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Abstract: The surge in plastic waste production has forced researchers to work on practically feasible
recovery processes. Pyrolysis is a promising and intriguing option for the recycling of plastic waste.
Developing a model that simulates the pyrolysis of high-density polyethylene (HDPE) as the most
common polymer is important in determining the impact of operational parameters on system
behavior. The type and amount of primary products of pyrolysis, such as oil, gas, and waxes, can be
predicted statistically using a multiple linear regression model (MLRM) in R software. To the best of
our knowledge, the statistical estimation of kinetic rate constants for pyrolysis of high-density plastic
through MLRM analysis using R software has never been reported in the literature. In this study, the
temperature-dependent rate constants were fixed experimentally at 420 ◦C. The rate constants with
differences of 0.02, 0.03, and 0.04 from empirically set values were analyzed for pyrolysis of HDPE
using MLRM in R software. The added variable plots, scatter plots, and 3D plots demonstrated a
good correlation between the dependent and predictor variables. The possible changes in the final
products were also analyzed by applying a second-order differential equation solver (SODES) in
MATLAB version R2020a. The outcomes of experimentally fixed-rate constants revealed an oil yield
of 73% to 74%. The oil yield increased to 78% with a difference of 0.03 from the experimentally fixed
rate constants, but light wax, heavy wax, and carbon black decreased. The increased oil and gas
yield with reduced byproducts verifies the high significance of the conducted statistical analysis. The
statistically predicted kinetic rate constants can be used to enhance the oil yield at an industrial scale.

Keywords: pyrolysis of waste; high-density polyethylene; rate constant; numerical analysis; R software

1. Introduction

Because of the increasing consumer demand for everyday items, the reliance on syn-
thetic plastics is growing year after year. Plastics are well-known for their durability,
chemical stability, and adaptability. These traits make them ideal materials for automo-
tive, household appliances, medical equipment, horticulture, micro-foamed polymeric
structures, etc. [1–3]. Plastics are a widely used material, resulting in a production rate of
355 million tons per year in mainland Asia and the European Union, which account for
19% and 50% of the market share, respectively [2]. Managing plastic garbage is becoming
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more difficult and has a negative impact on the environment [4]. Out of this bulk amount
of waste, only 9% is recycled, 60% is dumped in landfills, and the remaining is burned [5,6].
Burning plastic waste and fossil fuels is wreaking havoc on human health and marine
life [7]. Herein, it is imperative to find novel and environmentally friendly methods to
manage or recycle plastic waste into value-added products and protect our environment
and planet [8].

Based on the type of treatment process utilized and the byproducts extracted from
it, all recycling processes are categorized. Plastics are heated in a chamber during the
pyrolysis process, which turns them into flammable gases and liquids [9,10]. The plastic
waste is changed into small constituents and then subjected to an endothermic heating
process [11,12]. Depending on the heating method, pyrolysis can be either traditional or
microwave-assisted [6]. It can be used to valorize biomass, wood, rubber, scuffle tires, coffee
hulls, oil shells, and chemicals [12]. It is important to note that pyrolysis is a chemistry-
intensive process. Systematic experimental and numerical tests are required to anticipate
the physical and chemical properties of pyrolysis products. The lack of research on the
statistical optimization of rate constants for effective pyrolysis of wastes, particularly plastic
waste, is another factor supporting the aforementioned concerns.

By using appropriate statistical models, the process parameters must be statistically
optimized for maximum output and good product selectivity. Therefore, it is critical to
develop a model that simulates the pyrolysis of plastic, the most prevalent polymer, to
determine the impact of operational parameters on pyrolysis efficiency. Using MLRM in
R software, it is possible to statistically estimate the kind and quantity of basic products,
including oil, gas, and waxes. As far as we are aware, no research publications on the
statistical prediction of rate constants for the pyrolysis of plastics using MLRM analysis
in R software have ever been published. Wirawan and Farizal [13] used a factorial design
to optimize the pyrolysis process for plastic waste to produce fuel-grade products. They
evaluated a 2 k factorial design for optimizing plastic-type, temperature, and residence time
to maximize liquid product yield. The results demonstrated that the optimized pyrolysis
operation could create diesel-like fuel at relatively low temperatures. The optimized
temperature and residence time were reported as 175 ◦C and 180 min, respectively. The use
of low temperature and long residence time was cited as the novelty of the work, as very few
individuals had explored slow pyrolysis at such low temperatures [14]. Joppert et al. [14]
used response surface methodology and factorial design to optimize the experimental
conditions for the pyrolysis of mixed wastes. The optimization was done on process
temperature reaction time and initial pressure. The tested models were discovered to be
beneficial in providing knowledge to optimize experimental parameters that maximize the
generation of predetermined liquid and gas components [15].

In another study, Krishna et al. [16] investigated the global dynamics of poly (methyl
methacrylate), polystyrene, and ultra-high molecular weight polyethylene rapid pyrolysis.
They used analytical Pyroprobe® to generate data on isothermal mass loss for different
time intervals in the range of 2–150 s. Integral reaction models were used to calculate the
apparent pre-exponential factors and activation energies. This study predicted that fast py-
rolysis of all three types of plastics would have low activation energies, demonstrating that
the process of rapid pyrolysis is diffusion-limited. The time taken for the highest evolution
of vapors was 12–45 s at a process temperature of 500 ◦C. The vapors evaluation time was
reduced to 20–22 s at a process temperature of 600 ◦C. Harmon et al. [17] investigated the
pyrolysis of plastic waste using a mechanistic model. A full and accurate description of the
decomposition process demanded the solution of a huge system of equilibrium models due
to the large number of species involved. The model predicted that as temperature increases,
the olefin fraction breaks rapidly by increasing the gas proportion. When temperature
and residence time increase, the production of aromatics also shows an increasing trend.
However, it was stressed that the primary utility of the model depends on the accurate
prediction of operational factors but not on the computation of the number of separate
species under specific operating circumstances. Senneca and Tucciullo [18] used lumped
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kinetics scheme for the pyrolysis of n-hexadecane and n-decene compounds. They used
the CDF model to investigate the chemical kinetics, which is crucial in hybrid propulsion
because the mixture of gas products generated by pyrolysis impacts the combustion process.
A complete pyrolysis procedure for high-density plastic was designed and verified from
the published data. The study focused on the likelihood of producing soot rather than
the specific yield of all products and reaction intermediates. A reaction network with
198 species and 6307 reactions was condensed into a very basic five-reaction mechanism
on the basis that the primary tar produced by the pyrolysis of plastic waste is largely
made up of aliphatics that can undergo progressive aromatization to polycyclic aromatic
hydrocarbons and soot. The results of this study can not be generalized since the primary
focus was on the production of tar from plastics.

We are pioneers in testing R software to evaluate a multiple linear regression model
(MLRM) to forecast the amount of oil, gas, and wax produced by the pyrolysis of plastics.
To the best of our knowledge, no one has previously published a study on how to use
MLRM analysis in R software to statistically forecast the kinetic rate constants for plastics
pyrolysis. The temperature-dependent rate constants were experimentally fixed at 420 ◦C in
this investigation. For the pyrolysis of high-density plastic, rate constants with differences
of 0.02, 0.03, and 0.04 from empirically set values were investigated. The anticipated
improvements in the final products were also analyzed using a second-order differential
equation solver in MATLAB. The key research aim was to identify a combination of
statistically predicted kinetic rate constants that may have a significant role in increasing
the efficiency of oil production at a commercial scale. This method enables the monitoring
of the formation of individual products during pyrolysis by offering insight into the process
of the production of specific products. The regression model results were statistically
significant, having a positive correlation between the dependent and predictor variables. A
lot of research work needs to be done to explore the sensitivity of the kinetic rate constants
in assessing the efficiency of the individual kinetic rate reactions to get better results.

2. Statistical Prediction of Rate Constants

The experimental rate constants were obtained from the literature [19]. Eidesen et al. [19]
used these rate constants to estimate the amount of oil and gas from the thermal pyrolysis of
HDPE. Our study used open-source R software to predict the rate constants statistically. The
predicted rate constants were used in MATLAB simulation of the thermal pyrolysis of HDPE.
The effect of these rate constants on the products, like oil, gas, and waxes was elaborated, and
the findings of the simulation work were compared with the experimental data to suggest the
best combination of rate constants for high selectivity and yield.

The experimental rate constants were taken as dependent variables, and the values
derived statistically were used as independent variables. After applying the model, the
correlation between the response and predictors was confirmed using 2D and 3D graphs.
The general form of MLR Equation (1) was then used individually in R software for each
rate constant. Z represents our predicted rate constant or statistical rate constant, α and
β are MLR equation coefficients, X and Y are the differences between experimental and
predicted rate constants, and n = 1, 2, and 3 are the number of statistical operations.

Zn = Ao + αnXn + βnYn (1)

The statistically determined rate constants are then employed in MATLAB by using
the second-order differential equation solver to evaluate the percentage efficiency in yield
at 420 ◦C. Figure 1 provides the flow of the conducted research work.
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Figure 1. Graphical illustration of study on the rate constants for pyrolysis of high-density plastic.

The general equation for the multiple linear regression model (MLRM) is Z = A0 + αX + βY.
This model is used in R software to examine the relationship between dependent and independent
variables. MLR equation is used in R software to estimate the coefficient of regression for an
outcome and a risk factor X, as well as an outcome and a hypothetical confounder Y. The
computed statistical coefficients of regression are used in MLRM to generate a logical combination
of rate constants. Three MLRM analyses with a difference of 0.02, 0.03, and 0.04 from the fixed
experimental rate constant were performed at 420 ◦C [19]. MLR equation for each analysis is:

Z1 = A0 + α1X1 + β1Y1, Z2 = B0 + α2X2 + β2Y2, and Z3 = C0 + α3X3 + β3Y3. (2)

Here, Z1, Z2, and Z3 are dependent variables, and X1, X2, X3, Y1, Y2, and Y3 are
independent or predictor variables. The α1, α2, α3, β1, β2, and β3 are the coefficients of
the MLR equation. The values of all the parameters are used in R software to predict
an adequate combination of rate constants K1, K1, and K3. In analysis with a difference
of 0.02, α1 = −0.04 and β1 = 4.56 × 10−1 are the coefficients of the MLR equation, and
A0 = 5.35 × 10−1 is the intercept which is calculated by the MLR equation in R software.
The coefficients X1 and Y1 are statistically significant as the value of p is less than 0.001, as
marked in Table 1 with the symbol ‘***’.

Table 1. Coefficients of MLRM for the experimentally fixed rate constant at 420 ◦C with a difference
of 0.02. Where ‘***’ shows a statistically significant value.

Estimate Stand. Error t-Value p-Value

Intercept −3.549 × 10−5 7.15 × 10−5 −0.496 0.637
X1 4.564 × 10−1 2.439 × 10−3 187.139 1.57 × 10−12 ***
Y1 5.346 × 10−1 1.240 431.226 1.57 × 10−14 ***

The effect of variations in predictor variables on the dependent variables suggested
that the regression coefficient α1 shows 0.456 units increment for Z1 when Y1 is held to
be constant. Similarly, the regression coefficient β1 shows 0.534 units increment for Z1,
when X1 is held constant. The dependent variable Z1 with predictor variables X1 and Y1
explores the nature of the data, as shown in Figure 2. In this graphical illustration, the
trend of dependent and predictor variables varies from bottom to top, which identifies
that the results are significant due to a p-value of 0.001 and shows a positive relationship
among the variables. The y-axis depicts the response variable, while the x-axis represents
a single predictor variable. In Figure 3, the blue line describes a relationship between the
predictor variable and the response variable when all other predictor variables are kept
constant. The same trend can be verified by investigating the vertical blue lines in a 3D plot
in Figure 4. After operating MLRM in R software, a suitable combination of rate constants
(K1) is obtained, as listed below in Table 2.
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Figure 2. Data trending plot between dependent variable Z1 and predictor variables X1 and Y1 with
a difference of 0.02 in experimentally fixed value at 420 ◦C.

Figure 3. Representation of correlation among the dependent and predictor variables for a difference
of 0.02 in experimentally fixed value at 420 ◦C.

Figure 4. 3D illustration of correlation among the dependent and predictor variables for a difference
of 0.02 in experimentally fixed value at 420 ◦C.
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Table 2. The rate constant (K1) was predicted using a dependent variable (Z1), and independent
variables X1, and Y1 with a difference of 0.02 in experimentally fixed value at 420 ◦C.

Dependent Variable
Z1

Independent Variable
X1

Independent Variable
Y1

Rate Constant
K1

0.17 0.15 0.19 1.70 × 10−1

2.43 × 10−8 2 × 10−8 2.9 × 10−8 −3.55 × 10−5

0.0301 0.02 0.04 3.05 × 10−2

0.206 0.1 0.3 2.06 × 10−1

0.0146 0.013 0.016 1.45 × 10−2

0.0104 0.005 0.015 1.03 × 10−2

2.25 × 10−14 2.00 × 10−14 2.50 × 10−14 −3.55 × 10−5

0.0205 0.01 0.03 2.06 × 10−2

3.48 × 10−10 2.00 × 10−10 5.00 × 10−10 −3.55 × 10−5

The coefficients of MLRM for the experimentally fixed rate constant at 420 ◦C with a
difference of 0.03 and 0.04 are reported in Tables 3 and 4, respectively. MLR equation for
this analysis is:

Z2 = B0 + α2X2 + β2Y2 and Z3 = C0 + α3X3 + β3Y3.

Table 3. Coefficients of MLRM for the experimentally fixed rate constant at 420 ◦C with a difference
of 0.03. Where ‘***’ shows a statistically significant value.

Estimate Stand. Error t-Value p-Value

Intercept 3.000 × 10−2 2.074 × 10−9 1.446 2 × 10−16 ***
X2 1.000 3.507 × 10−8 2.852 × 107 2 × 10−16 ***
Y2 2.724 × 10−8 3.494 × 10−8 7.800 × 10−1 0.465

Table 4. Coefficients of MLRM for the experimentally fixed rate constant at 420 ◦C with a difference
of 0.04. Where ‘***’ shows a statistically significant value.

Estimate Stand. Error t-Value p-Value

Intercept 4.000 × 10−2 3.168 × 10−9 1.263 × 107 2 × 10−16 ***
X3 1.000 3.919 × 10−8 2.552 × 107 2 × 10−16 ***
Y3 −4.505 × 10−9 3.990 × 10−8 −1.130 × 10−1 0.914

Here, α2 = 4.56 × 10−1, α3 = 1.00, β2 = 5.35 × 10−1, and β2 = −4.51 × 10−9 are the
coefficients of MLRM while B0 = −3.55 × 10−5 and C0 = 4.00 × 10−2 are the intercepts
calculated using MLRM in R software. The X2 and X3 are significant because the p values
are revealed to be <0.001, but Y2 and Y3 are not statistically significant as the value of
p > 0.001 as shown in Tables 3 and 4 with the symbol “***”.

The reported data reveal a negative correlation between predictor variables Y2 and Y3
and responses Z2 and Z3. The data trend of dependent and predictor variables is significant
for X2 and X3, while Y2 and Y3 are not statistically significant because the data trend does
not exactly change from bottom to top, as shown in Figures 5 and 6. The statistically
predicted rate constants with a difference of 0.03 and 0.04 are mentioned in Tables 5 and 6.
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Figure 5. Data trending plot between dependent variable Z2 and predictor variables X2 and Y2 with
a difference of 0.03 from the experimentally fixed values at 420 ◦C.

Figure 6. Data trending plot between dependent variable Z3 and predictor variables X3 and Y3 with
a difference of 0.04 from the experimentally fixed value at 420 ◦C.

Table 5. Multiple linear regression model with a difference of 0.03 from the experimental fixed values
at 420 ◦C. Where ‘***’ shows a statistically significant value.

Dependent Variable
Z2

Independent Variable
X2

Independent Variable
Y2

Rate Constant
K2

0.17 0.14 0.2 1.71 × 10−1

2.43 × 10−8 2.4 × 10−8 2.46 × 10−8 2.31 × 10−3

0.0301 1.00 × 10−4 0.0601 3.21 × 10−2

0.206 0.176 0.236 2.06 × 10−1

0.0146 1.54 × 10−2 4.46 × 10−2 1.68 × 10−2

0.0104 1.96 × 10−2 4.0 × 10−2 1.26 × 10−2

2.25 × 10−14 2.22 × 10−14 2.28 × 10−14 2.31 × 10−3

0.0205 9.5 × 10−3 5.0 × 10−2 2.26 × 10−2

3.48 × 10−10 3.45 × 10−10 3.51 × 10−10 2.31 × 10−3



Materials 2022, 15, 5910 8 of 16

Table 6. Multiple linear regression model with a difference of 0.04 from the experimental fixed value
at 420 ◦C. Where ‘***’ show a statistically significant value.

Dependent Variable
Z3

Independent Variable
X3

Independent Variable
Y3

Rate Constant
K3

0.17 0.14 0.2 1.70 × 10−1

2.43 × 10−8 2.39 × 10−8 2.47 × 10−8 2.38 × 10−8

0.0301 1.00 × 10−4 0.0601 3.01 × 10−2

0.206 0.176 0.236 2.06 × 10−1

0.0146 4.0 × 10−4 0.0446 1.46 × 10−2

0.0104 9.6 × 10−3 4.0 × 10−4 1.04 × 10−2

2.25 × 10−14 2.21 × 10−14 2.29 × 10−14 −1.80 × 10−10

0.0205 9.5 × 10−3 5.0 × 10−4 2.05 × 10−2

3.48 × 10−10 3.44 × 10−10 3.52 × 10−10 −1.80 × 10−10

The response variable is given along the y-axis, while a single predictor variable is
given on the x-axis. In variable-added plots, the blue line confirms the positive correlation
for X2 and X3, while a negative correlation is evident for Y2 and Y3 because the p-value
is revealed to be <0.001 and >0.001, respectively, as shown in Figures 7 and 8. A similar
pattern of such correlations is also confirmed from the vertical blue lines in 3D plots, as
shown in Figures 9 and 10.

Figure 7. Representation of correlation among the dependent and predictor variables for a difference
of 0.03 from the experimentally fixed value at 420 ◦C.

Figure 8. Representation of correlation among the dependent and predictor variables for a difference
of 0.04 from the experimentally fixed value at 420 ◦C.
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Figure 9. 3D illustration of correlation among the dependent and predictor variables for a difference
of 0.03 from the experimentally fixed value at 420 ◦C.

Figure 10. 3D illustration of correlation among the dependent and predictor variables for a difference
of 0.04 from the experimentally fixed value at 420 ◦C.

The experimentally fixed (Z) and predicted rate constants (K1, K2, and K3), obtained
by statistical analysis, are listed in Table 7. Both experimentally fixed and statistically
predicted rate constants were solved through an ODE, such as [t, x] = ode23s (@reaction,
time, C0) in MATLAB to investigate the effect of rate constants on percentage yield over
process time. Here, t is time, X is percentage yield, and C0 represents the initial condition
or number of moles.
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Table 7. Both experimentally fixed and statistically estimated rate constants for pyrolysis of HDPE.

Experimentally Fixed
Z

Predicted at 0.02
K1

Predicted at 0.03
K2

Predicted at 0.04
K3

k_1 = 0.17 k_1 = 1.70 × 10−1 k_1 = 1.71 × 10−1 k_1 = 1.70 × 10−1

k_2 = 2.43 × 10−8 k_2 = −3.55 × 10−5 k_2 = 2.31 × 10−3 k_2 = 2.38 × 10−8

k_3 = 0.0301 k_3 = 3.05 × 10−2 k_3 = 3.21 × 10−2 k_3 = 3.01 × 10−2

k_4 = 0.206 k_4 = 2.06 × 10−1 k_4 = 2.06 × 10−1 k_4 = 2.06 × 10−1

k_5 = 0.0146 k_5 = 1.45 × 10−2 k_5 = 1.68 × 10−2 k_5 = 1.46 × 10−2

k_6 = 0.0104 k_6 = 1.03 × 10−2 k_6 = 1.26 × 10−2 k_6 = 1.04 × 10−2

k_7 = 2.25 × 10−14 k_7 = −3.55 × 10−5 k_7 = 2.31 × 10−3 k_7 = −1.80 × 10−10

k_8 = 0.0205 k_8 = 2.06 × 10−2 k_8 = 2.26 × 10−2 k_8 = 2.05 × 10−2

k_9 = 3.48 × 10−10 k_9 = −3.55 × 10−5 k_9 = 2.31 × 10−3 k_9 = −1.80 × 10−10

3. Effect of Statistically Predicted Rate Constants on Yield Concerning Process Time

The model Equations (3)–(7) were solved in MATLAB using the 23 s solver for ordinary
differential equations (ODEs) (R2020a) [19]. In Equations (3)–(7), dS

dt Indicates the mass rate at
which HDPE is utilized, S is the mass of HDPE, HW is the mass of heavy wax, and Table 7
contains the values of experimental and statistical reaction constants (k1 to k9) [20–22].

ds
dt

= −k1S − k2S − k3S − K4S (3)

dHW
dt

= K4S − K8Hw − K9HW (4)

dLW
dt

= K1S − K6Lw − K5LW (5)

doil
dt

= K2S + K5Lw + K9HW − k7Oil (6)

dGas
dt

= K3S + K6Lw + K7Oil + k8HW (7)

When the conditions for pyrolysis are met, the dominant products are LW with k1, oil
with k2, gas with k3, and HW with k4 rate constants. Furthermore, the free radicals degrade
LW to oil (k5 rate constant), LW to gas (k6 rate constant), and HW to gas (k8 rate constant)
and oil (k9 rate constant). It was also evident that some parts of the oil changed to gas with
reaction constant k7. Table 7 shows the values of the reaction constants ‘k’ at 420 ◦C.

This analysis was carried out at a fixed temperature of 420 ◦C to explore the impact of
experimental and statistical rate constants on yield over process time. HDPE is transformed
into a variety of different organic compounds, including light and heavy waxes before
the process reaches a stable state. A number of other substances are found in the reaction
product mixture but in relatively low concentrations [23]. Aromatics, kerosene, and paraffin
account for the majority of the waxes. Some of these waxes may continue to disintegrate
further into smaller molecules as a result of the high temperature, resulting in carbon black.
This carbon black is mostly made of carbon and contains very small particles. Carbon
black is incredibly stable and will not react any longer. The experimentally determined
and statistically predicted results demonstrate that HDPE degrades rapidly over time for
the suggested temperature. A small portion of HDPE (0.33%) remained after 15 min of
the pyrolysis process, as shown in Figures 11 and 12. Figure 11 shows the product type
and yield graphically for experimentally fixed rate constants at 420 ◦C. The trend of the
products, obtained with the predicted rate constants with a difference of 0.02, 0.03, and
0.04 from the experimentally fixed value, is reported in Figure 12. Abbas and Shubar
performed pyrolysis of high-density plastic [24]. It was discovered that higher cracking
temperatures and longer reaction periods resulted in greater gas and coke output. The
greater the temperature, the more aromatics are produced, resulting in lighter oil with
reduced viscosity.
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Figure 11. Graphical illustration of product type and yield for experimentally fixed rate constants
at 420 ◦C.

According to our findings, both experimental and statistical procedures entail first
breaking down HDPE into smaller particles, which then change into heavy and lighter
waxes. When light and heavy waxes produced during the conversion process are consumed,
oil and gas output decreases significantly [20]. The cracking of HPDE and production of oil,
liquid, gas, and waxes are nearly the same in all cases except for the rate constant difference
of 0.03. The product yield differs significantly for a 0.03 difference in rate constants. Expect
this case, both experimental and statistically predicted rate constants produced nearly 73%
to 74% oil, 24% gas, and 2% amorphous solid [24]. The oil yield must be in the 70–80%
range for these findings to be acceptable. In this investigation, once the pyrolysis process
was completed, 78% of the oil was recovered with a rate constant difference of 0.03. This
amount is approximately 5% greater than the oil produced in other cases, showing a high
recovery rate of the tested statistical model. However, gas yield remained slightly lower
(21%) in this case. The solid residue was about 1% compared to other cases, which produced
2% solid residue. The light and heavy waxes were almost zero in all cases at the end of
the process.

Table 8 details the time-dependent transformation of HDPE into oils, gases, and waxes.
After 60 min of pyrolysis time, the rate constants with a difference of 0.03 produced the
highest gas and oil yield of 22% and 58%, respectively. After 120 min of the pyrolysis
process, all trials produced the same amount of gas (23%); however, oil yield remained 3%
higher for a difference of 0.03 than all other cases. The gas yield dropped to 21% from 23%
after 180 min of the processing time carried out with a difference of 0.03. On the other hand,
all other cases showed a slight increase in gas yield from 23% to 24%. The most significant
difference was observed in oil yield, which jumped from 73% to 78% after 180 min with
a difference of 0.03. Numerous works have been done to investigate the behavior of the
effects of operational parameters on the production of oil yield [25–32]. Uzun et al. [27] used
a fixed bed reactor to study the co-pyrolysis of synthetic and PS waste at 500 ◦C through a
semi-batch process. The highest oil yield was reported to be about 65% on the completion
of the process. The best reaction kinetics with the highest liquid yield was achieved during
pyrolysis of PS/HDPE at a ratio of 1:2. When compared with oil produced from a single
bench biomass pyrolysis, the bio-oil obtained via co-pyrolysis offers better characteristics.
Carbon and hydrogen concentrations increased, whereas oxygen concentrations declined
with the processing time. The bio-oils of co-pyrolysis showed high calorific values, making
them an environmentally friendly fuel. The inclusion of HDPE in co-pyrolysis enhances
the amount and quality of oil in terms of the dispersion of hydrocarbons.
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Figure 12. Graphical illustration of product type and yield for statistically predicted rate constants
with a difference of (a) 0.02, (b) 0.03, and (c) 0.04 from the experimentally fixed value.
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Table 8. Process time-dependent product yield produced with experimentally fixed and statistically
predicted rate constants.

Experimentally Fixed Statistically Predicted

Time (min) Species % Yield % Yield at 0.02 % Yield at 0.03 % Yield at 0.04

60

Light wax 0 0 0 0
Heavy wax 0 0 0 0

Gas 19 18 22 19
Oil 55 55 58 55

120

Light wax 0 0 0 0
Heavy wax 0 0 0 0

Gas 23 23 23 23
Oil 70 70 73 70

180

Light wax 0 0 0 0
Heavy wax 0 0 0 0

Gas 24 24 21 24
Oil 74 73 78 73

A comparison of the percentage yield of oil using different wastes, temperatures, and
methods is provided in Table 9. Salem et al. [28] thermally decomposed HDPE in a batch-
type reactor. They reported an oil yield of 70% at a temperature of 550 ◦C. The experimental
findings were also modeled using synthetic reaction kinetics of HDPE degradation. In a
two-stage process, the kinetic parameters of the primary stage of decomposition of HDPE
showed high activation energy, while the second stage of decomposition produced gases,
liquids, and solid fractions due to the intramolecular hydrogen shift and termination
step. The reported model may be used to construct commercial plastic waste management
facilities that use thermal processes to generate fuel and energy. Khan et al. [29] conducted
pyrolysis of HDPE waste to obtain oil, gas, and char. The high heating and longer reaction
times minimized char production. The lower temperatures created volatile chemicals. They
reported 77.03% oil after 2 h of pyrolysis time in the temperature range of 330 ◦C to 490 ◦C.
These findings suggest that the physicochemical properties of liquid fuels may be exploited
by changing process time and temperature. Rodríguez-Luna et al. [30] pyrolyzed HDPE
in the temperature range of 450–550 ◦C. The characterization of wax and oil products
showed the formation of alkenes, alkanes, and dienes. The intermolecular hydrogen
transformation and scissions were the possible reasons for the formation of these moieties.
The oil contained a wider range of compounds with shorter chain lengths than wax. A
design of experiments was used to determine the best conditions for maximizing the
volatile fraction. After 30 min of treatment time, a volatile fraction corresponding to 97% of
HDPE mass was produced at 500 ◦C.

Table 9. A comparison of percentage yield of oil using different waste, temperatures, and methods.

Waste Type Method Temperature
(◦C) Yield (%) References

PS/HDPE Co-pyrolysis 500 65 [25]
HDPE Pyrolysis 550 70 [26]
HDPE Pyrolysis 330–490 76 [27]
HDPE Pyrolysis 450–550 77 [28]

HDPE Two-step
Pyrolysis 730 80 [29]

Mix Pyrolysis 800 53 [30]
HDPE Pyrolysis 535–675 57 [31]
PP, PE Pyrolysis 420 80 [32]
HDPE Pyrolysis 420 78 Current study

Park et al. [31] reported 80% oil at a temperature of 730 ◦C in two-step pyrolysis of PVC
waste. Although they claimed a little higher oil yield (2%) than our study, the temperature
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employed to generate these results was substantially higher. The high temperature limits
the commercial impact of the work because recycling plastics at such temperatures is
not a cost-effective approach. Sun et al. [32] used sludge char as a catalyst to produce
oil and aromatic oil from the pyrolysis of plastic waste. Product type and yield were
influenced by the catalytic temperature, residence duration, and feedstock compositions.
When the catalytic temperature was 600 ◦C and the residence period was 1 s, the selectivity
of the catalyst toward monocyclic aromatics was reported to be up to 75.3%. Styrene and
xylene content in oil reached 29.1% and 12.5%, respectively. When the temperature was
raised to 800 ◦C by keeping the residence time of 1 s, the selectivity of catalyst to bicyclic
aromatics was up to 64.4%. At this temperature, naphthalenes accounted for 47.5% of the
oil product. In their investigation, the interaction between polypropylene, polyethylene,
and polystyrene raised the bicyclic aromatic selectivity from 46.8% to 53.7%.

Gracida-Alvarez et al. [33] studied the effect of process temperature on the pyrolysis of
HDPE. In a two-step micropyrolysis reactor, the pyrolysis of HDPE generated vapors that
were then subjected to secondary degradation by increasing the temperature and vapor
residence time. The dispersion of the product was significantly impacted by both vapor
residence time and temperature. At 625 ◦C, a wide range of liquid and gas products were
produced with a vapor residence time of 1.4 s. For a process temperature of 675 ◦C and
vapor residence time of 5.6 s, mostly mono-and-poly aromatics and hydrocarbon gases
were produced. Miandad et al. [34] pyrolyzed plastic waste into oil and char. The plastic
trash was transformed into liquid oil at 420 ◦C for 75 min. High aromatic components in
oil make it unsuitable as fuel unless it is improved by distillation, refining, or blending
with diesel. The same temperature was chosen for the presented work to keep the pro-
cess cost-effective. Relatively better oil yield at moderate temperature was achieved by
employing an appropriate statistical model in R software and finding the best combination
of rate constants.

4. Conclusions

It is concluded that developing statistical models to simulate plastic waste recycling
through pyrolysis is the need of the present time. Statistical models are important in
determining the impact of operational parameters on the process efficiency and selectivity
of the products. In this study, the rate constants for pyrolysis of HDPE were statistically
predicted using MLRM analysis in R software. Such analysis has never been reported
in the published literature. A low temperature of 420 ◦C was chosen to predict the rate
constants for a cost-effective pyrolysis process. MLRM in R software was applied to these
rate constants that differed by 0.02, 0.03, and 0.04 from empirically determined values.
Depending on the predictor variables, the dependent variable altered the product yield.
The oil output increased from 78% to 88% with a 0.03 variation from the experimental fixed
rate constants, but light wax, heavy wax, and carbon black decreased. The production of
oil, liquid, gas, and waxes was nearly the same in all cases except for the rate constant
difference of 0.03. The product yield differed significantly for a 0.03 difference in rate
constants. On completion of the pyrolysis process, 78% of the oil was recovered with this
rate constant difference. This amount was approximately 5% greater than the amount of
oil produced in other cases, showing a high recovery rate of the tested statistical model.
The gas yield dropped to 21% from 23% at the end of the process. The rest of the trials
revealed a slight increase in gas yield from 23% to 24%. The most significant difference
was observed in oil yield, which jumped from 73% to 78%. These findings suggest the
high significance of the tested statistical model at low pyrolysis temperature. Future work
should be focused on the optimization of the pyrolysis process for plastics by choosing
multiple temperature-dependent activation energies and pre-exponential factors.
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