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Abstract: In this study, the influence of carbonate lake sediments (Polylactide/Carbonate Lake
Sediments–PLA/CLS) on the mechanical and structural properties of polylactide matrix composites
was investigated. Two fractions of sediments originating from 3–8 and 8–12 m were analysed for
differences in particle size by distribution (Dynamic Light Scattering–DLS), phase composition (X-ray
Diffraction–XRD), the presence of surface functional groups (Fourier Transform-Infrared–FT-IR), and
thermal stability (Thermogravimetric Analysis–TGA). Microscopic observations of the composite
fractures were also performed. The effect of the precipitate fraction on the mechanical properties
of the composites before and after conditioning in the weathering chamber was verified through
peel strength, flexural strength, and impact strength tests. A melt flow rate study was performed to
evaluate the effect of sediment on the processing properties of the PLA/CLS composite. Hydrophobic-
hydrophilic properties were also investigated, and fracture analysis was performed by optical and
electron microscopy. The addition of carbon lake sediments to PLA allows for the obtention of
composites resistant to environmental factors such as elevated temperature or humidity. Moreover,
PLA/CLS composites show a higher flow rate and higher surface hydrophobicity in comparison with
unmodified PLA.

Keywords: PLA; polylactide; composite; carbonates; lake sediments; natural filler; calcium carbonate

1. Introduction

Lake sediments contain, in various proportions, carbonate and non-carbonate mineral
ingredients and an organic ingredient. The non-carbonate mineral component includes
terrigenous elements and those of biogenic origin. The organic component contains ele-
ments of plant and animal origin and products of their metabolism and decomposition [1].
Mineral matter in the lake is a product of chemical denudation delivered with ground
and surface waters and a product of mechanical denudation, mainly derived from erosion
processes [2]. The predominant sediment in Lake Swarzędzkie is calcareous gyttja, with
varying carbonate contents. This sediment fills most of the lake basin. In the lake sediments,
the predominant component is gyttja, with a calcium carbonate content of more than 80%,
called lacustrine chalk, lying in the southern part of the water body under a 2- to 3-m turf
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layer. The colour and consistency of the gyttja and lake chalk changes with the depth. The
deeper the sediment, the darker their colour and the lower the water content.

Down to a 12 m depth, two mineral phases can be observed. One is SiO2 with a quartz
structure and the other is CaCO3. As the sampling depth increases, mineral phases of
kaolinite, muscovite, mullite, and anhydrite also appear [3]. In lakes, the surface layer of
sediment is usually hydrated at about 80–95%. Hydration decreases with depth due to
sediment compaction and reaches 65% at a depth of 5 m [4].

Bottom sediments, just like other materials of natural origin, can be used successfully as
composite fillers. Natural fillers include, among others, microcrystalline cellulose, cellulose
fibres, wood [5], and amorphous diatomaceous earth [6,7]. This not only improves a range
of physicochemical properties but also increases the biodegradability of the composite. In
our previous studies, the composite matrix was PLA.

PLA (polylactide acid, polylactide) is one of the main materials on the market of
biodegradable polymers [8–10]. PLA is a linear aliphatic polyester that is formed by
the polymerisation of lactic acid monomers or oligomers (especially the dimers-lactides).
Monomers are obtained by the fermentation of starch, e.g., from maize or sugar beet [11,12].

Besides that, enzymatic polymerisation in mild conditions is also used as an envi-
ronmentally friendly alternative [13]. Another method of polylactide manufacturing is
microbiological fermentation, which is advantageous on account of the lack of extraction
and purification stages necessary in other processes. Microbiological polylactide synthesis
is a one-step process allowing for the control of the structure of the polymer by regulating
the ratio of lactide monomers [14,15]. Polylactide is often used as packaging material, but
in addition to packaging applications, biopolymers can be utilised in a variety of industries,
such as agriculture, automotives, construction, and electronic equipment. Polylactide,
like other biopolymers, has its weaknesses when it comes to certain properties, e.g., low
impact strength, low gas barrier characteristics, low thermal resistance, and low rate of
crystallisation [16–18]. Methods to modify polymers are therefore sought by introducing,
e.g., (nano) fillers, plasticisers, and flame retardants into the polymer matrix [19–25].

Lake sediments are a potentially interesting replacement for mineral fillers in polymer
and biopolymer composites. Their use may be dictated by the possibility of the reclamation
of water reservoirs undergoing adverse anthropogenic changes. The conducted research is
to indicate the potential direction of application as well as differences or advantages over
conventional fillers.

In this work, we used raw bottom sediments collected directly from Lake Swadzędzkie
as a polylactide modifier. Field studies were carried out in September 2017 within Lake
Swarzędzkie. Lake Swarzędzkie is situated in western Poland, in the Wielkopolsko-
Kujawski Lake District. It is a shallow, eutrophicated water body with an area of approx.
0.94 km2, with the river Cybina flowing through it.

The tests were carried out to investigate the effects of the natural filler on the me-
chanical and processing properties of the produced polylactide/carbonate lake sediment
(PLA/CLS) composites. To determine the characteristics of the sediment, phase analysis
(XRD), analyses of particle size distribution by DLS (Dynamic Light Scaterring), thermo-
gravimetric analysis (TGA), and infrared spectrophotometry (FT-IR) were carried out. In
addition, for the PLA/sed A-B composites, tests were performed on the melt flow rate
(MFR), strength (tensile strength, flexural strength, impact strength), and hydrophobic
properties of the surface. Strength tests were conducted for the composite samples before
and after weathering tests. The filler/PLA matrix dispersion was assessed via optical and
electron microscopy.

2. Materials and Methods
2.1. Materials

Polylactide (PLA Ingeo™ Biopolymer 2003D, NatureWorks) (Minnetonka, Minneapolis,
MN, USA) was obtained as a matrix polymer. The sediments were collected from Lake
Swarzędzkie in September 2017 at the geographical coordinates 52◦24′50.5′′ N; 17◦04′14.8′′ E.
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2.2. Samples Preparation
2.2.1. Preparation of Sediments

To identify the thickness and the spatial diversity of the sediments in Lake Swarzędzkie,
eight boreholes were made in the bottom of the water body up to a depth of 15 m under
the water surface, with a total length of 65.5 linear metres. The sediments were collected
in 1-metre and 0.5-metre cores with an Ins-torf drill and a specialised boat for drilling
in the bottom of the lake. Based on the distribution of thickness and sediment types, a
14-metre core with the geographical coordinates 52◦24′50.5′′ N; 17◦04′14.8′′ E, representing
the thicker area of the water body, and consisting of turf and carbonate sediment was
selected for further examination. The core was divided into 16 parts, depending on the
depth of the sediment collected, every 1 m on average.

Two sediment fractions were selected for further investigation, namely, from the depth
of 3–8 m (sediment A) and from the depth of 8–12 m (sediment B). The combined sediments
were ground in the ball mill for 72 h and then fractionated using a vibrating sifter with
sieves with different mesh sizes (>40 µm and <40 µm). For further testing, sieved sediment
fractions with a particle size below 40 µm were used.

2.2.2. Preparation of Masterbatches

The process of homogenising polylactide (PLA) with fractionated sediments was
carried out with the laboratory two-roll mill ZAMAK MERCATOR WG 150/280 (ZAMAK,
Skawina, Poland). A total of 1000 g of PLA was plasticised at 215 ◦C over the duration of
15 min while adding portions of sediments until a filler concentration of 50% by weight
was reached. Then, the batches were ground with the mill WANNER C17.26 SV (WANNER,
Wertheim, Germany) and dried for 24 h at 60 ◦C.

2.2.3. Preparation of Final Samples

Ready master batches were diluted with neat PLA directly in the injection machine
Engel e-victory 170/80 (Engel, Schwertberg, Austria), until concentrations of 2.5%, 5%, 10%,
and 15% were reached. Table 1 shows the injection moulding parameters. Standardised
test specimens according to PN-EN ISO 20753:2019-01 were obtained for mechanical tests.
The final concentrations in the batches are shown in Table 2.

Table 1. Injection moulding parameters.

Temperature [◦C] Nozzle Zone 3 Zone 2 Zone 1 Traverse
190 195 200 185 40

Holding pressure t [s] 0.0 9.0
P [bar] 500 1500

Closing Force [kN] Holding Time [s] Cooling Time [s] Screw Diameter
[mm]

800 9 50 25

Table 2. Final concentrations of the filler in the tested systems.

Full Name Short Name

PLA2003D PLA
PLA + 2.5% sediment 3–8 m < 40 µm 2.5sedA
PLA + 5% sediment 3–8 m < 40 µm 5sedA

PLA + 10% sediment 3–8 m < 40 µm 10sedA
PLA + 15% sediment 3–8 m < 40 µm 15sedA

PLA + 2.5% sediment 8–12 m < 40 µm 2.5sedB
PLA + 5% sediment 8–12 m < 40 µm 5sedB

PLA + 10% sediment 8–12 m < 40 µm 10sedB
PLA + 15% sediment 8–12 m < 40 µm 15sedB
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2.3. Characterisation Methods

The phase identification and the relationship between the sediment fraction depth and
its composition were determined using an X-ray diffraction (XRD) powder diffractometer
Bruker AXS D8 Advance (Bruker, Karlsruhe, Germany) using CuKα lamp radiation and an
Ni filter. X-ray diffractograms were recorded in the angular range of 20–80◦ [2Θ].

Thermogravimetry (TG) was performed using the gravimetric analyser NETZSCH 209
F1 Libra (NETZSCH, Selb, Germany). Samples of 5.0 ± 0.2 mg were cut from each gran-
ulate and placed in Al2O3 crucibles. Measurements were done under air in a 30–1000 ◦C
temperature range and at a 10 ◦C/min temperature rise.

Differential scanning calorimetry (DSC) was performed using a NETZSCH 204 F1
Phoenix (NETZSCH, Selb, Germany). Calorimeter samples of 3 ± 0.2 mg were cut and
placed in an aluminium crucible with a punctured lid. The measurements were performed
under nitrogen in the temperature range of 20–200 ◦C and at a 10 ◦C/min heating rate. The
measurements were carried out in two cycles.

Fourier Transform-Infrared (FT-IR) spectra were recorded on a Nicolet iS50 Fourier
transform spectrophotometer (Thermo Fisher Scientific, manufacturer Madison, WI, USA)
equipped with an ATR unit (5000–80 cm−1).

The particle size distribution of the filler used to prepare the composites was measured
with a Mastersizer 3000 (Malvern Instruments Ltd., Malvern, UK), working under the
Dynamic Light Scattering (DLS) principle.

The measurements were made for the samples in water suspension (Hydro EV at-
tachment). The parameters of the measurements for the wet method samples were: stirrer
speed-2330 rpm, ultrasound power-70%.

Contact angle analyses were performed using the sessile drop technique (5 µL) at room
temperature and atmospheric pressure with a Krüss DSA100 goniometer (Krüss Optronic
GmbH, Hamburg, Germany).

Images of composite fractures were taken with the digital light microscope KEYENCE
VHX-7000 (KEYENCE INTERNATIONAL NV/SA, Osaka, Japan) with a VH-Z100R wide
angle zoom lens (KEYENCE INTERNATIONAL NV/SA, Osaka, Japan). at 1000×magni-
fication. The images were taken using the function of depth composition and 3D image
creation. Standard coaxial lighting was used.

Surface imaging was performed with SEM electron microscopy (Quanta 250 FEG, FEI
Thermo Fisher Scientific, Waltham, MA, USA).

The ageing tests were performed in the ESPEC ARS-0220 (ESPEC, Pyeongtaek, Repub-
lic of Korea) weathering chamber with ten alternate cooling and heating cycles (−10 ◦C
to +50 ◦C) and at a humidity of 85% (humidity control is applicable only at temperatures
above approx. 10 ◦C).

For flexural and tensile strength tests, the materials obtained were printed into type
1B dumbbell specimens in accordance with the EN ISO 527:2012 and EN ISO 178:2006 stan-
dards. The tests of the obtained specimens were performed on a universal testing machine
Instron 5969 (Instron, Norwood, MA, USA) with a maximum load force of 50 kN. The
traverse speed for both flexural and tensile strength measurements was set at 2 mm/min.

The Charpy impact test (unnotched samples) was performed on an Instron Ceast 9050
impact tester (Instron, Norwood, MA, USA) in accordance with the ISO 179-1:2010 standard.

The measurement of the mass melt flow rate (MFR) was carried out according to the
PN-EN ISO 1133 standard with the Instron CEAST MF20 (Instron, Norwood, MA, USA)
extrusion plastometer at 210 ◦C and using a 2.16 kg load.

The dynamic viscosity coefficient was determined by a capillary rheometer Instron
Ceast SR 10 (Instron, Norwood, MA, USA), according to the ISO 11443:2005 standard, using
a capillary tube of 5 mm in length and 1 mm in diameter and a shearing speed range of
1−100 (s−1) at 190 ◦C.
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3. Results and Discussion
3.1. XRD Analysis of the Sediment

Among the sediments found in Polish lakes, there is a sediment group formed bio-
chemically or chemically. These are mainly rocks made of calcium carbonate, the content of
which is between a few to more than 95% [26]. To identify the crystalline phase of the A
and B sediments, X-ray diffraction was used, and the results are shown in Figure 1. After
treating the samples at 500 ◦C in a muffle furnace for 30 min in an air atmosphere, the
diffractograms of the sediments A and B do not show any differences; therefore, only the
results obtained for sediment B were presented. The main phase of the sediment is CaCO3
(calcite), with reflections at 2θ values corresponding to it: 23.0; 29.5; 31.5; 36; 39.5; 43.2;
47.15; 47.5; 48.5; 48.9; 56.8; 57.4; 58.1; 60.7; 61.0; 61.4; 63.1; 64.7; 65.7; 68.2; 70.3; 72.9; 73.7;
76.4. The other identified phase in the sediment is SiO2 with a quartz structure. This is
indicated by the presence of reflections at the following 2θ values: 26.6; 31.7; 58.0; 61.0; 70.4;
71.6. The X-ray analysis is confirmed by infrared spectroscopy tests, which helped identify
the presence of the bands specific to CaCO3.
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Figure 1. XRD diffractogram of sediment B (after thermal treatment at 500 °C). 
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Figure 1. XRD diffractogram of sediment B (after thermal treatment at 500 ◦C).

3.2. FT-IR Analysis of the Sediments

Figure 2 shows the FTIR spectra of sediments A and sediment B.
The bands specific to carbonates include four areas: (ν1) symmetric stretching at a

wavelength of 1080 cm−1, (ν2) out of-plane bending at a wavelength of 870 cm−1, (ν3)
doubly degenerate planar asymmetric stretching at 1400 cm−1, and (ν4) doubly degenerate
planar bending at a wavelength of 700 cm−1 [27]–Table 3. The FTIR analysis of the sediment
A and sediment B samples showed the presence of all the bands characteristic of calcium
carbonate at the following wavelengths: 1411, 1088 and 1029, 864, and 705 cm−1.
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Table 3. Summary of the wavelengths in the FTIR analysis of bottom sediment samples.

Wavenumber [cm−1]
sedA

Wavenumber [cm−1]
sedB

1411 1411
1088 1088, 1029
864 864
705 705
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3.3. The Measurement of Particle Size Distribution by DLS (Dynamic Light Scaterring)

The ground and sieved sediments were tested for particle diameter distribution. The
measurements carried out showed differences between the two tested sediments (Figure 3).
For small particles (0.2–1 µm), the curves are similar for both sedA and sedB. Above 1 µm,
for sedimentB, we have a slightly larger proportion of particles of 2 µm and of 8–9 µm.
No particles larger than 25 µm are present. On the other hand, for sedimentA, the highest
percentage is observed for particles of 6 µm (8 µm for sedB), and particles between 25 µm
and 100 µm are also present, which may indicate a tendency toward the agglomeration of
sedA particles. Variations in the distribution of the filler particles used in the modification
of polylactide may affect both the mechanical strength of the composites and their impact
strength. This may be due to differences in the dispersion of the filler in the polymer matrix,
which affect the formation of agglomerates. Fillers with small particle sizes are well suited
as polymer modifiers due to the potentially high dispersion ability in the matrix.

3.4. Thermal Behaviour Properties of the Sediment-TGA

The results of the thermal analysis of the bottom sediments are shown in Figure 4.
The curves are almost identical for both sediment fractions. The presence of three peaks at
~80 ◦C, 301.7/304.2 ◦C, and 731.2/736.0 ◦C, respectively, indicates a three-stage process of
sediment decomposition. The first stage is related to the loss of physically adsorbed water.
At the second stage, the loss in mass is 5.58% and 5.64% for sedA and sedB, respectively.
This process corresponds to the combustion of organic compounds. On the other hand,
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at approx. 680–690 ◦C, the thermal decomposition of CaCO3 occurs (Table 4) [28,29]. The
total loss of mass for both filler fractions is approx. 50%. The results of the thermal analysis,
in addition to the X-ray analysis and FTIR, confirm the same composition of both sediment
fractions, regardless of the depth of their collection.
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Table 4. Thermal decomposition of raw deposits.

1st Decomposition Stage 2nd Decomposition Stage
Residual Mass [%]

Sample
Name Onset 1 [◦C] Peak 1 [◦C] Mass

Change 1 [%] Onset 2 [◦C] Peak 2 [◦C] Mass
Change 2 [%]

Residual
Mass [%]

sedA 254 302 5.6 681 731 45.5 48.9

sedB 250 304 5.6 686 736 44.9 49.4

3.5. Rheology
3.5.1. Melt flow Rate (MFR)

The melt flow rate was determined for both neat PLA as a reference sample and for
composites on the PLA matrix modified with sediments (Figure 5). The measurements
showed that the addition of sediments, regardless of the concentration, affects the values of
the melt flow rate and, as a result, leads to changes in the processing parameters of materials.
The biggest improvement in the melt flow was achieved for batches containing sediment A
(3–8 m). As the concentration of the additive increased, the MFR grew to 16.8 g/10 min for a
batch containing 10% of the modifier. This concentration of the additive is optimal due to a
decrease in the MFR value with a further increase in concentration. Batches modified with
sediment B behave differently—as the concentration increases, the melt flow rate decreases,
while at a concentration of 15%, it increases again to reach 13.1 g/10 min.
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Figure 5. Results of the Mass Melt Flow Ratio Measurements.

Taking into account the composition of the two sediment fractions, the factor affecting
the MFR is the particle size of the fillers used and their tendency to agglomerate. SedA,
from fractions located closer to the surface, has a higher tendency to agglomerate and
a higher content of organic matter (Figure 4), which increases the MFR, although this
happens up to 10% of the filler content. SedB, from deeper fractions, which is transformed
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and contains a lower proportion of organic compounds, shows an increased MFR at the
concentration of 15%.

The MFR measurements show that sediment fillers have a positive effect on the melt
flow of the obtained compositions when compared to the neat PLA (Figure 5), which
was also previously observed for PLA/diatomaceous earth composites [6,7]. Sediment A
was more effective for that matter, showing an increasing effect up to 10% loading, while
sediment B increased the flow rate significantly only at 15%. The observed differences may
be linked to the quantitative differences between the fillers, as sediment B consists of a
larger number of particles of a higher average size, as observed from DLS measurements.
The increase in MFR values may be caused by the slight decrease in the average molecular
mass of PLA chains due to polymer degradation during melt processing.

3.5.2. Viscosity

The highest viscosity at a shearing rate from 0 to 1000 s−1 was recorded for the
reference PLA, which indicates that the addition of sediments of any type will reduce the
viscosity of composites (Figure 6). With the increase in the shearing rate, a steep decrease
in the PLA viscosity curve is observed, while modified composites, especially those with
sedA, have a relatively constant viscosity in the range from 200 to 400 Pa·s. This is similar
for sedB deposits, however; the viscosity range (200–600 Pa·s) and its decrease are greater.
For sedA, as the concentration of the filler increases, the viscosity decreases gradually, while
for sedB, the curves are slightly different—composites containing 2.5 and 15% of the filler
have the lowest values, while those with a medium concentration have higher and almost
identical values. For this filler, the effect of thinning by shearing is more pronounced [30].
It is clear from the above that even a small addition (2.5%) of sediment as a filler has a
significant effect on the viscosity of composites. Sediments containing untransformed
organic compounds (sedB) reduce the viscosity of composites.
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3.6. DSC Analysis

A DSC analysis is performed to investigate the thermal behavior of the PLA and
PLA/sediment composites. Figure 7 shows the DSC of the PLA and PLA/sediment
composites during the first and second heating stages. Each DSC curve shows three
characteristic events: (a) a glass transition (Tg) (60–70 ◦C), (b) cold crystallization (Tcc)
(110–130 ◦C), and (c) melting (Tm) (145–155 ◦C) (Figures 7 and 8).
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The addition of sediments to the polymer did not significantly affect the glass transition
temperature or the melting point for both the samples with the sediments 3–8 and 8–12.
In the PLA/sediment composite materials, a large glass transition peak is noticeable
in the first heating cycle, which is related to the low crystallinity of the polymer (high
proportion of the amorphous phase). The introduction of the filler did not affect the glass
transition effect significantly, showing little matrix–filler interaction. On the other hand,
significant changes in the modified materials with sediment fillers can be noticed at the cold
crystallization event (Tcc) in relation to the neat PLA sample. The curve for the reference
sample has a broad Tcc signal due to the fact that PLA is a semi-crystalline polymer
with a slow crystallization rate. The applied fillers resulted in a significant narrowing
of the cold crystallization signal, as well as a decrease in the Tcc with an increase in the
sediment content. These results indicate that the deposits in the polylactide matrix exhibit
the nucleating properties. The sediment A performs better in this function, as evident by more
narrow and prominent Tcc and Tm signals. During the first heating cycle, small right-side
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shouldering of the melting signal is visible, which is either a result of the melting of two types
of crystallites or the effect of metastable crystal perfecting and remelting. During the second
cycle, there is only one sharp signal, confirming the formation of only one type of crystallites.
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3.7. Mechanical Properties

The introduction of both types of powder fillers to the polylactide matrix increases
the Young’s modulus of composites and, at the same time, decreases their strength and
elongation at break compared to PLA (Figures 9 and 10). For example, the Young’s modulus
containing 10% of sediments per weight increases by approx. 523 and by approx. 357 MPa
for fillers A and B (Figure 9). For the same materials, the strength and elongation at break
decrease by approx. 5.0 MPa and approx. 0.66% for sediment A and by 6.5 MPa and approx.
0.69% for sediment B.
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The improved values of the Young’s modulus compared to the non-modified PLA are
due to the introduction of rigid fragments, i.e., powder fillers, into the polymer matrix. At
the same time, these fragments interfere with the continuity of the polymer matrix and
reduce the elongation at break. Discontinuities in the material structure of composites
caused by the presence of powder filler, referred to as microcarbs, are places of stress
concentration. In these areas, material decohesion begins in the form of developing micro-
cracks. An additional stress concentration, which causes material cracking, may occur in
the interphase polymer-filler area. The decrease in the elongation at break of the tested
composites may be due to the poor adhesion of the applied fillers to the polymer matrix,
the poor dispersion of their particles in the non-polar polyolefin matrix, and the ability to
form agglomerates that have low adhesion to the matrix [31,32]. The inorganic powder
filler may also be unable to transmit the stresses carried by the polymer matrix, which also
results in the observed decrease in elongation.

The increasing content of sediments gave a gradual increase in the Young’s modulus
of polylactide-based composites while reducing their tensile strength at the same time
(Figure 10). Neat PLA has a Young’s modulus of approx. 3.3 GPa. For composites containing
15% of fillers by weight, the Et increases to reach approx. 3.9 and 3.7 GPa, respectively,
for sediments A and B. According to Nyambo C. et al. [33] the observed increase in
the Young’s modulus in composites compared to the polymer matrix, growing with the
increase in the filler content in the matrix, may result from an increase in the crystallinity
of composite samples. The inverse relationship was recorded for tensile strength. The
increase in the content of both types of sediments used causes its gradual decrease, but
only to a small extent. The tensile strength of neat PLA is approx. 66.4 MPa. On the
other hand, with 15% of the filler by weight, this value is reduced to 59.9 and 58.5 MPa,
respectively, for sediments A and B. According to Fu [34], this tendency is characteristic
for polymer composites containing non-modified fillers with particle sizes above 1 µm
average diameter. It may also be the result of the weak hydrophilic bonding of the powder
filler with the hydrophobic polymer matrix and the poor dispersion of the powder filler in
the polymer structure [32,35]. Agglomerates result from the tendency of micro-particles
to be attracted to one another by electrostatic forces and van der Waals forces. When a
tensile load is applied to low filler composites, there is an efficient stress transfer between
single particles and the matrix. However, the stress transfer becomes less efficient when
particles are agglomerated [36]. The increasing sediment content in the polylactide matrix is
accompanied by a gradual decrease in elongation at break—from 2.89% (neatPLA) to 2.20%
for the composite 15sedA and 2.08% for 15sedB. The polymer matrix plasticity decreases as
a result of the reduced mobility of polymer chains caused by the introduction of powder
fillers [32]. Similar relationships were also obtained in a number of works dedicated to
PLA composites containing other powder fillers: eggshell powder [36], chestnut shell [37],
coconut shell [32], olive pit powder [38], wood flour, and talc [35].

As a function of the depth of extraction of the fillers used, it was observed that
slightly higher values of the strength properties are characteristic of composites containing
sediments collected at the depth of 3–8 m. These differences are small and more pronounced
for materials containing 10 and 15% of the filler by weight, which is probably due to
variations in the particle size distribution of both fillers.

As for impact strength, no significant changes were observed as a result of adding
sediments to the polylactide matrix (Figure 11). The resulting impact strength values for
pure PLA and its composites focus around comparable values and are within the mutual
confidence intervals of the standard deviation. According to [38], neat PLA is a brittle
material, and the addition of powder filler to its structure intensifies this property.

The flexural strength results confirm all the above-described dependencies (Figure 12).
Higher flexural modulus values were obtained for composites compared to pure PLA. This
modulus also increases with the sediment content in the polylactide matrix, from approx.
3.5 GPa (PLA) to 4.3 GPa for 15 sedA and 4.4 GPa for 15 sedB.
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Similarly, as the filler content in the polymer structure increases, the elongation of
the composites subject to the bending test decreases (Figure 12). For pure PLA and its
composites containing 2.5 and 5% of A and B fillers by weight, the test was carried out
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until the specific bend deflection was reached. For the filler content of 10 and 15% per
weight, the samples were destroyed before this parameter was reached, which suggests a
low adhesion of the filler to the polymer matrix, a poor sediment dispersion in the PLA
structure, and an affinity for agglomerating.

The results obtained in the mechanical properties tests are typical for composites with
mineral (chalk) fillers. The A and B sediments are suitable for use as fillers for thermoplastic
polymers due to the absence of a significant deterioration of mechanical properties.

3.8. Mechanical Tests after Conditioning in the Weathering Chamber

The strength tests for PLA/CLS composites after conditioning in the weathering
chamber are shown in Figures 13–16.
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The conditioning of PLA/sedA-B composites in the weathering chamber, where they
were exposed to temperatures from –10 ◦C to 50 ◦C, resulted in changes in their mechanical
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characteristics. Pure polylactide’s structure is weakened, resulting in a decreased impact
strength from ~19 to ~14 kJ/m2 and increased brittleness (the elongation at break decreased
from ~2.9 to ~2.7%). The Young’s modulus also decreased slightly (from 3.3 GPa to 3 GPa),
which may be associated with the reduced crystallinity of the polylactide. Decreased
parameters were also observed for flexural strength. However, all the tested composites
after conditioning in the weathering chamber have an impact strength and tensile val-
ues similar or even higher. The highest increase in these parameters was observed for
composites containing sedA. The decreased parameters in the pure polylactide and the
increased parameters in the sedA-B composites suggest the degradation of PLA due to the
increased temperature and humidity, while modification with sediments has a positive
effect on the strengthening of the composite structure. The impact strength increased to
approx 26 kJ/m2 for the 10% content of the sedA sediment, while a 50% increase in flexural
strength was observed for the 15 sedA composite compared to the unmodified PLA.

3.9. Composite Surface Characterisation
3.9.1. Composite Wettability Tests

The results of the contact angle measurements for the PLA/CLS composites are shown in
Figure 17. The application of bottom sediments as fillers changed the hydrophobic properties
of the polylactide. The highest contact angle values were obtained for the batches modified
with the sediment collected from fractions closer to the surface (3–8 m)—sediment A. The
contact angle for the 15% filler content is 98.3◦, while that for the additive content of 2.5%
is 89◦. The modification of the polylactide with sediment B showed slight differences in
hydrophobic properties between samples with 2.5% and 15% of CLS content (87.5◦ and 88.4◦,
respectively), and these are the highest results in the series. Therefore, it can be concluded
that, regardless of the amount of filler, it is possible to obtain surfaces less prone to wetting.
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The contact angle tests after the samples were placed in the weathering chamber
showed (Figure 13) that the values are lower for pure polylactide than they are for the
samples conditioned at room temperature (the contact angle is lower by 3◦). On the other
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hand, for sediment-modified batches, higher values are obtained for lower concentrations
of sediment A (3–8 m). As the concentration increases, the hydrophobic properties of
the surface decrease, which is caused by the influence of increased temperature and hu-
midity on the properties of the sediment itself. For batches modified by the sediment
collected from deeper layers (sediment B), increased hydrophobic properties are obtained
for batches containing 5 and 10% of the additive; however, this increase does not give a
fully hydrophobic surface, as is the case with the sedA samples.

Figure 18 presents example photos of droplets applied to the surface of the tested
samples. In addition to the changed shape of the droplet, a slight change in surface roughness
is observed. The presence of sediment B in the composite clearly increases surface roughness
and creates hydrophobic centres, which significantly increases the contact angle.
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3.9.2. Microscopic Observations

The EDS mapping of composite fractures showed that the samples modified with sedA
as well as with sedB contain concentrations of calcium compounds unevenly distributed
in the composite (Figure 19). Their content changes as the filler concentration increases,
and there are more of them for 5sedB than for 5sedA. The other elements present in the
samples are carbon, oxygen, aluminium, silicon, and traces of iron. In batches with lower
concentrations of calcium, carbon is predominant over calcium, but as the filler content
increases, this tendency is reversed.

On the SEM images of composite fractures before (Figure 20A–D) and after the weath-
ering chamber (Figure 20A’–D’), differences in the structure of the materials analysed were
observed. They are best visible for the composites modified with sedA (Figure 20A—2.5sedA,
Figure 20B—15sedA). Conditioning in the weathering chamber causes changes in the structure
of the fracture surface visible as cracks in the materials. This effect is noticeable as the filler
concentration increases. The surface of the composite has places with a milky colour, which
are associated with the degradation of polylactide occurring at high temperatures and in
the presence of moisture. At the same time, a much better dispersion of the filler in the
matrix is observed, especially for the 15% sedA content. For the composites modified with
sedB, after conditioning in the weathering chamber, no changes in the surface structure were
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observed, apart from the milk-coloured areas. This suggests that the addition of sedB stabilises
the material.
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The SEM images of composite fractures (Figure 20) showed the presence of filler
particles of a size corresponding to the sizes observed in the DLS measurement (Figure 3).
For booth composite types, both particles of 0.2–10 µm and of approx. 10 µm are present.
No filler agglomerates were observed, which indicates their good dispersion in the polymer
(Figure 21).
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Figure 20. Optical microscope photos of composite fractures conditioned at room temperature (RT) and
after conditioning in the weathering chamber (WCh): (A)–2.5sedA RT, (A’)–2.5sedA WCh, (B)–15sedA
RT, (B’)–15sedA WCh, (C)–2.5sedB RT, (C’)–2.5sedB WCh, (D)–15sedB RT, (D’)–15sedB WCh.
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4. Conclusions

The bottom sediments collected from Lake Swadzędzkie contain mainly calcium
carbonate in their composition, and, as a result, they can be used as composite fillers. In
the study, sediment and PLA composites were obtained. Two fractions from 3–8 m and
8–12 m were used for this purpose, in quantities of 2.5, 5, 10, and 15% by weight. PLA/CLS
composite strength tests showed varied effects of the fractions. The increased proportion of
the filler causes the Young’s modulus to increase, but the elongation and tensile strength
decreases with the growing filler proportion. Higher flexural modulus values were also
obtained for the composites compared to the pure PLA. This modulus also increases with
the increase in sediment content in the polylactide matrix. Similar effects were observed for
samples conditioned in the weathering chamber, especially when sediment A was the filler.
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4. Choiński, A. Wybrane Zagadnienia z Limnologii Fizycznej Polski; Wydawnictwo Naukowe UAM: Poznań, Poland, 1988; pp. 18–37,
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