations through the following constraints to make the
coefficient matrix of the equation system full rank.

nr

∑
i=1

Tj(xi)ai = TT
nt a = 0 , j = 1, 2, · · · , nt (33)

Combining Equations (35) and (38), the matrix representation of the following system
of equations can be generated.

Us =

{
Us
0

}
=

[
R0 Tnt

TT
nt 0

]{
a
b

}
= Ga0 (34)

where
a0 =

{
a1 a2 · · · anr b1 b2 · · · bnt

}T (35)

Us =
{

u1 u2 · · · unr 0 · · · 0
}T (36)

From Equation (39)

a0 =

{
a
b

}
= G−1Us (37)

Substituting Equation (42) into Equation (30)

u(x) = RT(x)a + TT(x)b =
{

RT(x) TT(x)
}{ a

b

}
=
{

RT(x) TT(x)
}

G−1Us =
¯
ΦΦΦ

T

(x)Us

(38)
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Then, the Chebyshev-RPIM shape function is expressed as follow.

Φ
T
(x) =

{
RT(x) TT(x)

}
G−1

=
{

Φ1(x) Φ2(x) · · · Φnr (x) Φnr+1(x) · · · Φnr+nt(x)
} (39)

Delete unnecessary terms in the Chebyshev-RPIM shape function above, and obtain
the Chebyshev-RPIM shape function corresponding to the final node displacement.

ΦT(x) =
{

Φ1(x) Φ2(x) · · · Φnr (x)
}

(40)

Through the above derivation, the displacement components of the nodes can be
expressed as follows.

u(x) = ΦT(x)Us =
nr

∑
i=1

Φiui (41)

Us = {u1, u2, · · · , unr} (42)

2.4. Discretization of Governing Equations and Boundary Conditions

The substructure of the combined structure is discretized using N nodes, and the
displacement approximation function at node xI is represented by a Chebyshev-RPIM
shape function.

U(xI) =
{

uI vI wI ψxI ψθ I
}T

= ΦT(xI)Us (43)

ΦT(xI) =
[
Φ1I5 Φ2I5 · · · ΦNsI5

]
(44)

Us =
[
u1 v1 w1 ψx1 ψθ1 · · · uNs vNs wNs ψxNs ψθNs

]T (45)

where Ns represents the number of nodes covered by the support domain, I5 represents a 5
× 5 identity matrix.

Substituting Equation (47) into Equation (26) to obtain the discretized governing
equation represented by node information.(

KxI + ωCxI −ω2mI

)
Us = 0 (46)

where the nodal matrices KxI, CxI and mI are as follows.

KxI = KxΦT
I , CxI = CxΦT

I , mxI = mxΦT
I (x = co, cy) (47)

Similarly, the discrete equations for whole system are obtained by assembling those of
each node according to the node number [40].

Substituting Equation (47) into Equation (27) to discretize boundary condition.

BxΦT
I Us = 0 (48)

2.5. Continuous Condition

The governing equations and boundary equations of the substructure have been
deduced and discretized before, but a complete solution system has not been established.
The combined structure can be divided into conical shell and cylindrical shell. According
to their geometric characteristics, considering their displacement continuity and physical
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coordination, the right boundary of the conical shell and the left boundary of the cylindrical
shell can be modified as follows.

Nx + kb
(
uco − ucy cos ϕ− wcy sin ϕ

)
= 0

Nxθ + kb
(
vco − vcy

)
= 0

Qx + kb
(
wco + ucy sin ϕ− wcy cos ϕ

)
= 0

Mx + kb
(
ψxco − ψxcy

)
= 0

Mxθ + kb
(
ψθco − ψθcy

)
= 0

: Right boundary of conical shell


Nx − kb

(
ucy − uco cos ϕ + wco sin ϕ

)
= 0

Nxθ − kb
(
vcy − vco

)
= 0

Qx − kb
(
wcy − uco sin ϕ− wco cos ϕ

)
= 0

Mx − kb
(
ψxcy − ψxco

)
= 0

Mxθ − kb
(
ψθcy − ψθco

)
= 0

: Left boundary of cylindrical shell

(49)

where kb denotes the connection stiffness between substructures, and symbols co and cy
denote conical and cylindrical shells, respectively. The matrix form of the continuous
condition can be written as follows.

BxcoΦT
coUsco + K12ΦT

cyUscy = 0 : Right boundary of conical shell
BxcyΦT

cyUscy + K12ΦT
coUsco = 0 : Left boundary of cylindrical shell

(50)

where Usco and Uscy are the displacement vectors of the nodes of the cylindrical shell and
the conical shell on the coupling interface, respectively. The coupled stiffness matrices K12
and K21 are as follows.

K12 =


−kb cos ϕ 0 −kb sin ϕ 0 0

0 −kb 0 0 0
kb sin ϕ 0 −kb cos ϕ 0 0

0 0 0 −kb 0
0 0 0 0 −kb

 (51)

K21 =


kb cos ϕ 0 −kb sin ϕ 0 0

0 kb 0 0 0
kb sin ϕ 0 kb cos ϕ 0 0

0 0 0 kb 0
0 0 0 0 kb

 (52)

Finally, matrix assembly is performed to obtain the vibration control equation of the
overall structure.

(K + ωC−ω2m)U = 0 (53)

where

K =

[
KcoI K12ΦT

co
K21ΦT

cy KcyI

]
(54)

C =

[
CcoI 0

0 CcyI

]
(55)

m =

[
mcoI 0

0 mcyI

]
(56)

The natural frequency of the conical-cylindrical composite structure in the thermal
environment is obtained by the harmonic response method.
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3. Numerical Results and Discussions

This paper provides a meshless free vibration analysis model of a rotating combined
conical-cylindrical shell structure in a thermal environment. The proposed method is
compiled with MATLAB software. The number of nodes and the size of the support do-
main will affect the convergence effect of the algorithm. After obtaining the appropriate
support domain size and number of nodes through convergence analysis, the numerical
results are compared with finite element software or published literature to ensure the
reliability and accuracy of the proposed method. Then, focusing on structural characteristic
parameters and the effect of external physics on structural frequencies, some parametric
study cases are provided. Unless otherwise stated, the natural frequencies of the considered
combined shells are expressed in the dimensionless parameters as ω∗ = ωR1

√
ρ/E2 and

the material properties of the layers are given as: E1 = 175 GPa, E2 = 32 GPa, µ = 0.25,
G12 = G13 = 12 GPa, G23 = 5.7 GPa, ρ = 1760 kg/m3, α11 = 1.2 × 10−6, α22 = 2.3 × 10−6

and α12 = 0. The symbols C, F, and S are used to represent the tightened boundary condi-
tions, free boundary conditions and simply supported boundary conditions, respectively.
The corresponding boundaries are described as follows: C: k = kv = kw = kx = kθ = 1014.
S: ku = kv = kw = kθ = 1014. kx = 0, F: ku = kv = kw = kx = kθ = 0. Then define boundary
rules. For example, CF represents that the boundary of the conical shell segment is a fixed
boundary, and the boundary of the cylindrical shell segment is a free boundary.

3.1. Verification and Convergence Study

First, according to the basic theory of the meshless method, the key factor affecting the
convergence of numerical results is the number of nodes. Therefore, before the numerical
comparison and parametric analysis, the advanced convergence analysis is carried out to
ensure that the obtained calculation results are stable. Table 1 shows the convergence results
of the frequency parameter Ω* (n = m = 1) of the non-rotating cross-layer cylindrical-conical
shell under the classical boundary conditions, and the corresponding geometric dimensions
are: R1 = 0.5 m, L1 = 1 m, L2 = 2 m, h = 0.05 m, ϕ = 30◦,4T = 0 K; the lamination scheme
is δk = [0◦/90◦]. The research results show that, no matter what kind of boundary, when
N ≥ 9 (N is node number), the numerical results are stable and the convergence speed
is faster.

Table 1. Variation of dimensionless frequencies on number of nodes (m = 1).

N
CC SS FC CF

n = 1 n = 2 n = 1 n = 2 n = 1 n = 2 n = 1 n = 2

5 0.2328 0.1812 0.2232 0.1754 0.1171 0.0803 0.0494 0.0339
6 0.2284 0.1790 0.2262 0.1761 0.1127 0.0825 0.0464 0.0317
7 0.2306 0.1805 0.2255 0.1754 0.1142 0.0833 0.0457 0.0317
8 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0464 0.0324
9 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317

10 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
11 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
12 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
13 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
14 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
15 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
16 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
17 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
18 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
19 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
20 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317
21 0.2299 0.1798 0.2262 0.1754 0.1135 0.0840 0.0457 0.0317

In the previous convergence analysis, it has been determined that the meshless theory
is applied to the structural vibration analysis, and the obtained results have good stability.
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However, it has not been demonstrated whether the obtained results have a high level
of confidence. Therefore, it is necessary to further compare the results obtained in this
study with the existing publications or the results obtained by the finite element software
ABAQUS. Table 2 compares the vibration frequencies of the non-rotating combined conical-
cylindrical shell, considering no temperature difference between the inside and outside
of the shell. The dimensions of the structure are:R1 = 0.4226 m, ϕ = π/6, L2 = R2 = 1 m
and h = 0.01 m. The material properties are: E = 211 GPa, ρ = 7800 kg/m3, µ = 0.3. The
dimensionless frequency of a non-rotating combined conical-cylindrical shell structure is
defined as: ω∗ = ωR2

√
ρ(1− µ2)/E. The results obtained by the meshless method are

compared with the published literature [10] and [15], and the difference between the results
obtained by the meshless method and the literature is very small. Table 3 compares the
frequency results obtained by different numerical methods for rotating isotropic combined
conical-cylindrical shells. The boundary conditions, geometry and Poisson’s ratio of the
combined structure are the same as those in Table 2, and the rotational speeds considered
are 0.01 rad/s, 100 rad/s, and 500 rad/s, respectively. The comparison results show that
the method in this paper is in good agreement with the results in the literature. Finally,
it is verified that the model established in this paper can be applied to the structural
vibration solution in a thermal environment. In Table 4, the vibration frequency of the non-
rotating laminated combined conical-cylindrical shell structure in a thermal environment
is analyzed using the finite element software ABAQUS and the method in this paper,
respectively. The considered structural geometry is: R1 = 0.5 m, R2 = 1.5 m, L2 = 2 m,
h = 0.1 m, Nk = [0◦/90◦/0◦]. The temperature change is 50K. The frequencies obtained
by these two methods are in good agreement. Figures 2 and 3 represent the mode shapes
of laminated combined conical-cylindrical shell, corresponding to the natural frequencies
from Table 4. Meanwhile, it is necessary to point out the fact that the following numerical
discussion illustrates that this method can be used to analyze structural vibration behavior
in thermal environments. All in all, after sufficient comparison, it is proved that the method
established in this paper can be applied to the vibration analysis of the rotating composite
conical shell and cylindrical shell in a thermal environment.

Table 2. Comparison of dimensionless frequencies for non-rotating isotropic combined conical-
cylindrical shell with F-C boundary condition (µ = 0.3).

m
n = 0 n = 1 n = 2

FEM Present FEM Present FEM Present

1 0.50375 0.50305 0.29287 0.29279 0.10203 0.09996
2 0.60986 0.60985 0.63581 0.63506 0.50290 0.50217
3 0.93092 0.93082 0.81123 0.81141 0.69148 0.69116
4 0.95632 0.95612 0.93088 0.93137 0.85890 0.85888
5 0.97160 0.97134 0.94850 0.95183 0.91607 0.91544
6 1.01188 1.01142 0.99145 0.99156 0.96048 0.96007

n = 3 n = 4 n = 5

FEM Present FEM Present FEM Present

1 0.09377 0.08750 0.14460 0.14441 0.20390 0.19930
2 0.39220 0.39115 0.33034 0.32996 0.29633 0.29579
3 0.51518 0.51434 0.39562 0.39537 0.37623 0.37013
4 0.75359 0.75289 0.64458 0.64594 0.58167 0.57874
5 0.79698 0.79629 0.69114 0.69248 0.61422 0.61285
6 0.91939 0.91893 0.87194 0.87098 0.81980 0.81642
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Table 3. Comparison of dimensionless frequencies for a rotating isotropic combined conical-
cylindrical shell.

Ω* n
FEM Present

w*b w*f w*b w*f

0.01 rad/s

1 0.5264 0.5264 0.5267 0.5267
2 0.3769 0.3769 0.3774 0.3774
3 0.2873 0.2873 0.2869 0.2869
4 0.236 0.236 0.2363 0.2363
5 0.2231 0.2231 0.2246 0.2246
6 0.2474 0.2474 0.2469 0.2469

100 rad/s

1 0.5430 0.5097 0.5432 0.5103
2 0.3906 0.3648 0.3904 0.3645
3 0.3005 0.2816 0.3010 0.2822
4 0.2527 0.2383 0.2528 0.2387
5 0.2455 0.234 0.2469 0.2352
6 0.2747 0.2647 0.2740 0.2645

500 rad/s

1 0.6085 0.4422 0.6090 0.4421
2 0.4605 0.3308 0.4609 0.3304
3 0.4174 0.322 0.4174 0.3222
4 0.4484 0.3756 0.4480 0.3762
5 0.5212 0.4629 0.5220 0.4633
6 0.6157 0.5612 0.6161 0.5608

Table 4. Comparison of natural frequencies for non-rotating isotropic combined conical-cylindrical
shell in thermal environment (∆T = 50 K).

ϕ Mode
CC CS FC

FEM Present Diff,% FEM Present Diff,% FEM Present Diff,%

π/6

1 234.96 237.01 0.872 227.4 228.08 0.299 120.2 119.54 −0.549
2 250.73 251.66 0.371 227.84 228.85 0.443 133.66 133.66 0
3 252.19 254.21 0.801 244.34 243.77 −0.233 234.47 234.16 −0.132
4 265.13 264.69 −0.166 247.19 247.93 0.299 240.92 241.13 0.087
5 272.86 274.39 0.561 265.13 264.69 −0.166 270.66 270.72 0.022
6 285.89 286.71 0.287 281.3 282.09 0.281 272.89 274.28 0.509

π/4

1 270.23 272.39 0.799 239.64 239.73 0.038 145.93 145.81 −0.082
2 281.53 283.4 0.664 250.99 250.54 −0.179 152.71 152.7 −0.007
3 293.78 293.32 −0.157 271.81 272.52 0.261 256.96 256.67 −0.113
4 294.13 296.48 0.799 293.78 293.32 −0.157 268.27 270.41 0.798
5 319.31 321.55 0.702 302.2 300.76 −0.477 281.31 283.08 0.629
6 328.18 329.1 0.28 312.49 314.21 0.55 305.66 306.68 0.334

Figure 2. Mode shapes of laminated combined conical-cylindrical shell with CC boundary condition
(m = 1, ϕ = π/6) (a) ABAQUS (b) Present.
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Figure 3. Mode shapes of laminated combined conical-cylindrical shell with FC boundary condition
(m = 1, ϕ = π/4) (a) ABAQUS (b) Present.

3.2. Numerical Examples

In Section 3.2, we conduct sufficient comparative verifications to demonstrate that
this method can analyze the vibrational behavior of the rotating composite cone-column
structure in a thermal environment. First, the effect of semi-vertex of the combined conical-
cylindrical shell structure with4T = 0 K on the natural frequency is studied. The structure
shape is: R1 = 0.5 m, L1 = 2 m, L2 = 1 m, h = 0.05 m, δk = [0◦/90◦/0◦/90◦]. It can be seen from
Figure 4a,c,d that as the half-apex angle of the conical shell increases, the frequency of the
combined structure gradually increases slightly first and then decreases significantly under
the CC, SS and CS boundary conditions, respectively. At the same time, the difference
between the forward wave frequency and the backward wave frequency of the conical-
cylindrical composite shell with different rotational speeds is getting smaller and smaller,
and the influence of rotational speed is also weakened. As on can see from Figure 4b,
under the CF boundary condition, the backward wave frequency of the composite structure
corresponding to Ω = 150 rad/s and Ω = 200 rad/s will decrease first and then increase with
the increase of the half apex angle, and the rest of the natural frequency change curves all
decrease. Likewise, with the same rotational speed, the gap between the forward traveling
wave and the backward traveling wave of the structure also decreases.

Secondly, Figure 5 studies the variation of forward wave frequency with temperature
for a combined conical-cylindrical shell with a rotational speed of 50 rad/s. In Figure 5a,c,d
we selected the forward wave frequency with the circumferential wave number n = 1~4 and
the axial half-wave number m = 1 as the research object to discuss its variation with ∆T. The
variation interval of the temperature difference is [0 K, 500 K], and the boundary conditions
of the studied structures are CC, CF, SS and CS boundary conditions, respectively. The
structural geometry parameters are the same as in Figure 4. It is clear from Figure 5b that
for the combined structure under the CC, CF, SS and CS boundary conditions, respectively,
when n = 0 and n = 1, the curve representing the relationship between frequency and
temperature difference approaches the horizontal line. At this time, the effect of temperature
difference on them is minimal. However, for n = 2~4, the natural frequency of the structure
decreases with increasing temperature difference. Under the CF boundary condition, for
n = 2 and n = 3 with the increase of the temperature difference, the frequency value first
decreases, and then does not change. At this time, at the turning point of the curve, the
structure undergoes thermal buckling.



Materials 2022, 15, 6177 15 of 20

Figure 4. Variation of dimensionless frequencies ω∗ of rotating laminated combined conical-
cylindrical shell with different semi-vertex angle (m = 1).

Figure 5. Variation of dimensionless frequencies ω∗ of non-rotating laminated combined conical-
cylindrical shell subjected to thermal effect (m = 1).
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In addition, the effect of the rotational speed on the frequency of the combined struc-
ture in the thermal environment is also studied, where three temperature differences are
selected as 0 K, 200 K and 1000 K, respectively, the rotational speed variation interval
is 0,500], and the boundary condition is CC, CF, SS and CS, respectively. Following the
structure of Figure 5 for analysis, the research results are shown in Figure 6. Meanwhile, it is
necessary to point out that the ω∗f (n=1,m=1) and ω∗f (n=3,m=1) are considered in the following
discussion. As can be seen in Figure 6a,c,d, the frequency of all intercepted backward
wave frequencies under CC, SS, CS boundary conditions, respectively, increases as the
rotational speed increases. However, under CC, CF, SS, CS boundary conditions, respec-
tively, the forward wave frequencies for ω∗f (n=1,m=1) decrease and for ω∗f (n=3,m=1) increase
with increased rotating speed. As shown in Figure 6b, under CF boundary conditions, the
variation tendencies of forward and backward wave frequency are the same as the above
other boundary conditions. However, the forward and backward wave frequencies produce
model jumping with temperature differences increased, and the above phenomenon can be
attributed to thermal buckling.

Finally, Tables 5 and 6 show the dimensionless frequencies of rotating cross-ply com-
bined conical-cylindrical shell with various geometry and boundary condition in thermal
environment. The geometrical parameters of the structure and the temperature difference
are given in the table header, and the lamination scheme is [0◦/90◦/0◦]. It can be seen
from Table 5 that as the length of the cylindrical shell increases, the stiffness of the struc-
ture decreases, and both the forward wave frequency and the backward wave frequency
gradually decrease. The rules in Table 6 are the same as those in Figure 4, and thus are not
repeated here. These results are valuable to designers and serve as benchmarks for future
numerical studies.

Table 5. Dimensionless frequencies of rotating laminated combined conical-cylindrical shell with
various length ratio in thermal environment. (L1 = 1, R1 = 0.5 m, h = 0.05 m, m = 1, ϕ = 30◦, ∆T = 50 K).

L2/L1 Ω, rad/s n
Forward Backward

CC SS CF FC CC SS CF FC

0.5

50
1 0.4723 0.4561 0.1127 0.2549 0.4826 0.4664 0.1230 0.2667
2 0.3809 0.3478 0.0847 0.1157 0.3883 0.3559 0.0928 0.1245
3 0.3544 0.3153 0.1341 0.1709 0.3595 0.3212 0.1400 0.1776

100
1 0.4671 0.4509 0.1083 0.2490 0.4877 0.4715 0.1282 0.2726
2 0.3772 0.3448 0.0818 0.1120 0.3927 0.3595 0.0980 0.1297
3 0.3522 0.3139 0.1326 0.1702 0.3640 0.3249 0.1459 0.1820

1

50
1 0.3735 0.3618 0.0759 0.1835 0.3846 0.3728 0.0862 0.1945
2 0.3448 0.3161 0.0361 0.0921 0.3536 0.3249 0.0449 0.1009
3 0.3404 0.3028 0.0663 0.1687 0.3470 0.3087 0.0729 0.1754

100
1 0.3676 0.3559 0.0707 0.1776 0.3905 0.3780 0.0914 0.2004
2 0.3411 0.3124 0.0332 0.0884 0.3581 0.3293 0.0508 0.1061
3 0.3382 0.3006 0.0670 0.1680 0.3507 0.3131 0.0803 0.1805

1.5

50
1 0.2896 0.2829 0.0553 0.1392 0.3006 0.2947 0.0663 0.1510
2 0.2505 0.2358 0.0258 0.0781 0.2593 0.2446 0.0346 0.0869
3 0.2218 0.2019 0.0597 0.1665 0.2291 0.2092 0.0670 0.1724

100
1 0.2837 0.2778 0.0501 0.1334 0.3065 0.2999 0.0715 0.1562
2 0.2461 0.2313 0.0236 0.0744 0.2645 0.2498 0.0420 0.0928
3 0.2203 0.2004 0.0612 0.1650 0.2336 0.2137 0.0752 0.1776

2

50
1 0.2328 0.2284 0.0420 0.1105 0.2439 0.2402 0.0530 0.1223
2 0.1864 0.1783 0.0214 0.0700 0.1952 0.1871 0.0302 0.0788
3 0.1606 0.1496 0.0575 0.1540 0.1672 0.1569 0.0641 0.1606

100
1 0.2269 0.2225 0.0368 0.1046 0.2498 0.2453 0.0589 0.1282
2 0.1820 0.1739 0.0192 0.0670 0.2004 0.1923 0.0376 0.0847
3 0.1584 0.1481 0.0589 0.1525 0.1724 0.1621 0.0729 0.1658
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Figure 6. Variation of dimensionless frequencies ω∗ of rotating laminated combined conical-
cylindrical shell in the thermal environment.
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Table 6. Dimensionless frequencies of rotating laminated combined conical-cylindrical shell with
various semi-vertex angle in thermal environment. (L1 = 0.5 m, L2 = 2 m, R1 = 0.5 m, h = 0.1 m, m = 1,
∆T = 50 K).

ϕ Ω, rad/s n
Forward Backward

CC SS CF FC CC SS CF FC

π/6

50
1 0.2763 0.2645 0.0729 0.1260 0.2881 0.2763 0.0840 0.1378
2 0.2269 0.2085 0.0766 0.1444 0.2365 0.2173 0.0855 0.1532
3 0.2807 0.2652 0.2033 0.2763 0.2881 0.2726 0.2107 0.2829

100
1 0.2704 0.2593 0.0670 0.1201 0.2940 0.2822 0.0899 0.1437
2 0.2225 0.2041 0.0729 0.1400 0.2417 0.2225 0.0914 0.1584
3 0.2785 0.2630 0.2019 0.2741 0.2925 0.2770 0.2159 0.2873

π/4

50
1 0.2859 0.2756 0.0589 0.1297 0.2969 0.2866 0.0700 0.1415
2 0.2306 0.2115 0.0597 0.1606 0.2402 0.2210 0.0685 0.1695
3 0.2549 0.2365 0.1599 0.2520 0.2616 0.2431 0.1665 0.2586

100
1 0.2800 0.2697 0.0538 0.1238 0.3028 0.2925 0.0752 0.1474
2 0.2269 0.2078 0.0560 0.1562 0.2453 0.2255 0.0744 0.1746
3 0.2527 0.2343 0.1577 0.2498 0.2667 0.2476 0.1717 0.2638

π/3

50
1 0.2918 0.2822 0.0494 0.1319 0.3028 0.2940 0.0597 0.1437
2 0.2343 0.2144 0.0501 0.1857 0.2431 0.2232 0.0597 0.1945
3 0.2424 0.2218 0.1356 0.2394 0.2498 0.2291 0.1422 0.2468

100
1 0.2859 0.2770 0.0442 0.1260 0.3087 0.2999 0.0648 0.1496
2 0.2299 0.2100 0.0472 0.1812 0.2483 0.2284 0.0656 0.1989
3 0.2402 0.2196 0.1341 0.2372 0.2542 0.2336 0.1481 0.2512

π/2

50
1 0.2962 0.2873 0.0427 0.1334 0.3080 0.2991 0.0516 0.1451
2 0.2380 0.2181 0.0457 0.2092 0.2476 0.2269 0.0545 0.2181
3 0.2372 0.2144 0.1194 0.2321 0.2439 0.2218 0.1267 0.2387

100
1 0.2903 0.2814 0.0383 0.1275 0.3139 0.3043 0.0560 0.1510
2 0.2343 0.2137 0.0427 0.2048 0.2520 0.2321 0.0604 0.2232
3 0.2350 0.2129 0.1186 0.2299 0.2483 0.2262 0.1326 0.2439

4. Conclusions

This paper focuses on the free vibration analysis of laminated combined conical-
cylindrical shell rotating in a thermal environment. The equations of motion of the whole
system are derived by combining the equations of individual substructures obtained
using Hamilton’s principle, in which the effects of temperature change, centrifugal and
Coriolis forces are taken into account. For numerical calculation of equations of motions,
the meshfree strong form method using TRPIM shape function is applied. Through the
convergence study, the number of node is determined. The accuracy and reliability of
the proposed method are verified through comparison with the results of finite element
program. Finally, the effects of parameters such as geometric dimensions, rotating speed
and temperature change on the free vibration of combined conical-cylindrical shell are
investigated through some numerical examples. The conclusions obtained in this study are
as follows:

(1) The meshless Chebyshev-PRIM technique is effective and has relatively high accuracy
in the vibration solution of rotating structures. This method has the advantage of fast
convergence, and relatively accurate results can be obtained with a smaller number
of nodes.

(2) The increase of the half-apex angle of the conical shell reduces the structural rigidity,
so the structural frequency decreases. For the combined structure under the CC
boundary, after the cone angle increases to a certain extent, the effect of the rotational
speed will decrease, and the frequencies corresponding to different rotational speeds
will gradually approach.

(3) If the temperature is too high, thermal stress is accumulated inside the structure, the
stiffness of the structure is reduced, and the frequency of the combined structure will
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also decrease. For the boundary conditions with weakened constraints, such as the CF
boundary, thermal buckling also occurs with the increase of the temperature difference.
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