# The Transverse Bearing Characteristics of the Pile Foundation in a Calcareous Sand Area

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Pile Foundation Response Analysis Based on Pasternak Foundation Model

_{p}I

_{p}(kN·m

^{2}) and D

_{e}(m) are the bending stiffness and equivalent width of the pile, respectively; $y$ is the pile deflection (m); $K$ (kN/m

^{2}) and $G$ (kN/m) are two parameters of the Pasternak foundation, namely foundation reaction modulus and shear layer stiffness.

#### 2.2. Pile Foundation Response Analysis Based on Winkler Foundation Model

_{p}I

_{p}and D

_{e}are the bending stiffness and equivalent width of the pile, respectively; $y$ is the pile deflection; the selection of the foundation reaction modulus $K$ is consistent with the above Pasternak foundation model.

#### 2.3. Case Verification

## 3. Results

^{3}, and the static earth pressure coefficient is 0.5. Through insight curve fitting, the relationship between the compressive modulus and the confining pressure of calcareous sand can be obtained as follows:

#### 3.1. Effect of Pile Length

#### 3.2. Effect of Pile Diameter

#### 3.3. Effect of Pile Elastic Modulus

#### 3.4. Effect of Horizontal Load

#### 3.5. Effect of Bending Moment

#### 3.6. Effect of Void Ratio

## 4. Discussion

^{3}, and the static earth pressure coefficient is 0.5. Through insight curve fitting, the relationship between the compressive modulus and the confining pressure of quartz sand can be obtained as follows:

#### 4.1. Comparison of Pile Length in Calcareous Sand and Quartz Sand Area

#### 4.2. Comparison of Pile Diameter in Calcareous Sand and Quartz Sand Area

#### 4.3. Comparison of Pile Elastic Modulus in Calcareous Sand and Quartz Sand Area

#### 4.4. Comparison of Horizontal Load in Calcareous Sand and Quartz Sand Area

#### 4.5. Comparison of Bending Moment in Calcareous Sand and Quartz Sand Area

#### 4.6. Comparison of Void Ratio in Calcareous Sand and Quartz Sand Area

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Ashour, M.; Norris, G.; Pilling, P. Strain wedge model capability of analyzing behavior of laterally loaded isolated piles, drilled shafts, and pile groups. J. Bridge Eng.
**2002**, 9, 245–254. [Google Scholar] [CrossRef] - Galli, A.; Prisco, C.D. Displacement-based design procedure for slope-stabilizing piles. Can. Geotech. J.
**2013**, 50, 41–53. [Google Scholar] [CrossRef] - Kim, S.; Yun, W.C.; Kim, D.S. Pullout capacity of horizontally loaded suction anchor installed in silty sand. Mar. Georesources Geotechnol.
**2016**, 34, 87–95. [Google Scholar] [CrossRef] - Gerolymos, N.; Giannakos, S.; Drosos, V. Generalised failure envelope for laterally loaded piles: Analytical formulation, numerical verification and experimental validation. Geotechnique
**2020**, 70, 248–267. [Google Scholar] [CrossRef] - Zhao, Y.; Zhang, L.; Wang, W.; Wan, W.; Ma, W. Separation of elastoviscoplastic strains of rock and a nonlinear creep model. Int. J. Geomech.
**2018**, 18, 04017129. [Google Scholar] [CrossRef] - Zhao, Y.; Zhang, L.; Asce, F.; Liao, J.; Tang, L. Experimental study of fracture toughness and subcritical crack growth of three rocks under different environments. Int. J. Geomech.
**2020**, 20, 04020128. [Google Scholar] [CrossRef] - Dan, A.B.; Shie, C.F. Three dimensional finite element model of laterally loaded piles. Comput. Geotech.
**1990**, 1, 59–79. [Google Scholar] [CrossRef] - Poulos, H.G. Behavior of laterally loaded piles: I—Single pile. ASCE Soil Mech. Found. Div. J.
**1971**, 11, 711–731. [Google Scholar] [CrossRef] - Hetenyi, M. Beams on Elastic Foundations; University of Michigan Press: Michigan, Russia, 1946. [Google Scholar]
- Vlasov, V.Z.; Leontiev, N.N. Beams, Plates and Shells on Elastic Foundation; Washington DC: NTIS Accession No. N67-14238; Israel Program for Scientific Translations: Jerusalem, Israel, 1966. [Google Scholar]
- Pasternak, P.L. Fundamentals of a New Method of Analyzing Structures on an Elastic Foundation by Means of Two Foundation Constants; Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture: Michigan, Russia, 1954. [Google Scholar]
- Qahwash, A.A. Geotechnical properties of fine-grained calcareous sediments for engineering purposes. Eng. Geol.
**1989**, 26, 161–169. [Google Scholar] [CrossRef] - Donohue, S.; O’Sullivan, C.; Long, M. Particle breakage during cyclic triaxial loading of a carbonate sand. Géotechnique
**2009**, 59, 477–482. [Google Scholar] [CrossRef] - Jafarian, Y.; Javdanian, H.; Hadda, A. Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions. Soils Found.
**2018**, 58, 172–184. [Google Scholar] [CrossRef] - Xzab, E.; Aws, B.; Ycac, E.; Hlad, E. Cyclic strength of loose anisotropically-consolidated calcareous sand under standing waves and assessment using the unified cyclic stress ratio. Eng. Geol.
**2021**, 289, 106171. [Google Scholar] - Ding, Z.; He, S.H.; Sun, Y.; Xia, T.D.; Zhang, Q.F. Comparative study on cyclic behavior of marine calcareous sand and terrigenous siliceous sand for transportation infrastructure applications. Constr. Build. Mater.
**2021**, 283, 122740. [Google Scholar] [CrossRef] - Iskander, M.; El-Gharbawy, S.; Olson, R. Performance of suction caissons in sand and clay. Can. Geotech. J.
**2002**, 39, 576–584. [Google Scholar] [CrossRef] - Yoo, W.; Kim, B.I.; Cho, W. Model test study on the behavior of geotextile-encased sand pile in soft clay ground. KSCE J. Civ. Eng.
**2015**, 3, 592–601. [Google Scholar] [CrossRef] - Chow, Y.K.; Leung, C.F.; Xie, Y. Centrifuge modelling of spudcan-pile interaction in soft clay overlying sand. Geotechnique
**2017**, 67, 69–77. [Google Scholar] - Michael, C. Centrifuge testing of fixed-head laterally loaded battered and plumb pile group in sand. Geotech. Test. J.
**1998**, 19, 41–50. [Google Scholar] - Sakr, M.; Naggar, M. Centrifuge modeling of tapered piles in sand. Geotech. Test. J.
**2003**, 26, 22–35. [Google Scholar] - Foglia, A.; Abdel-Rahman, K.; Wisotzki, E.; Quiroz, T.; Achmus, M. Large-scale model tests of a single pile and two-pile groups for an offshore platform in sand. Can. Geotech. J.
**2021**, 58, 1825–1838. [Google Scholar] [CrossRef] - Feng, Z.; Hu, H.; Dong, Y.; Wang, F.; He, J. Effect of steel casing on vertical bearing characteristics of steel tube-reinforced concrete piles in loess area. Appl. Sci.
**2019**, 14, 2874. [Google Scholar] [CrossRef] - Biggar, K.W.; Sego, D.C. The strength and deformation behaviour of model adfreeze and grouted piles in saline frozen soils. Can. Geotech. J.
**1993**, 30, 319–337. [Google Scholar] [CrossRef] - Wang, Y.; Zhang, H.; Lin, H.; Zhao, Y.; Liu, Y. Fracture behaviour of central-flawed rock plate under uniaxial compression. Theor. Appl. Fract. Mech.
**2020**, 106, 102503. [Google Scholar] [CrossRef] - Tanahashi, H. Formulas for an infinitely long bernoulli-euler beam on the pasternak model. Soils Found.
**2004**, 5, 109–118. [Google Scholar] [CrossRef] - Yao, W.J.; Yin, W.X.; Chen, J.; Qiu, Y.Z. Numerical simulation of a super-long pile group under both vertical and lateral loads. Adv. Struct. Eng.
**2010**, 6, 1139–1151. [Google Scholar] [CrossRef] - Vesic, A.B. Bending of beams resting on isotropic elastic solid. J. Eng. Mech. Div.
**1961**, 2, 35–53. [Google Scholar] [CrossRef] - Stewart, P.D. Analysis of piles subjected to embankment induced lateral soil movements. J. Geotech. Geoenviron. Eng.
**1999**, 125, 425–426. [Google Scholar] [CrossRef] - Huang, M.; Zhang, C.; Zao, L. A simplified analysis method for the influence of tunneling on grouped piles. Tunn. Undergr. Space Technol.
**2009**, 4, 410–422. [Google Scholar] [CrossRef] - Yu, J.; Zhang, C.R.; Huang, M.S. Soil–pipe interaction due to tunnelling: Assessment of winkler modulus for underground pipelines. Comput. Geotech.
**2013**, 50, 17–28. [Google Scholar] [CrossRef] - Filho, R.M.; Mendon, A.V.; Paiva, J.B. Static boundary element analysis of piles submitted to horizontal and vertical loads. Eng. Anal. Bound. Elem.
**2005**, 3, 195–203. [Google Scholar] [CrossRef] - Kerisel, J.; Adam, M. Calcul des forces horizontales applicables aux fondations profondes dans les argiles el limons. Ann. LTBTP
**1967**, 239, 1653–1694. [Google Scholar] - Coop, M.R.; Sorensen, K.K.; Freitas, T.B.; Georgoutsos, G. Particle breakage during shearing of a carbonate sand. Geotechnique
**2004**, 54, 157–163. [Google Scholar] [CrossRef] - Shen, Y.; Shen, X.; Yu, Y.; Liu, H.; Ge, H.; Rui, X. Macro-micro study of compressive deformation properties of calcareous sand with different particle fraction contents. Rock Soil Mech.
**2019**, 10, 3733–3740. [Google Scholar] [CrossRef]

**Figure 8.**Effect of elastic modulus of pile on horizontal displacement of pile in calcareous sand area.

**Figure 14.**Effect of elastic modulus of pile on horizontal displacement of pile. (

**a**) E; (

**b**) 2E; (

**c**) 3E.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hu, H.; Luo, L.; Lei, G.; Guo, J.; He, S.; Hu, X.; Guo, P.; Gong, X. The Transverse Bearing Characteristics of the Pile Foundation in a Calcareous Sand Area. *Materials* **2022**, *15*, 6176.
https://doi.org/10.3390/ma15176176

**AMA Style**

Hu H, Luo L, Lei G, Guo J, He S, Hu X, Guo P, Gong X. The Transverse Bearing Characteristics of the Pile Foundation in a Calcareous Sand Area. *Materials*. 2022; 15(17):6176.
https://doi.org/10.3390/ma15176176

**Chicago/Turabian Style**

Hu, Haibo, Lina Luo, Gang Lei, Jin Guo, Shaoheng He, Xunjian Hu, Panpan Guo, and Xiaonan Gong. 2022. "The Transverse Bearing Characteristics of the Pile Foundation in a Calcareous Sand Area" *Materials* 15, no. 17: 6176.
https://doi.org/10.3390/ma15176176