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Abstract: Historical buildings and monuments are largely made of brickwork. These buildings form
the historical and artistic character of cities, and how we look after them is a reflection of our society.
When assessing ceramic products, great emphasis is placed on their mechanical properties, whilst
their durability is often neglected. However, the durability or resistance to weathering of masonry
elements is just as important as their mechanical properties. Therefore, this work deals with predicting
the durability of solid-fired bricks before they are used when reconstructing monuments and historical
buildings. Durability prediction is assessed by identifying defects in the material’s internal structure.
These faults may not be visible on the element’s surface and are difficult to detect. For this purpose,
non-destructive electroacoustic methods, such as the resonant pulse method or the ultrasonic pulse
method, were used. Based on an analysis of the initial and residual mechanical properties after
freezing cycles, four durability classes of solid-fired bricks were determined. This work aimed to find
a way to predict the durability (lifetime) of an anonymous solid-fired brick, expressed in terms of the
number of freeze cycles the brick would last, based on non-destructive measurements.

Keywords: solid fired brick; defects in the internal structure; non-destructive testing; resonant pulse
method; material durability; machine learning

1. Introduction

Historical buildings and monuments are our real wealth. These buildings represent
the foundation of our cultural heritage and are the most tangible legacy of our past. The
management of monuments is a reflection of society’s cultural advancement. An integral
part of this reflection is not only the care of historical objects themselves but also the effort
to find the most appropriate way to preserve them [1].

Building materials are often assessed primarily in terms of mechanical properties,
such as compressive strength or flexural tensile strength [2,3]. In terms of the durability
of masonry elements, the frost resistance test, or the ability of the material to withstand
repeated freezing and thawing, may be specified [4]. However, these tests are usually
destructive or semi-destructive, which is not desirable, especially in the case of monuments.
The question of the brickwork’s durability is still relegated to the background. However, the
durability or the ability of the material to resist external influences (weathering, chemical
corrosion, or salt crystallisation) is an equally important factor for a material such as
solid-fired bricks. Especially when the brickwork is not protected from the weather by
plaster or any other surface treatment. Such masonry forms the visual part of the buildings
and is the most susceptible to weather damage. Despite the initial neglect of this issue,
the durability of building materials has already been addressed by a number of authors.
However, the attention of authors is often directed to the durability of concrete structures [5].
In the case of the authors’ focus on the durability of masonry buildings, it is more of
an attempt to extend the durability of structures by understanding the defects already
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present in masonry buildings and the procedures for reconstruction (restoration) [6–8]
or [9] but not the prevention of such defects. Other authors deal with the durability of
solid-fired bricks (hereinafter SFB) and the effects that reduce durability; however, this
is often a destructive way and the element cannot be subsequently used in historical
construction [10,11]. Particularly beneficial to this research were the works of authors
dealing with the issue of frost damage to porous materials, which gave a better picture of
the effect of the internal structure on the durability of masonry elements [7,12–14].

The effort to understand the influences that reduce the durability of solid brick and
the effort to find the most effective ways to renovate existing structures without major
interventions is undoubtedly very beneficial. However, there is often a situation where
such buildings cannot be reconstructed without replacing (substituting) individual wall
elements. In this case, the question arises whether to reconstruct the elements with historical
bricks or to use masonry elements made with modern technologies. Both approaches have
their advantages and disadvantages.

The main advantage of using modern wall elements lies in the assumption of less vari-
ability in their mechanical properties (especially compressive strength or flexural strength),
a uniform appearance as well as durability. It is possible to ensure a stable technological
process during the commissioning of modern wall elements and adjust it if necessary. How-
ever, the emphasis in monuments is often on preserving the authenticity of the brickwork,
which is often problematic when modern masonry elements are used (Figure 1a). The
main advantage of reusing historic masonry elements (so-called “upcycling”) is that the
authenticity of the brickwork is preserved (Figure 1b).

Materials 2022, 15, x FOR PEER REVIEW 2 of 21 
 

 

structures [5]. In the case of the authors’ focus on the durability of masonry buildings, it 
is more of an attempt to extend the durability of structures by understanding the defects 
already present in masonry buildings and the procedures for reconstruction (restoration) 
[6–8] or [9] but not the prevention of such defects. Other authors deal with the durability 
of solid-fired bricks (hereinafter SFB) and the effects that reduce durability; however, this 
is often a destructive way and the element cannot be subsequently used in historical con-
struction [10,11]. Particularly beneficial to this research were the works of authors dealing 
with the issue of frost damage to porous materials, which gave a better picture of the effect 
of the internal structure on the durability of masonry elements [7,12–14]. 

The effort to understand the influences that reduce the durability of solid brick and 
the effort to find the most effective ways to renovate existing structures without major 
interventions is undoubtedly very beneficial. However, there is often a situation where 
such buildings cannot be reconstructed without replacing (substituting) individual wall 
elements. In this case, the question arises whether to reconstruct the elements with histor-
ical bricks or to use masonry elements made with modern technologies. Both approaches 
have their advantages and disadvantages. 

The main advantage of using modern wall elements lies in the assumption of less 
variability in their mechanical properties (especially compressive strength or flexural 
strength), a uniform appearance as well as durability. It is possible to ensure a stable tech-
nological process during the commissioning of modern wall elements and adjust it if nec-
essary. However, the emphasis in monuments is often on preserving the authenticity of 
the brickwork, which is often problematic when modern masonry elements are used (Fig-
ure 1a). The main advantage of reusing historic masonry elements (so-called “upcycling”) 
is that the authenticity of the brickwork is preserved (Figure 1b). 

  
(a) (b) 

Figure 1. (a) Reconstruction of the Gothic castle in Malbork (Poland) with modern masonry ele-
ments, (b) Reconstruction of a baroque brick bridge near Mikulov (Czech Republic) with historical 
masonry elements. 

In recent years, the issue of sustainable development has also increasingly come to 
the fore, and the use of historic wall elements takes on this approach. This is a more envi-
ronmentally friendly method, as there is no need to produce new masonry elements and 
the waste from demolished brick buildings is minimised [15]. 

However, in the case of using historic solid bricks for reconstructing masonry build-
ings, it is necessary to take into account the great variability of individual elements. Even 
in the case of taking historic bricks from a single demolished building, the uniformity of 
the solid bricks is not guaranteed. This is particularly evident during the construction of 
larger buildings, i.e., masonry elements were supplied from several brickworks at once. It 
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Figure 1. (a) Reconstruction of the Gothic castle in Malbork (Poland) with modern masonry ele-
ments, (b) Reconstruction of a baroque brick bridge near Mikulov (Czech Republic) with historical
masonry elements.

In recent years, the issue of sustainable development has also increasingly come to
the fore, and the use of historic wall elements takes on this approach. This is a more
environmentally friendly method, as there is no need to produce new masonry elements
and the waste from demolished brick buildings is minimised [15].

However, in the case of using historic solid bricks for reconstructing masonry buildings,
it is necessary to take into account the great variability of individual elements. Even in
the case of taking historic bricks from a single demolished building, the uniformity of the
solid bricks is not guaranteed. This is particularly evident during the construction of larger
buildings, i.e., masonry elements were supplied from several brickworks at once. It must
also be assumed that these buildings have been reconstructed in the past and therefore
contain masonry elements from different time periods; this issue has been addressed in
the past by authors, e.g., [16]. For these reasons, it is quite difficult to obtain a sufficient
quantity of bricks of similar appearance and properties, and it is particularly difficult to
demonstrate the requisite quality. When upcycling historic bricks for heritage buildings, it
is necessary to consider a number of factors that may affect their quality.
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One of the basic factors is the material that was used to produce the historic wall
elements. In particular, the type of clay used (ferruginous or loamy). However, it cannot be
said that masonry elements made of the same material in the same brickworks will have
identical properties or appearances. The quality of the bricks varied even within the same
kiln, mainly depending on the bricks’ location in the kiln (different firing temperatures).
The firing temperature can significantly affect the mechanical properties, colour, dimensions
or, for example, the absorption of the elements.

If the firing temperature is too high, the element usually has a darker firing colour
(sometimes up to purple), higher compressive strength and significantly lower absorption.
However, if the firing temperature is too high, shrinkage of the elements and deformation
of edge flatness often occurs (Figure 2a). Conversely, at low firing temperatures, the
element typically has a light brown (orange) firing colour, lower compressive strengths,
and significantly higher absorption (Figure 2b). The marking of the elements "A5" and "12"
is only to simplify the research.
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Figure 2. (a) historical solid brick—high firing temperature, (b) historical full brick—low firing temperature.

In terms of the durability of masonry elements, increased water absorption is the
most challenging, as it is closely related to resistance to the effects of repeated freezing and
thawing [17].

Another factor that significantly affects the durability of masonry elements is their
defects. The defects in the elements may have already occurred during the production of the
wall elements. Delamination of the individual layers can be mentioned as a defect already
occurring during production. When using screw presses, this is a defect in the elements
caused by the rotational movement of the mixture used or, in the case of handmade bricks,
delamination caused by poor mixing of the clay mass. It mostly manifests only as a result
of freezing cycles, when it takes the form of concentric spiral cracks along which the brick
gradually crumbles. This type of defect is not only typical of historic bricks but also occurs
in abundance in newly manufactured solid-fired bricks.

Other defects in the wall elements may arise due to their history. In particular, when
repeated freezing and thawing has caused cracks, chips or microstructural damage to the
elements. The main indicator may be the location of the bricks in the past. If the element
has been exposed to climatic influences for many years, it can be expected that these defects
will occur more frequently. In addition to damage caused by climatic influences acting on
the elements, mechanical damage (breaking off of a corner, etc.) may also occur.

When assessing the extent of defects in individual elements, it is important to note that
a large proportion of defects are not visible on the surface of the elements. These defects in
the internal structure of the elements significantly reduce their durability. These defects
are usually caused by increased humidity, when water freezes in winter and increases
its volume, causing stresses in the elements. The development of defects in the internal
structure need not be linked to the development of defects visible on the surface. The
authors of the paper have dealt with this issue in the past. In the framework of [18] 3 types
of defect development have been defined:

1. Both surface defects and defects in the internal structure of the element develop;
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2. only surface defects develop; the development of defects in the internal structure is negligible;
3. the development of surface defects is indistinct; only defects in the internal structure develop.

The most problematic of the above types of pattern damage is the third case. This is
because, in this case, only the internal structure is damaged without damaging the surface
of the test sample (Figure 3). Visually, the element may appear free of defects even after a
number of freeze cycles, but defects in the internal structure significantly reduce both the
mechanical properties of the elements and their durability.
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The reconstruction of monuments with historic solid bricks can therefore be a chal-
lenging discipline, particularly because of the great variability and difficulty in monitoring
the quality of the elements. Due to the great variety of historical masonry elements, their
quality cannot be guaranteed based on standard tests (on 5 or 10 bricks). For this reason,
non-destructive methods are proposed that allow many more bricks to be tested, and these
can subsequently be incorporated into the structure.

For these reasons, completely non-destructive electroacoustic methods, namely the
resonance method and the ultrasonic method, were chosen to predict the masonry elements’
durability or resistance to weather conditions (mainly repeated freezing and thawing).
Based on the identification of defects in the internal structure of the elements, a total of
4 durability classes were determined with the recommended use of the wall elements. The
individual methods and procedures were chosen so they can be applied in practice while
ensuring the highest possible reliability. The problem of detecting defects in materials by
electroacoustic methods has been addressed in the past by a number of authors, e.g., [5],
but here the problem of detecting defects in the material caused by loading (mechanical
failure) is addressed.

This work presents an innovative way of using non-destructive resonance and ultra-
sound methods. Non-destructive methods are commonly used in civil engineering today.
However, these methods are mainly focused on mechanical properties. These electroacous-
tic methods are also used for a kind of identification of defects in the internal structure.
However, they are generally applied to concrete structures and there are no clearly defined
parameters for detecting defects in the internal structure. This paper deals not only with the
actual use of these methods but also with the definition of the parameters that can be used
to detect these defects (obtained from the spectrum of natural frequencies) and to predict
the durability of the material based on them. Prediction of durability was determined by
statistical analysis of a series of experimental measurements. Currently, the method used
in-situ is testing fired solid bricks by impacting them with a steel hammer. The evaluation
of the quality (durability) of the elements depends only on the individual judgement of
the worker based on the acoustic response. Thus, the proposed method is a significant
improvement, where a human factor is reduced, and a classification model and algorithm
of machine learning are being used.

2. Materials and Methods

This work aims to determine the durability criteria of historic, solid-fired bricks before
they are used when reconstructing monuments and historic buildings. The elements must
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not be damaged in any way after their durability has been assessed so that they can be
incorporated into the structure. For this reason, completely non-destructive electroacoustic
methods, such as the resonance method and the ultrasonic pulse method, were used. A
balance had to be struck between the complexity of the criteria to be assessed and the
greatest possible accuracy of the results. The durability of the masonry elements is assessed
by identifying defects in their internal structure. To identify these defects, spectra of the
first natural frequencies determined by the resonance method were analysed.

Every rigid material is subject to vibration due to an external impulse. The phe-
nomenon, when the frequency of this introduced impulse is identical to the natural fre-
quency of the element, is called resonance. This phenomenon is exploited by the resonant
pulse method. The undeniable advantage of this method is that, in addition to the first
natural frequencies, it was possible to record the entire spectrum of frequencies in the cho-
sen range. This fact has been used in this work, where the defects in the internal structure
of the elements are identified by analysing the spectrum of the first natural frequencies
and then the durability of the masonry elements is predicted. There are countless types
of vibrations that can be induced in rigid bodies. As a rule, however, three types of these
oscillations are used, namely:

• first natural frequency of longitudinal oscillation—fL,
• first natural frequency of the torsional oscillation—fT,
• first natural frequency of transverse oscillation—fF [19].

In this study, only the first two types of oscillations (longitudinal and torsional) were
used. The defects in the internal structure of the elements that appear during transverse
vibrations are also largely reflected in the frequency spectrum of the torsional vibrations.
An example of determining the first natural frequencies is shown in Figure 4a. A figure
of the location of the exciter (hammer strike) and a sensor for each type of oscillation are
shown in Figure 4b. Handyscope HS3 (oscilloscope) with a piezoceramic sensor was used
to determine the natural frequencies of the test elements.
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Figure 4. (a) Example of measuring the first natural frequencies of torsional vibration (fT), (b) Arrange-
ment of sensors (“R”) and exciters (“T”) for longitudinal (fL) and torsional (fT) oscillations.

Another method for detecting defects in the internal structure of the elements was the
ultrasonic pulse method, specifically the pundit PL-200 from Screening Eagle (formerly
Proceq). The principle of the ultrasonic pulse method is based on the mechanical wave of
particles through the environment. In practice, the ultrasonic pulse method is used mainly
for determining the uniformity of concrete structures and determining the deformation
properties of the material, and, to a lesser extent, for determining the compressive strength
of concrete structures. This method can also be used to detect defects in the internal
structure [20]. For the purpose of this study, the passage times of the direct sounding in
the transverse (TT) and longitudinal (TL) directions of the element were measured in three
lines (Figure 5a). An example of ultrasonic wave transit times is shown in Figure 5b.
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Prior to conducting laboratory tests to determine the durability criteria for historic solid
brick, the applicability of the above methods was verified directly during the reconstruction
of a historic brick building. The authors aimed to set the durability criteria for solid bricks
so that the durability could be evaluated on-site, if necessary. The authors had a unique
opportunity to test the methods on a baroque brick bridge near the village of Mikulov
(close to the Czech-Austrian border). This brick bridge is unique for several reasons. Most
of the preserved bridges from this period are made of stone masonry. In the case of this
bridge, stone masonry was used only at the foot of the piers; the rest of the bridge is made
of brickwork. Another unique feature of this bridge is its length; this fifteen-arch bridge is
100 m long. The bridge had been in disrepair for many years, was overgrown with grass
and covered with mud deposits. The hope of saving the bridge was raised in 2016 when the
project for its restoration began. The reconstruction of the bridge started in 2018 and took
2 years. For its reconstruction, it was decided to “upcycle” the historic wall elements [21,22].
The opening ceremony of the bridge took place in October 2020 and the reconstruction was
awarded “Monument of the Year” of the Czech Republic in 2021.

During the reconstruction of the bridge, a series of measurements on the historic
in-situ fired bricks were made using the resonance method and the ultrasonic pulse method.
Based on these measurements and basic assumptions, wall elements of low quality and
wall elements with assumptions for very good quality and durability were selected.

The selected elements were then subjected to a freeze resistance test in the laboratory
and then the mechanical properties of the elements were determined. Laboratory tests
(determination of frost resistance, flexural tensile strength and compressive strength) con-
firmed the initial estimates of durability and the quality of the masonry elements made by
in-situ non-destructive methods. These results have been published in [23].

The ultrasonic pulse method used during the reconstruction of the bridge did not
yield significant results, whereas the resonant pulse method proved to be very promising.

Once the applicability of the in-situ methods had been verified during the reconstruc-
tion of the heritage building, the main work to establish the durability criteria for historic
solid bricks could begin. The experiment itself is inherently simple. The principle of deter-
mining the durability criteria is based on an analysis of the spectrum of the first natural
frequencies and their change in the saturated state compared to the dried state. However, a
relatively large number of test samples was required. Thus, a total of 41 historic bricks were
selected. The test specimens were taken from various demolished buildings over a period
of about three years, varying in age (from the Gothic, Baroque and Renaissance periods),
size, appearance and expected quality, so that the whole range of test bodies was covered.
The test elements were first thoroughly cleaned, and their dimensions were determined.
They were subsequently dried to a steady state weight, i.e., a condition where their weight
did not change by more than 0.2% during 24 h of drying at 105 ◦C. For all samples, their dry
weights were determined, and any surface defects of the elements were carefully recorded.
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The first natural frequencies of the longitudinal fL,V0 and torsional fT,V0 oscillations
were determined using the resonant pulse method. Subsequently, the elements were
completely saturated with water. The elements were immersed in distilled water so that
they did not touch. The water was then brought to a boil, which was maintained for a
further 5 h. The elements were left in the water for a further 16 h; this post corresponds
to [24]. In the fully saturated state, the mass and first natural frequencies of the elements
were again determined using the resonance method fL,NV0 in the longitudinal direction
and fT,NV0 in the transverse direction.

The masonry elements were divided into a total of 4 durability classes depending on
the number of freezing cycles the bricks could withstand. One F-T cycle consists of 16 h of
freezing (at −20 ◦C) and 2 h of thawing in water (at 15 ÷ 30 ◦C) in an automatic freezer [4].
At the same time, the possible use of elements from each group was defined:

• 1st class—bricks usable in exposed outdoor environments (uncovered ledges, places
above ground with rising damp, etc.

• 2nd class—bricks usable in outdoor environments, less exposed areas (e.g., verti-
cal surface masonry except for plinths, masonry infill) or in indoor exposed areas
(e.g., wine cellars)

• 3rd class—bricks usable only indoors, in a dry environment
• 4th class—bricks not suitable for reuse.

Input measurements taken prior to the freezing cycles were used to develop
the shelf-life prediction model. For the evaluation of the frequency spectra from the
resonance method, a feature extraction method was used to obtain the key characteristic
parameters of the spectra under consideration. This method is commonly used during
the dimensionality reduction of large datasets [25] and is widely used in the prediction
of the lifetime of structures in both civil and mechanical engineering. Thus, in addition
to the dominant resonant frequency, other parameters such as amplitude, peak width
at mid-peak prominence, and peak prominence were extracted from all spectra. From
each spectrum, the following parameters of the first three dominant peaks were selected
in descending order of prominence. An example of these characteristics is shown in
Figure 6 shows the recorded signal.
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Figure 7 shows the frequency spectrum with the peaks and their characteristics high-
lighted.



Materials 2022, 15, 5882 8 of 20

Materials 2022, 15, x FOR PEER REVIEW 8 of 21 
 

 

Figure 7 shows the frequency spectrum with the peaks and their characteristics high-
lighted. 

 
Figure 7. Illustration of acoustic resonance signal: Extracted frequency spectrum with highlighted 
peaks with various parameters such as frequency, amplitude, width and prominence. 

A similar approach in the evaluation of the resonance method can be found in the 
foreign literature, e.g., [26,27]. The character of the spectrum and the shape of each peak 
are clearly defined by the metric mentioned above; however, in practice, it is often the case 
that the technicians performing an inspection using resonance methods use their subjec-
tive experience to select a particular peak. In this case, the shape of the peak is assessed 
by the technician’s feelings. Thus, an experienced diagnostician can assess whether the 
chosen peak matches their experience and notion of a dominant peak. This experience is 
particularly important when considering highly degraded test bodies where the dominant 
frequency may not be the one with the highest amplitude. In this case, it is an impetus to 
identify another metric that would be able to simulate this human factor experience and, 
in this area, it is advantageous to use a combination of a multi-criteria evaluation algo-
rithm combined with a machine learning model. 

The multi-criteria scoring algorithm can assign a score value to a given observation 
based on the selected weights. The algorithm itself was first published by Saaty [28]. The 
method was first published in 2021 [29] in the form of using this tool to evaluate frequency 
peaks. If the evaluated parameters are close to the desired value, the value of the score 
will be higher. To use this method successfully, the weights of the monitored parameters 
need to be set. In this case, the weights and setpoints are based on the experience of the 
technicians and are shown in Table 1. 

Table 1. Weights set for scoring frequency peaks (A-amplitude, F-frequency, P-prominence, W-
width). 

Param. A F W P Demand 
A 1.0 5.0 1.0 0.2 Max 
F 0.2 1.0 0.2 0.1 Max 
W 3.0 5.0 1.0 0.3 Min 
P 5.0 10.0 3.0 1.0 Max 

From these scales, it can be seen that, for example, the value of prominence should 
reach a maximum value and is more important than amplitude, frequency or width. Con-
versely, the width of the peak should be as low as possible and is more important than 
the height of the amplitude or frequency. The frequency value is not very important in 
this evaluation because different test bodies may have different resonant frequencies de-
pending on their shape, material and internal structure. For the purpose of processing, the 
natural frequency of the observed peaks was expressed by the relation: 

Figure 7. Illustration of acoustic resonance signal: Extracted frequency spectrum with highlighted
peaks with various parameters such as frequency, amplitude, width and prominence.

A similar approach in the evaluation of the resonance method can be found in the
foreign literature, e.g., [26,27]. The character of the spectrum and the shape of each peak
are clearly defined by the metric mentioned above; however, in practice, it is often the case
that the technicians performing an inspection using resonance methods use their subjective
experience to select a particular peak. In this case, the shape of the peak is assessed
by the technician’s feelings. Thus, an experienced diagnostician can assess whether the
chosen peak matches their experience and notion of a dominant peak. This experience is
particularly important when considering highly degraded test bodies where the dominant
frequency may not be the one with the highest amplitude. In this case, it is an impetus to
identify another metric that would be able to simulate this human factor experience and, in
this area, it is advantageous to use a combination of a multi-criteria evaluation algorithm
combined with a machine learning model.

The multi-criteria scoring algorithm can assign a score value to a given observation
based on the selected weights. The algorithm itself was first published by Saaty [28]. The
method was first published in 2021 [29] in the form of using this tool to evaluate frequency
peaks. If the evaluated parameters are close to the desired value, the value of the score
will be higher. To use this method successfully, the weights of the monitored parameters
need to be set. In this case, the weights and setpoints are based on the experience of the
technicians and are shown in Table 1.

Table 1. Weights set for scoring frequency peaks (A-amplitude, F-frequency, P-prominence, W-width).

Param. A F W P Demand

A 1.0 5.0 1.0 0.2 Max

F 0.2 1.0 0.2 0.1 Max

W 3.0 5.0 1.0 0.3 Min

P 5.0 10.0 3.0 1.0 Max

From these scales, it can be seen that, for example, the value of prominence should
reach a maximum value and is more important than amplitude, frequency or width.
Conversely, the width of the peak should be as low as possible and is more important than
the height of the amplitude or frequency. The frequency value is not very important in this
evaluation because different test bodies may have different resonant frequencies depending
on their shape, material and internal structure. For the purpose of processing, the natural
frequency of the observed peaks was expressed by the relation:

fRL,RT =

∣∣∣∣ fi
fmT,mL

− 1
∣∣∣∣ (1)

where:

• fRL,RT is the frequency ratio [%],
• fi is the frequency of the dominant peak [Hz],
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• fmT,mL is the average frequency in a given test direction (fmt = 2000 Hz, fml = 4300 Hz).

The average frequencies in a given test direction (fmT and fmL) were determined accord-
ing to masonry elements without defects in the internal structure—durability
class 1 (Figure 8).
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The variable used for classifying the bricks is, therefore, the relative deviation of
the frequency from the specified average SFB frequency in a given testing direction. The
resulting value for fRL,RT, thus expresses how much a given brick differs in frequency from
the average of all observed bricks.

In addition to the aforementioned metrics of the first three peaks, score values were
added. The findpeaks function was used to select peaks with parameters of a minimum
prominence value of 0.03% of the maximum amplitude of the spectrum and a minimum
distance between adjacent peaks of 20 Hz. In this way, 100 peaks from each spectrum
were separated. Statistical parameters such as mean, standard deviation, peak-to-peak and
skewness were then calculated from these peaks. In this way, a total of 20 parameters were
obtained from each measured spectrum in the longitudinal and transverse directions in the
fully saturated and fully dried state. The frequency parameters were further supplemented
by the A-absorption, which was measured at the beginning of the freezing cycles.

To predict the assigned class, the classification toolbox within Matlab software was
used. So, specifically, in this case, it is supervised machine learning where there is a set of
observations, x, and their classes are known, y. This set is then divided into a learning set
and a test set. For large datasets, this split can be performed by random permutation in
the ratio of 75:25. Furthermore, a cross-validation algorithm with transfer can be used for
this partitioning. The input dataset is divided into subsets. One subset serves as a test set;
the remaining subsets serve as training sets. The classifier trains the model on the training
set and uses the test set to test the accuracy and performance of the model. This process
is repeated several times, each time with a different subset forming the training and test
set. In this paper, cross-validation with a transfer of 5 was used. According to the chosen
procedure of extracting the features and creating a classification model, it was possible to
determine the reliability of the whole methodology in predicting the probable durability
(lifetime) of the test set of measured bricks.

To verify the correct identification of defects in the internal structure of the elements
and their durability (resistance to repeated freezing and thawing) by non-destructive
methods, a destructive frost resistance test was performed. Test elements in the saturated
state were cyclically frozen and thawed. One freezing cycle consisted of 16 h of freezing at
−20 ◦C followed by thawing in water for a minimum of 2 h at +20 ◦C [4]. The resulting
number of freeze cycles for each test sample was then recorded.

During the main experiment, sub-factors that affect the durability of the wall elements
were also investigated to understand this issue more comprehensively. For example, the
effect of humidity on the first natural frequencies and transit times of ultrasonic waves
was investigated. The finding of this sub-work was to determine the parabolic dependence
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of the quantities determined by non-destructive methods on the moisture content of the
elements. In many papers, a linear dependence is assumed, but in this case, significant
errors can be made. Results from this sub-experiment were published in [30]. Another
sub-research was to monitor the changes in first natural frequencies and transit times as a
function of the number of freeze cycles. In the framework of this work, three possible types
of sample defects were determined [18].

3. Results

From initial measurements made on site, it was found that the transit time of ultrasonic
waves could not be used as a satisfactory metric for assessing likely durability (resistance
to freezing cycles). Figure 9 shows the relationship between the resonant frequency and
the velocity of longitudinal ultrasonic waves (p-wave) measured per length of brick in the
dried state. The colour shows the number of cycles that each brick lasted before destruction.
A dominant diagonal can be observed in the data, which confirms that these observed
parameters are correlated; however, in terms of the distribution of bricks that have lasted
25 cycles or more, there is significant mixing with bricks that have already disintegrated after
5–10 cycles. At the same time, a non-negligible number of dependencies can be observed
that lie outside the main diagonal, which could be called anomalies. Looking at a similar
dependence of water absorption on ultrasound velocity in Figure 10, it can be seen that the
average ultrasound velocity lies in the range of 1600–3000 m−s−1 and the bricks are mixed
throughout the observed range of freezing cycles.
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On the other hand, the majority of the measured bricks had a value of absorption A
ranging from 12–24%, with an insignificant correlation with ultrasonic velocity, as shown
in Figure 11. For the same value of water absorption, there is a brick with both the highest
and the lowest durability (lifetime) expressed in the number of freeze cycles. Thus, it can
be concluded that the probable lifetime of the brick under consideration cannot be reliably
predicted from common parameters such as dominant frequency, ultrasonic velocity, or
absorption rate.
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Figure 11. Dependency of longitudinal frequency in the saturated state on measured water absorba-
bility with highlighted freeze-thaw cycles, which each brick endured up to destruction.

Bricks were divided into different classes based on their durability interpreted by a
count of F-T cycles, which the bricks withstand in the automatic freezer at set conditions
described in Section 2 Materials and Methods. Each class is shown in Figure 12.
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Moving on to the results of the feature extraction algorithm, the application of the
multicriteria method to the frequency spectrum peaks will be first up. Statistical comparison
in terms of probability of the observed parameters’ frequency, peak width amplitude,
peak prominence and the corresponding score is shown in Figure 13. This is a total of
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4136 observed peaks, which were selected by the findpeaks function from 167 frequency
spectra of all 41 measured bricks.
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The amplitude is spaced between −9 and −6 dB. Classes with a higher freeze cycle
life generally have higher amplitude, and conversely, classes with lower life have lower
amplitude values. However, it is in the middle of the histogram that these parameters
overlap. The same is true for the frequency ratio fR. Perhaps the biggest difference occurs
in the case of peak prominence, where each class’s peak probability represents a different
part of the prominence variance from −4 to −15 dB. Although the classes were designed
according to the increasing number of cycles, the order exhibited by the prominence value
shows that class 1 is very similar to class 3 and class 4 is very similar to class 2. From this
perspective, it can be said that this is the effect of a smaller statistical sample of bricks that
would otherwise show a lower prominence value with a higher class.

For a spatial, graphic representation of these quantities, see Figure 14. There are three
main point clouds A, B and the largest one C. Clouds A and B are clearly separated by a
gap due to the score value, and if only these points were used, there would be relatively
high confidence in classifying the bricks. Clouds A and B consist exclusively of classes
2 and 4, which, moreover, supports the previous finding that classes 2 and 4 are very
similar. However, these clouds reach a maximum peak width of 13 Hz, which is especially
true for extremely narrow and small peaks. In contrast, the peaks located in cloud C
are interpenetrating and composed of all the remaining measured peaks, and all classes
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are equally represented. Thus, this observation invites the possibility of a multi-stage
assessment for the presence of peaks from Cloud A and Cloud B, and then, if peaks from
these clouds were not found, a more detailed method would need to be applied.
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A more detailed assessment is focused on obtaining the selected 20 parameters and
building a classification model based on the principle of an ensemble of classifiers [31]. The
statistical comparison of selected parameters is shown in Figure 15.

In the total number of selected parameters, variants such as Freq1, Freq2, etc., are
present; in this case, these are the parameters of the dominant peaks in descending order of
prominence. The parameters Freq1 or Width1 describe the same peak but in different ways.
The statistical parameters are:

• The Kurt and Skew parameters describe the tailedness and skewness of the score
distribution of selected peaks from each assessed spectrum,

• MeanScore expresses the average score of the peaks,
• ModeWidth describes the modus of the peak width,
• StdScore expresses the standard deviation of the selected peaks,
• TotalScore expresses the total sum of the scores of the selected peaks.

Figure 15 shows dependencies that are difficult for humans to understand, and even
using correlation diagrams they are not a good tool for interpreting this type of data. Since
this is multidimensional data, which has a total of 18 dimensions, it is appropriate to assess
the individual dependencies using the success of the classification model and the resulting
decision diagram. To understand more about the dependence between the parameters, this
must be done, in part, by expressing the dependence between the chosen parameters Freq1
and the absorbance and standard deviation of the peak scores. For an example of such a
representation, see Figure 16.
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These plots in Figure 15 illustrate the probability of each observed variable within
the total range of the variable, where classes 1 ÷ 4 are represented by different colours. In
some parameters, the probability is very similar among all classes, such as the Frequency
ratio of the second highest peak f∆2. Parameters such as Sum of peak score ΣS and peak
count shows a significant difference in probability between class 1, 3 and 2, 4. From all of
these parameters, the most variance occurs in the first highest peak f∆1, the score of peak S1
and the prominence of dominant peak Pdom1. The parameters with the highest variance are
the most suitable for classification model generation.

It is evident that approximately 60% of the bricks, which have the highest class and,
therefore, can withstand the least number of cycles, cluster around one centre in both cases.
The rest of the observations of this class are spread evenly among the other points of classes
1, 2 and 3.

It is similar in the case of the ratio between the frequency ratio and the standard
deviation of the frequency peaks. Here it can be seen that class 1 achieves the lowest
frequency ratio value, which means that its dominant frequency is closest to the average
SFB frequency (fmt = 2000 Hz, fml = 4300 Hz). At the same time, Class 2 and Class 3
observations and some Class 4 observations are also located in this area.

Thus, from this perspective, it can be shown that it is not possible to successfully
classify SFB by classical methods and evaluation because it involves the complex behaviour
of several different parameters. Thus, if this classification task is carried out by the algorithm
mentioned in [31], it gives a decision as to how and in which situation the proposed
classification model is to be used.

Using only a classification model with the ability to distinguish between class 2 and
class 4, a fairly satisfactory reliability of 88% for class 2 and 72% for class 4 is obtained.
Parameters include the resonant frequency in the fully saturated and dried state, the
number of peaks, the difference between the frequency in the fully saturated and dried
state, the number of peaks, the width and Poisson’s ratio, and the absorbance were used
for this model. Model 1 is illustrated using the confusion matrix in Figure 17.
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Figure 17. A model with parameters extracted from fL without statistical parameters and score values.

The resulting model success rate corresponds to the results in Figure 14 and indicates
that the two classes are close but can be successfully recognised. From a practical point of
view, however, this procedure requires knowledge of absorption rate A, which requires
the selected brick to be fully saturated with water and then dried to a stable weight. This
procedure is time-consuming and cannot be carried out on bricks that are already in place.

If the parameters described in Figure 15 are used without including the absorption,
it results in 25% for class 1, 56% for class 2 and 69% for class 4. The success of Model 2 is
shown in Figure 18. In this case, it turns out that both classes 2 and 4 are very close to each
other. However, in this case, there is a misclassification of Class 2 bricks into Class 1, 3 and
4 and a misclassification of Class 4 bricks into Class 1, 2 and 3. From this point of view, the
model can be used on embedded bricks but has very little reliability.
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Figure 18. A model with only FFT parameters is known without absorbability.

The last and the most successful model (Figure 19), number 3, uses the parameters
used for model 2, enriched with the knowledge of absorbance A, with an overall success
rate of 85%. From this perspective, it is the most accurate model so far, achieving 83%
accuracy for Class 1, 88% for Class 2, 75% for Class 3 and 86% for Class 4. The model was
used from observations of the frequency spectra of both the saturated state and the dried
state in both longitudinal and torsional directions. From this point of view, it does not
matter whether it is used on a dried or saturated sample.
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Figure 19. Confusion matrix of the most effective model with all known parameters.

The resulting decision tree for classification is shown in Figure 20. The decision tree is
a graph that uses structure of nodes, branches and leaves. Each node is made by binary
condition which leads to either a node or a leaf. In this setup a leaf is predicted class. Each
node is formed by assessed features. The presented decision tree in Figure 20 was generated
by machine learning algorithm, and so are the values of binary condition for each node.
This tree clearly shows the importance of absorbance for classification; it is by far the most
common parameter used by the model here. The second most common is the parameter
Freq1 or the frequency ratio of the first peak. There are also statistical parameters such as
kurtosis, skewness, number of peaks or average score of frequency peaks.
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Figure 20. Example of the designed model’s classification tree with parameters, conditions and
resulting classes.

The analysis makes it possible to determine which state and type of resonance mea-
surement are the most suitable for obtaining the highest classification accuracy for both
model 2 and model 3. This comparison is shown in Table 2.
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Table 2. Accuracy of model 3 in all combinations of dried or saturated specimens and testing by
longitudinal or transverse waves.

Type of IE Testing
Model 2 Accuracy in Different Groups [%] Model 3 Accuracy in Different Groups [%]

S0—Dried NV0—Saturated S0—Dried NV0—Saturated

fL—longitudinal 69.05 42.86 85.71 90.48

ft—transverse 56.10 52.38 78.05 88.10

Comparing the success rate of the model, it can be seen that the saturated state in the
longitudinal testing direction achieves a success rate of 90.48%. The lowest success rate
is 78.05% for the dried state in the transverse testing direction. In the case of model 2, the
longitudinal direction in the dry state achieves the highest success rate—69.05%—and the
longitudinal direction in the saturated state has the lowest success rate—42.86%.

4. Discussion

For the possibility of “upcycling” historic bricks, for both new buildings and the
renovation of historic buildings, it is crucial to choose a durable material that fulfils both
a functional and an aesthetic role. The requirements for historic bricks reintegrated into
the structure should be the same as for newly manufactured bricks. The results of this
work have shown that by using a non-destructive resonance method and the known
absorption of solid fired bricks, it is possible to predict their durability (service life) with
relatively good accuracy, without failure. The classification tree (Figure 20) demonstrates
that absorbability is a significant factor in evaluating the durability of solid-fired bricks.
It is a non-linear characteristic that cannot be described by a simple correlation. In the
case of the results obtained from the resonance method, a success rate of 85% (Figure 19)
was achieved. The disadvantage of this model is the need to know the absorption of the
masonry elements. Therefore, this model is difficult to implement in situ and is more
suitable for laboratory testing. The ultrasonic pulse method used did not yield significant
results already during the initial on-site testing of the methods. This assumption has also
been confirmed by laboratory tests and thus, the method is not suitable for the purpose
of this paper. The measurement of ultrasound wave propagating through the element
provides fewer parameters than the resonance method, where a whole spectrum is a result,
and we can observe many different metrics and features. The whole procedure was verified
on a selected sample of 41 bricks, which, by their time, age and quality, cover a wide
historical and material spectrum. Therefore, it can be stated with some confidence that,
within the framework of this study, it is possible to propose a classification model that can
predict the probable durability (service life) of a historic brick based on NDT measurements.
To bring the method into practice, a similar algorithm will be converted into Python using
the SciPy and NumPy libraries, which are commonly used for this type of task. At the same
time, the learning dataset will be enlarged to cover more sources of brick measurements. In
fact, there was an uneven qualitative representation of bricks in the tested set. Specifically,
Class 2 and 4 were represented in greater numbers than Class 1 and 3. Therefore, more class
1 and 3 bricks need to be included so that the entire dataset becomes balanced. Thanks to
the current level of microphones currently used in consumer electronic devices, which can
be used for the recording of resonance signals of elements tested by the resonance method,
we can assume that the proposed classification procedure and algorithm could be used by
mobile devices, such as smart phones, or tablets.

Supplementary Materials: The following supporting information can be downloaded at: The fol-
lowing supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/
ma15175882/s1, Measured Data S1: data from the resonance method.
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