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Abstract: The Laser Powder-Bed Fusion (LPBF) process produces complex part geometry by se-
lectively sintering powder metal layer upon layer. During the LPBF process, parts experience the
challenge of residual stress, distortions, and print failures. Lattice-based structures are used to sup-
port overhang parts and reduce distortion; this lattice support has complex geometry and demands
high computational effort to predict distortion using simulation. This study proposes a computational
efforts reduction strategy by replacing complex lattice support geometry with homogenization using
experimentally determined mechanical properties. Many homogenization models have been estab-
lished to relate the lattice topology and material properties to the observed mechanical properties,
like the Gibson–Ashby model. However, these predicted properties vary from as printed lattice geom-
etry. In this work, the power-law relationship of mechanical properties for additively manufactured
Inconel 718 part is obtained using tensile tests of various lattice support topologies and the model
is used for homogenization in simulation. The model’s accuracy in predicting distortion in printed
parts is demonstrated using simulation results for a cantilever model. Simulation studies show
that computational speed is significantly increased (6–7 times) using the homogenization technique
without compromising the accuracy of distortion prediction.

Keywords: additive manufacturing; distortion; AM support structures; distortion simulation;
homogenization of lattice supports

1. Introduction

LPBF is an Additive Manufacturing (AM) process technique that employs a highly
focused laser as a moving heat source to scan the powder on the print bed and fuse it to
produce the solid part. This process is repeated layer upon layer using multiple laser scans
to achieve complex part geometry. During sintering, repeated heating and cooling develop
a high thermal gradient on the printed part, causing residual stress build-up, leading to
part distortion and print failure by support cracking or part delamination from the base
plate [1,2]. The LPBF process uses an adequate amount of sacrificial support structures to
overcome the challenges of part distortion and to support overhang features [3,4]. Supports
also help to anchor the part to the base plate and provide a quick heat dissipation path
for the sintering process [5]. Part distortion and overuse of support raise the cost of
using powder bed AM technology in industrial applications. Thus, there is a need for a
quick and accurate way of predicting distortion using FE simulation to evaluate geometric
nonconformity before printing the part.

Several FE models have been developed for distortion prediction. The detailed micro-
scale model developed by Fu et al. [6] and the thermo-mechanical model developed by
Prabhakar et al. [7] use the concept of micro weld repeated along the entire scanning path
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with a layer by layer model. This approach provides accurate results. However, this may
not be feasible for practical application with many layers of stacking and scanning because
this model’s computational effort consumes days [8]. Many models are developed to
increase computational speed, with the idea of thermally activating an entire layer at a
time [9]. This approach neglects the effect of laser process parameters such as hatching
space, scanning strategy, and layer rotation angles. Liang et al. [10] introduced a modified
inherent strain homogenization method for FEA of AM part distortion, with significant
reduction in simulation time. Another method is using a multi-scale approach [11,12],
in which simulation is performed at three levels to achieve good distortion prediction
accuracy and computational speed. Chen et al. [12] and Cheng et al. [13] demonstrated such
approaches and compared experimental results with commercial FE simulation software
(Simufact Additive®, Version 4.1, MSC Software Company, Hamburg, Germany) data.
Most commercially available distortion simulation software uses a multi-scale simulation
approach [14]. Generally, three levels of simulations are performed to achieve high accuracy
and reasonable computational speed [15], as shown in Figure 1.
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The micro-scale involves detailed thermo-mechanical simulation and is independent
of part geometry and size. Meso-scale mainly considers the printing parameters such as
laser scanning patterns, layer thickness, thermal history, and macro-scale and is dependent
on the geometry of printed parts and material properties. The micro and mesoscale
simulation steps depend on the material and process parameters inputs. However, the
computational load on macro-scale simulation will vary with part complexity. In this work,
the computational effort of simulating complex geometry in the case of lattice support is
replaced with a simple homogenized solid block, loaded with an effective property that
can mimic similar behavior of lattice. This approach will bring down the FE simulation
effort from Macroscale.

Zeng et al. [16] explored a unique approach of creating a thermal model for com-
plex lattice support geometry by replacing it with simple solid block geometry. The solid
block was loaded with effective thermal conductivity. The findings of effective thermal
conductivity for different support volume fractions have shown that computational speed
increased drastically without much effect on solution accuracy. This study provides an
approach to use effective properties of the LPBF supports to enhance computational speed.
Literature provides numerous studies about an in-depth approach to numerical modeling
and their validation of LPBF processes. However, it is observed that there are no experi-
mental studies reported for evaluating the effective properties of complex lattice support
structures. Thus, this study focuses on investigating the process of substituting the complex
lattice support geometry with a homogenized continuum solid block using its effective
properties measured from experimental characterization and analytical calculations, us-
ing specially designed tensile samples. Multiple simulation studies were conducted to
understand the influence of various lattice support design parameters on the error between
actual geometry simulation and homogenized model simulation. The proposed approach
will be helpful in predicting the residual stress of metallic parts in industrial applications
because very few variations of lattice supports are used in industrial part production and
one-time characterization of all variations in standardized lattice support will bring down
the computation load of repeated FEA efforts prior to new production part printing.

The remaining part of this manuscript is divided into three sections. The technique
of substituting homogenized continuum support instead of complex lattice geometry,
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benchmarking of software’s accuracy, and the method used for evaluating effective property
are explained in the work. The experimental characterization of lattice support results for
its effective properties, such as effective modulus of elasticity (E) and effective thermal
conductivity, are discussed. The FE simulation made with the use of the effective property
scaling factor is compared with actual geometry and experimental results.

2. Materials and Methods
2.1. Material

Inconel 718 is selected in the study due to its vast application in the aerospace industry
and higher tendency to part distortion [3]. All test samples were fabricated in the single
print bed using the same process parameters to eliminate influences of process variation in
the study. The powder material supplied from the Vacuum Induction Melting Argon Gas
Atomizing process fulfilled the standard recommended material datasheet of EOS Nickel
alloy 718 [17], shown in Table 1.

Table 1. Chemical composition of Inconel718 powder (IN718).

Nickel (Ni) Chromium
(Cr) Iron (Fe) Cobalt

(Co)
Aluminum

(Al)
Molybdenum

(Mo)
Niobium

(Nb)
Titanium

(Ti) Silicon (Si)

53.20% 18.91% 17.96% 0.15% 0.37% 3.04% 5.14% 0.92% 0.08%

Virgin Inconel 718 powder was loaded into the machine to eliminate possible property
variation due to recycled powder [18]. Its apparent density was 4.41 g/cm3 (inspected
as per ASTM B212) and its tapped density 5.64 g/cm3 (examined as per ASTM B527).
Its particle size distribution d10 of 20 µm, d50 of 31 µm and d90 of 43 µm (tested as per
ASTM B822). M280 machine is used for printing, with standard EOS recommended process
parameters for Inconel 718 (Parameter Set IN718_Performace 1.0) as specified in Table 2.

Table 2. IN718 process parameter details for EOS M280.

Process Parameter Units Value

Laser Power W 285
Scanning speed mm/s 960
Hatch Spacing mm 0.11

Size of Laser Beam mm 0.3
Lag between layer seconds 10

Layer thickness µm 40
Scan strategy – 10 mm Strips 67◦ rotation on each layer

Based on findings from Klingbeil et al. [19], preheating will reduce the thermal gradient
experienced by part and bring down distortion in the printed samples. Though preheating
is not favorable for the current study, it was maintained at 80 ◦C to mimic the actual
industrial part process parameters and realise the similar distortion observed in production.

2.2. Methodology

The proposed methodology of substituting the homogenized property of lattice sup-
ports is achieved by finding the support structure’s effective strength and thermal property
from experimental characterization and analytical calculations, as shown in Figure 2.

Sample representation of replacing actual lattice geometry with simple solid homoge-
nized support is shown in Figure 3. The lattice support is assumed to be isometric, and
the influence of directional behavior is not considered in this study. The strength of the
support structure and heat transfer through the support structure significantly affects the
distortion; this helps to reduce built-in stresses. A study by Zeng et al. [16] showed that
the thermal conductivity of support structure is a combined effect of the volume fraction
(VF) of the solid support and unsintered powder. In addition, they proposed an equation
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to find effective thermal conductivity as a function of support structure VF, the thermal
conductivity of sintered metal, and unsintered powder:

Keffective = Ksolid × VF + Kpowder × (1 − VF) = 1, (1)
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The same approach is used in this study to find the effective thermal conductivity of
support structures. Effective strength modulus EEff is found from experimental characteri-
zation. The Young’s modulus of full solid support was taken as 160 GPa, reported in the
standard material datasheet of EOS Nickel Alloy IN718, made from EOS M280 machine
using EOS recommended process parameters in the vertical Z direction [20]. Thermal
absorptivity of 0.4, the thermal conductivity of solid sintered support taken as 9.1 W/mK
and surrounding loose powder as 1.96 W/mK from a similar reference FE model were
developed by Luo et al. [21] for the same material and process parameter in ambient con-
ditions. Effective properties such as modulus of elasticity (E) and thermal conductivity
found from characterization should be loaded in FE simulation software to check variation
in simulation results compared to actual lattice geometry simulation. Hence, FE software
benchmarking is also performed in this work.

2.3. Distortion Measurement and Benchmarking FE Simulation for Distortion Prediction

A benchmarking study is conducted to understand the ability of software to compute
distortion and compare it with experimental results to validate the distortion prediction
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accuracy of commercial simulation software (Simufact Additive). A cantilevered overhang
sample with perforated block support geometry, as shown in Figure 4, was selected for
the study. The support structure was designed with a VF of 0.3 using Materialize Magics
software. After printing, the part–support interface was separated along the cantilever
length using wire-cut EDM. The parts distortion after support separation is measured along
cantilever length using a Zeiss prismo coordinate measuring machine (CMM), Bangalore,
India; three sets of readings were measured at regular intervals of 20 mm, along the length
of the cantilever sample. The part–base plate interface was not separated for easy distortion
measurements in CMM. The part–base plate joint will help anchor the part at one end and
distort at opposite ends upon support removal.

Materials 2022, 15, x FOR PEER REVIEW 5 of 19 
 

 

2.3. Distortion Measurement and Benchmarking FE Simulation for Distortion Prediction 
A benchmarking study is conducted to understand the ability of software to compute 

distortion and compare it with experimental results to validate the distortion prediction 
accuracy of commercial simulation software (Simufact Additive). A cantilevered over-
hang sample with perforated block support geometry, as shown in Figure 4, was selected 
for the study. The support structure was designed with a VF of 0.3 using Materialize Mag-
ics software. After printing, the part–support interface was separated along the cantilever 
length using wire-cut EDM. The parts distortion after support separation is measured 
along cantilever length using a Zeiss prismo coordinate measuring machine (CMM), Ban-
galore, India; three sets of readings were measured at regular intervals of 20 mm, along 
the length of the cantilever sample. The part–base plate interface was not separated for 
easy distortion measurements in CMM. The part–base plate joint will help anchor the part 
at one end and distort at opposite ends upon support removal. 

 
Figure 4. Cantilever test sample with perforated block support for benchmark study. 

Distortion of the test sample was also analyzed in AM-FEA software using the same 
support geometry and process parameters from the actual printed sample. The default 
simulation step in AM-FEA software is base plate removal after printing and followed by 
support separation from the printed part, which is achieved by deleting all contact points 
generated between interfaces shown in Figure 5a. For the current study, the simulation 
steps and boundary conditions were modified by deleting the base plate removal step. 
Only support interface is removed from part and base plate interface to mimic actual dis-
tortion condition measured in CMM as shown in Figure 5b. There is a limitation in AM-
FEA software’s boundary condition modification; the entire support is separated from 
part interface in one step, whereas in, actual hardware, the wire EDM cut is done gradu-
ally from the end; this might introduce some variation in final distortion values.  

  

Figure 4. Cantilever test sample with perforated block support for benchmark study.

Distortion of the test sample was also analyzed in AM-FEA software using the same
support geometry and process parameters from the actual printed sample. The default
simulation step in AM-FEA software is base plate removal after printing and followed by
support separation from the printed part, which is achieved by deleting all contact points
generated between interfaces shown in Figure 5a. For the current study, the simulation
steps and boundary conditions were modified by deleting the base plate removal step. Only
support interface is removed from part and base plate interface to mimic actual distortion
condition measured in CMM as shown in Figure 5b. There is a limitation in AM-FEA
software’s boundary condition modification; the entire support is separated from part
interface in one step, whereas in, actual hardware, the wire EDM cut is done gradually
from the end; this might introduce some variation in final distortion values.
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Since the current work focuses on reducing the computational effort involved in
distortion prediction, the initial behavior of support structure homogenization is studied
by replacing full support geometry with the homogenized model. Equivalent material
property for the homogenized model was loaded with modified strength and thermal
conductivity with 0.3 VF i.e., EEff = 0.3 E and KEff = 0.3 K. After validation of FE simulation
capability, multiple lattice topologies are analyzed using FE simulations and support
characterization to understand the influence of various lattice design parameters on part
distortion [22]. Thus, five different lattice support topologies were selected for the study.
In this work, several standard lattice support geometries are individually characterized,
and its effective bulk material property for homogenized equivalent solid support is
determined experimentally. Cantilever test samples with different lattice support geometry
were designed using the computer-aided design (CAD) software package Unigraphics NX
as shown in Figure 6 and printed using the same process parameters.
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Printed sample support structures are separated from parts using the same steps from
the benchmark study. Since all samples are printed in the single baseplate, all parts need
to be aligned perfectly, and wire EDM needs to pass through all part support interfaces
in a single pass, as shown in Figure 7. Only the support region is separated from the
part and is still anchored to the base plate for distortion measurement. The same steps
were analyzed in FE simulation with actual support geometry and homogenized solid
support. Homogenized geometry is loaded with effective strength from experimental
characterization of modulus of elasticity and effective thermal conductivity calculated using
Equation (1). Finally, results are compared to estimate variation in distortion behavior.
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Figure 7. Printed cantilever sample showing the location for support separation.

After validating software accuracy and distortion from various support topologies,
the effect of different lattice geometry design parameters, mainly variation in lattice unit
cell size and VF of support, are analyzed using FE simulation by varying actual CAD
geometries. Based on the response curve graph generated, an attempt is made to develop a
correlation between the design parameter and its effect on cantilever sample distortion. It
is used to build a common scaling factor for a given lattice topology that can be used to
scale effective properties found from experimental characterization of modulus of elasticity
and thermal conductivity. The perforated block cantilever test sample was also printed
with a changed VF of 0.15 to validate the findings.
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2.4. Lattice Support Characterization

Tensile test samples with square cross-sections are designed using modifications from
standard ASTM E8/E8M specimen to suit lattice cell arrangement [23]. A similar square
cross-section sample is used by Koehnen et al. [24] and Maskery et al. [25] for lattice
geometry characterization. The cross-section of the specimen is modified to 6 mm × 6 mm
to have an even distribution of lattice cells. In addition, 24 mm of gauge height is selected.
Furthermore, 3 mm lattice cells are designed for all support topology to have an even
distribution of whole lattice cells, as shown in Figure 8. Specimens were provided with
a 6 mm hole, 90◦ offset for auto-centering of the sample. This will prevent any torsional
stress on the lattice structure.
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Figure 8. CAD representation and dimensions of tensile test specimen design.

Five types of lattice tensile samples with two different volume fractions 30 and 15%
(shown in Figure 9) are tested to get tensile data. Uniaxial tensile tests were conducted at
room temperature using a BISS-Nano plug-and-play Servo hydraulic universal test machine
with 15 kN load cell capacity and 1 mm/min strain rate used as per ASTM E8/E8M
standard [26]. The strength of complete solid material is taken from the EOS material
datasheet generated from the same standard process parameters and EOS recommended
material. The experimental results of deformation and load were used to calculate the
effective strength property of lattice using Equation (2), where Eeff is the effective strength
modulus of lattice support, σeff is the effective stress developed, A is the area of lattice
cross-section, ∆L is deformation, and L is initial length:

Eeff =
σeff
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The effective strength modulus of lattice samples found from the stress–strain curve
is divided by Young’s modulus of 100% solid support to arrive at the effective strength
modulus ratio. The calculated ratio is loaded as strength knockdown factor in the ho-
mogenized model FEA. Except for BCCZ, all selected lattices have identical geometry in
all three directions. BCCZ exhibits high anisotropic behavior in the Z direction due to
the presence of extra vertical rods. Based on tested material data from EOS [17], there
is approximately 15% stiffness reduction in the Z direction, causing anisotrophy in all
selected lattices. For the current study, influence of anisotrophy is neglected, and lattice is
assumed to be isotropic by choosing the worst-case value of Z direction, introducing error
into the homogenized model. Post validation of the methodology, the effective property is
scaled to unknown VF using a suitable scaling function to validate the scalability of the
proposed method.
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3. Results

The benchmark study of FE software accuracy for distortion prediction using per-
forated block and the equivalent solid block is shown in Figure 10. The comparison of
the simulation result (red dotted line in Figure 10) with experimental measurement (black
line in Figure 10) shows good agreement with less than 10% error. This result validates
the distortion prediction capability of software for actual support geometry considered in
the study.

Distortion comparison between VF knockdown homogenized model and experimental
reading shows that error is greater than 15%. Thus, direct use of VF as an effective
property knockdown factor in the homogenized model does not provide an accurate result.
This initial study reveals that the support structure’s effective property depends on other
lattice design parameters. Therefore, the support characterization data are used in the
homogenized model simulation.

Figure 11 shows the cantilever part distortion variation due to various lattice support
topologies. The cantilever part geometry and process parameter were maintained same
for all samples to eliminate any possible influence of part geometry on residual stress-led
distortion. Wire EDM for support separation was carried on all models together in a single
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pass to ensure that the support removal process does not contribute to distortion variations.
Experimental distortion comparison show that support structure topology will influence
the distortion on final part. BCC and BCCZ distortion results comparison shows that
adding strut element aligned in a vertical z print direction will increase support structure
strength and reduce distortion. BCC and dodecahedron distortion comparison show that
adding more crosslinked strut elements will reduce the part distortion. The traditional
perforated block support provides good support to minimize part distortion compared to
the dodecahedron, BCC, and octahedron, and this may be due to smaller cell size compared
to the rest of the lattice geometry; however, closer visual inspection from Figure 7 shows
that perforated block support will produce cracks on edges and part–support interface. This
may result in print failure for larger components where residual stresses are high. From the
selected five support topologies, BCCZ support has the least part distortion and BCC has
the worst part distortion. Thus, a comparison of all four lattice support samples shows that
geometry with more crosslinked strut elements and strut in the vertical z printing direction
will provide better performance against part distortion.
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Figure 11. Cantilever part distortion comparison after support separation.

Tensile test samples from lattice support characterization are shown in Figure 12. It is
observed that test coupons made from the same material and same volume fraction exhibit
different failure patterns due to their different lattice topology. Shear plane failure with
45◦ is visible in BCC, BCCZ, and Dodecahedron samples. The perforated block failure
region experienced an uneven section with traces of crack growth in the failure plane. The
octahedron sample shows failure in the horizontal plane without any noticeable cross-
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section variation. In addition, the perforated block and octahedron did not show necking
in the failure region.
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Figure 12. UTM test samples’ failure locations for various lattice geometry.

The stress–strain curve of lattice support specimen in Figure 13 shows that all selected
lattice support structures exhibit a continuous transition from elastic to plastic region
without distinguishing yield point. Thus, stress at lattice support deformation/strain by
0.2% is considered as the elastic limit for yield strength. The linear elastic region is used for
calculating effective strength modulus, using Equation (2) and presented in Table 3. The
effective strength modulus of each lattice support sample found from the stress–strain curve
is divided by the strength modulus of 100% solid support to find the effective strength ratio.
This ratio is loaded as a strength knockdown factor in the homogenized model simulation.
The FE simulation results using effective strength are compared against actual support
simulation and experiments in Figures 14 and 15.

FE simulation results comparison shows that the average deviation of homogenized
support simulation is approximately 5% compared to actual support simulation of roughly
3%. The use of true support geometry simulation is not consistent. Its under-predicted
distortion in the octahedron support and high distortion in BCCZ. On the other hand,
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the homogenization model is consistent in capturing the behavior of all different lattice
topologies. The experimental result and FE simulation error percentage are approximately
constant for all topologies except BCCZ support. Thus, loading effective property from
characterization will eliminate any variation caused by process variation and provide a
consistent result for any selected lattice topology. BCCZ is not isometric in lattice topology.
Assuming it as isometric in homogenization has led to the error in the proposed method.

The FE simulation speed comparison between actual geometry and homogenized
model can be observed from the mesh sensitivity analysis study presented in Figure 16.
Homogenized solid block with single continuum geometry saturates below 0.9 mm mesh.
In contrast, it is below 0.5 mm mesh size for actual geometry simulation. i.e., roughly 30%
smaller than the minimum size feature. Thus, simulation time comparison shows that the
homogenized support models are approximately 6–7 times faster than the actual lattice
support geometry.
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Table 3. Mechanical properties of support structures.

Support
Structure Sample VF 0.2% Yield Stress

(N/mm2)
Ultimate Tensile
Stress (N/mm2)

Effective Modulus
Eeff (N/mm2) Ratio Eeff/E

BCC
0.30 172.2 251.6 24,480 0.153
0.15 68.2 91.2 7246 0.045

BCCZ
0.30 201.2 341.5 38,880 0.243
0.15 86.4 130.7 14,240 0.089

Octahedroid
0.30 172.5 205.3 26,240 0.164
0.15 72.3 79.8 6960 0.043

Dodecahedron
0.30 173.5 293.8 28,960 0.181
0.15 74.6 123.2 9140 0.057

Perforated Bock
0.30 179.5 198.5 29,280 0.183
0.15 78.5 80.4 8780 0.054
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Figure 16. AM simulation mesh sensitivity analysis on the cantilever test model with: (a) BCC
support; (b) dodecahedron support; (c) perforated block support; (d) homogenized CAD support.

The influence of effective modulus and effective thermal conductivity variation on FEA
residual stress can be understood from a sensitivity study done by varying Eeff/E ratio and
Keff/K ratio on the cantilever sample with homogenized support. AM-FEA package uses a
property knockdown factor on both strength modulus and thermal conductivity. Figure 17
shows the plot of cantilever part distortion value for variation in effective modulus and
effective thermal conductivity. When effective modulus is varied from Eeff/E 0.30 to 0.40,
its influence on part distortion is approximately 7.5 times the effect of varying Keff/K
from 0.30 to 0.40. Thus, FEA software is more sensitive to effective modulus variation
compared to effective thermal conductivity variation. Therefore, the current study focuses
on experimental characterization for effective moduli for various lattice topologies and
uses generic effective thermal conductivity for all lattice topologies.
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4. Discussion
4.1. Distortion for Various VF Using Actual Lattice Geometry in AM Simulation

The distortion of various cantilever beams for VF variation is found using the actual
geometry of AM simulation and presented in Figure 18. FE results show that support
geometries show a similar slope for volume fraction change. Variation in the slope height
for different support topologies shows that separate experimental characterization needs to
be performed when new lattice topologies are selected. Subsequently, it can be scaled to
various VF using a suitable scaling factor fixed for lattice topology. Therefore, the error due
to VF change on the homogenized model is negligible, which provides an opportunity to
scale specific experimental findings to any VF without the need to repeat experiments.
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4.2. Scaling of Effective Property

To scale the effective property of a lattice support to various volume fractions, the
Gibson–Ashby model [27] is used to develop mathematical relations between the volume
fraction of lattice support and its effective property using the following equations:

Ẽ
Es

= C1
[
ρ̃

ρs

]m
(3)

where Ẽ is strength modulus of porous lattice, Es strength modulus of complete solid ma-
terial, ρ̃ is density of porous lattice, and ρs is density of complete solid material. According
to the Gibson–Ashby model, the relative modulus of strength is proportional to relative
VF using proportionality coefficients m and C1 [27]. Equation (3) is a power function,
so m and C1 are found by converting the power function to a linear function by taking
the logarithm on both sides and using at least two VF conditions. Based on the study by
Sharma et al. [28], power function relation “m” is decided based on whether the lattice strut
experiences bending-dominated behavior or stretching-dominated behavior, so Maxwell
stability criteria is verified on all selected lattice topologies.

Table 4 shows that all lattice geometry experiences bending-dominated behavior with de-
tails of calculation on Maxwell number can be referred in work done by Deshpande et al. [29].
Thus, for a bending-dominated open-celled metal lattice, the relative modulus of strength
is proportional to the square (m = 2) of relative density [30]. However, when Equation (3) is
substituted with a fixed value of m = 2 for characterized conditions of VF 0.30 and 0.15, the
C1 value does not match both cases. Thus, m and C1 are found by converting Equation (3)
power function to a linear function by taking the logarithm on both sides and using two
known VF conditions.ρs
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Table 4. Maxwell’s stability criteria check.

Struts (s) Nodes (N) Maxwell
Number M Remarks

BCC 8 9 −13 Bending-dominated
BCCZ 12 9 −9 Bending-dominated

Octahedroid 12 8 −6 Bending-dominated
Dodecahedron 32 21 −25 Bending-dominated

Perforated block support is modeled at VF = 0.15, 0.30 and 0.5 using the scaled effective
property from Table 5, EEff

E of 0.054, 0.183 and 0.447, respectively. The grey triangle marker
in Figure 19 and gray cells in Table 5 is scaled using experimental results from green
square marker in Figure 19 or green cells in Table 5. Results comparisons are shown in the
following Table 6. These three conditions are selected to verify the scalability of effective
property to unknown VF. Here, green-colored cells are experimental data found from
characterization, and grey-colored cells are scaled effective properties using Equation (3).
These selected points are parallelly simulated using true geometry simulation and effective
property homogenized simulation.

Table 5. Scaling relation using the Gibson–Ashby model for perforated block support.

Perforated
Block (VF)

Gibson–Ashby Coefficients
Eeff

Knockdown
Factor Eeff/EC1 m

0.15 1.51 1.75 8730 0.054
0.30 1.51 1.75 29287 0.183
0.45 1.51 1.75 59549 0.372
0.60 1.51 1.75 98542 0.616
0.50 1.51 1.75 71612 0.447
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The results comparison shows that the error between homogenized model FE results
and experimental distortion measurement is 6.2% and 5.4% for VF of 0.15 and 0.30, respec-
tively. When the effective property from VF 0.15 and 0.30 is scaled to VF 0.5, the error
between homogenized model FE results and experimental distortion measurement is found
to be in an acceptable range of 10.4%.
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Table 6. VF of homogenized model scaled using the Gibson–Ashby model for perforated block support.

Experimental Distortion Actual Support Simulation Homogenized Support FEA
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VF 0.15 perforated 2.993 mm 3.070 mm 3.181 mm
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VF 0.50 perforated 1.794 mm 1.819 mm 1.981 mm (With scaled Eeff)

5. Conclusions

This work modeled cantilever test samples with various lattice support topologies
and printed successfully for part distortion measurement. Experimental characterization of
tensile test samples was performed to find the effective modulus of different lattice support
topologies. The effective property findings from experiments and analytical calculations
are used in a simple homogenized solid model to predict part distortion. Subsequently, the
effective property was scaled to unknown VF and validated for one lattice topology. The
main conclusions from the present study are:

• Results show that substituting complex lattice geometry with a homogenized solid
has increased simulation speed by 6–7 times.

• The error between homogenized model simulation and experiment results is consistent,
whereas actual geometry simulation accuracy depends on the shape selected; this is
the advantage of experimental characterization and can capture geometry-dependent
printing variations.

• FE and experiment result comparisons of scaled VF show good agreement with ap-
proximately less than 10% variation. This provides evidence for the scalability of the
proposed methodology.

• Effective thermal conductivity used in this study by a generic equation fails to capture
the effect of various lattice topologies, providing scope for future improvement to find
actual thermal conductivity from the experimental method.
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