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Abstract: The crushing characteristics of coarse aggregates for asphalt concrete were investigated
under static and dynamic aggregate crushing value tests (ACVTs). The effect of various compaction
loads was also examined by using a Marshall hammer, gyratory compactor and steel roller. Six types
of coarse aggregates were tested, including basalt aggregate, steel slag, limestone aggregate, marble
aggregate, recycled concrete aggregate and slightly weathered limestone aggregate. Test results
indicate that static ACVT failed to reflect the crushing behavior of coarse aggregates under traditional
traffic and compaction loads. The type of aggregate strongly influenced the crushing resistance,
independent of type of load. The compaction loads simulated by using a Marshall hammer, gyratory
compactor and steel roller resulted in a high aggregate breakage ratio and can distinguish the
coarse aggregates with high crushing susceptibility. The crushing resistance was evaluated by
using various crushing parameters and the corresponding critical value of these parameters was
established. Gyratory compactor compaction resulted in more serious aggregate crushing when
compared to Marshall hammer and steel roller compaction. Finite element modelling results on roller
compaction and Marshall hammer compaction are in agreement with the aggregate crushing results.
The aggregate crushing mechanism was found to be controlled by the fracture mode; the contribution
of the attrition and abrasion modes was relatively small. When coarse aggregates with low crushing
resistance are considered for the use for asphalt mixture, proper compaction is proved to be vital to
prevent excessive aggregate breakage during mixture preparation and construction.

Keywords: asphalt mixture; aggregate crushing; compaction loads; particle distribution;
crushing mechanism

1. Introduction

Asphalt mixture consists of coarse aggregates, fine aggregates, filler and asphalt binder.
Coarse aggregates usually form the stone skeleton. Fine aggregates fill the voids of the
coarse aggregate skeleton and asphaltic mastic that consists of bitumen, and the filler
acts as the binder phase to bond all of the aggregates together as a whole. In such a
structure, the coarse aggregate skeleton is the main load-carrying part and thus it is very
important for the performance of asphalt mixture. In particular, the aggregate skeleton can
significantly influence the rutting resistance of asphalt mixtures. A stable skeleton with
good interlocking effects and load transfer ability is necessary to resist deformation during
loading [1,2]. The strong and stable skeleton usually relies on high-quality aggregates. This
is especially true for stone matrix asphalt and porous asphalt concrete. In these two types
of asphalt mixtures, a stone-on-stone-like skeletal structure of gap-graded aggregate is
applied to improve the performance of mixtures. In China, particular emphasis is placed
on the high-temperature stability and rutting resistance for the design of dense asphalt
mixture. As a result, a relatively high content of coarse aggregates, together with a low
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content of fine aggregates, is usually used for the design of aggregate-combined gradation.
A typical example is that a very limited content of aggregate, between 2.36 mm and
4.75 mm, is used. This combination helps to obtain a relatively strong coarse aggregate
skeleton without the disruption of fine fractions [3]. However, the stress distribution is
expected to be unfavorable on stone-to-stone direct contact regions; concerns thus arise
on aggregate crushing or breakage problems during laboratory compaction and under
roller and traffic loads [4]. These concerns further strengthen the idea that only aggregates
with high crushing resistance should be allowed for use. It also obviously restricts the
application of some metamorphic rocks, and construction and demolition wastes (CDW) in
asphalt mixtures [5–7].

The crushing characteristics of the aggregates are essential to ensure the stability of
asphalt mixtures. The crushing resistance is usually evaluated quantitatively by using an
aggregate crushing value test [8]. The tested aggregates are compacted and compressed in a
cylinder by a plunger without lateral deformation. After loading to 400 kN, the aggregates
are sieved, and the percentage of the crushed aggregates passing through a 2.36 mm sieve
is determined as the aggregate crushing value (ACV). Important factors affecting ACV
include mineral composition, particle shape, micromorphology, size of aggregate, load
rate and level. Furthermore, a single-particle crushing test and a multi-particle confined
compression test were proposed for better insight into the breakage behavior of aggre-
gate particles. It was found that the contact location distribution strongly influenced the
crushing of granular materials and the particle strength increased with the number of
contacts [9]. The particle alignment increased the concentrated local failure leading to
breakage and affected the development of force chains during failure [10]. Liu and Qin
investigated the particle breakage of coarse aggregates based on large-scale triaxial tests.
It was reported that the particle breakage index increased with the increase in confining
pressures. The increase in particle breakage resulted in a decrease in the strength of coarse
aggregates [11]. Cai and Qiu investigated the compaction performance and particle break-
age characteristics of crushed stone as the aggregate of permeable roads. It was found
that particle crushing commonly fell into four categories, including complete crushing,
complete rupture, partial damage and surface grinding. Single-particle-size samples were
subject to stronger particle breakage than the mixed-particle-size samples [12]. Zhang and
Tang investigated the crushing mechanism of recycled aggregates by using a single-particle
crushing test, multi-particle crushing test and discrete element modeling. It was found
that the volume proportion of the gravel significantly affected the mechanical behavior
of the mixed aggregates, and 75% was the critical threshold of the gravel component [13].
Several studies also reported that the phenomena of aggregate crushing and breakage hap-
pened during the laboratory compaction of asphalt mixtures by using a Marshall hammer
and gyratory compactor [6,14–16]. The latter seemed to be promising in estimating the
degradation behavior of the aggregate skeleton [7,17]. An obvious change in aggregate
gradation was reported after mixture compaction, especially that containing poor aggre-
gates. Some of the coarse aggregates were crushed and became a portion of fine fractions.
A laboratory-accelerated heavy-loading test indicated that the coarser aggregates with a
size of 9.5–16 mm were more likely to be crushed, and thus weakened the stability of the
aggregate skeleton structure under cyclic loading [18]. Field materials extracted from stone
matrix asphalt (SMA) pavements indicated that asphalt mixture obtained from traffic lanes
had finer gradation than those from non-traffic lanes after long-time service, implying
degradation of the aggregate skeleton [12].

Asphalt concrete is subjected to complex static and dynamic loading combinations
induced by laboratory compaction, field construction compaction and repeated traffic loads,
which may result in the breakage of fragile aggregates. Previous studies mainly focused on
the effect of static loads on aggregate crushing, and limited research has been conducted
on the effect of dynamic traffic loads on aggregate breakage during road service. When
facing a lack of high-quality aggregate, the use of low-quality aggregates, which are locally
abundant, becomes necessary for cost saving. However, the risk of aggregate crushing
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during laboratory compaction, field construction compaction and repeated traffic loads
becomes a big concern. The conventional aggregate crushing value test (ACVT) applies
a load of 400 kN, which results in a compressive stress of 22.65 MPa. This stress level is
believed to be far higher than those to which coarse aggregates are subjected under actual
compaction and traffic loads. The static load of ACVT may not well reflect the crushing
behavior of aggregates under these real loads. The selection of coarse aggregate based on
ACVT has its limits.

This study aims to investigate the crushing behavior of coarse aggregates for asphalt
mixtures under simulated laboratory compaction, field construction compaction and re-
peated traffic loads. The laboratory compaction loads were simulated by using a traditional
Marshall Hammer, gyratory compactor and steel roller. The effect of repeated traffic loads
on aggregate crushing was investigated by using a dynamic ACVT with 100,000 loading
cycles. A wide range of types of aggregates with different crushing susceptibility was
considered to obtain fundamental insight into aggregate crushing. The types of coarse
aggregates included basalt aggregate, steel slag, limestone aggregate, marble aggregate,
recycled concrete aggregate and slightly weathered aggregate. The crushing mode was
investigated by the particle size distribution of crushed aggregates after testing. Particle
breakage potential was proposed to discuss the aggregate crushing mechanisms under
various compression loads. The accumulative permanent strain and resilient modulus were
discussed under cyclic loads and their developments over loading cycles were modelled.
Finite element modelling was conducted to investigate the effect of roller compaction in
field and conventional laboratory Marshall compaction on the risk of aggregate breakage.
Finally, fundamental insights into the crushing characteristics of various coarse aggregates
for asphalt mixtures were obtained under various compaction loads and repeated traffic
loads. This is useful to guide the application of coarse aggregates with high crushing
susceptibility in the field of asphalt concrete.

2. Materials and Methods
2.1. Materials

Six different types of coarse aggregate, including basalt aggregate, steel slag, limestone
aggregate, marble aggregate, recycled concrete aggregate and slightly weathered limestone
aggregate, were used in this study. Some basic properties, including apparent relative
density, water absorption, aggregate crushing value and polished stone value, are shown
in Table 1. These tests were performed according to the Chinese specification of Test
Methods of Aggregate for Highway Engineering [8]. Among these types of aggregate,
basalt aggregate is commonly used for the surface wearing course of asphalt pavements
in China because it has a high polished stone value that reflects an excellent resistance
to the polishing action of vehicle tires. Steel slag aggregate was obtained from Wuyang
Iron and Steel Holding Group, Henan province, China, by means of a hot stuffing process.
Limestone aggregate, which has a relatively low polished stone value, is widely used for
the intermediate and base course layers of asphalt pavements. Other aggregates, including
marble aggregate, recycled concrete aggregate and slightly weathered limestone aggregate,
tend to have a high crushing value and thus have a relatively poor crushing resistance
during compaction and service. These types of aggregate are usually recommended for
the base course layer of asphalt pavements. According to the Technical Specifications for
Construction of Highway Asphalt Pavements, the limit of the aggregate crushing value
(ACV) is dependent on the grade of highway, as well as the layer where the aggregate
is used [19]. For the wearing course of high-grade highway, the limit of the ACV is 26%
and, for the intermediate and base course layers, the limit of the ACV is a higher value of
28%. For low-grade highway, the limit of the aggregate crushing value is designed as 30%,
independent of types of layers.
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Table 1. Basic properties of different types of aggregate.

Major Indexes

Type of Aggregate

Basalt
Aggregate

Steel Slag
Aggregate

Limestone
Aggregate

Marble
Aggregate

Recycled
Concrete

Aggregate

Slightly Weathered
Limestone
Aggregate

Apparent relative density/g/cm3 2.896 3.601 2.734 2.724 2.689 2.724
Water absorption/% 0.5 1.6 0.6 0.6 2.0 0.7

Aggregate crushing value (ACV)/% 9.6 16.8 20.2 22.6 26.7 27.8
Polished stone value 55 50 37 36 34 35

2.2. Test Methods

Figure 1 shows the flow chart of the study content. Six types of coarse aggregate were
subjected to static and dynamic ACVTs. After that, various compaction tests were carried
out with a Marshall hammer, gyratory compactor and steel roller. Finally, finite element
modelling on steel roller and Marshall compaction tests was conducted.
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2.2.1. Aggregate Crushing Value Test (ACVT) under Static Load

In this study, static ACVTs on various types of coarse aggregates, as mentioned
above, were done to obtain insight into the crushing resistance under a linearly applied
compressive load of 400 kN within 10 min. A single-size aggregate between 9.5 mm and
13.2 mm was selected for each static ACVT. About 3 kg of coarse aggregates was carefully
placed to fill the measuring cylinder with a diameter of 150 mm in three layers. The load
was applied at a rate of 40 kN/min until it reached 400 kN. After the load was released, the
crushed aggregate was taken out of the cylinder and sieved through a 2.36 mm sieve. The
percentage of the crushed aggregates passing through the 2.36 mm sieve was determined
as the aggregate crushing value (ACV). In order to investigate the particle distribution after
the static ACVT, a full sieve analysis of the crushed aggregate was carried out. In this case,
sieves of 0.075 mm, 0.15 mm, 0.3 mm, 0.6 mm, 1.18 mm, 2.36 mm, 4.75 mm, 9.5 mm and
13.2 mm were involved. Insight into the aggregate breakage mode was discussed according
to particle distribution characteristics.

2.2.2. Dynamic ACVT under Cyclic Loading

The aggregate used in roads and pavement construction must be strong enough to
withstand crushing under roller and traffic-induced loads. In this case, the static ACVT
does not reflect well the effect of cyclic loading of rollers and traffic. Furthermore, in the
static ACVT, a compressive stress of about 22.65 MPa is applied. This stress level is believed
to be very high when compared with that which is induced by actual roller and traffic loads.
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Dynamic ACVTs under cyclic loading with a relatively low stress level are thus of interest.
For this reason, a half-sinusoidal wave of compressive stress was applied for cyclic loading.
In order to reflect the roller–road and tire–road interaction force, the stress amplitude was
considered at three levels, including 0.7 MPa, 1.4 MPa and 2.1 MPa. Among these three
stress levels, 0.7 MPa represents the standard tire–road contact stress. Dynamic ACVTs
under cyclic loading were carried out by using a UTM-130 test machine and the test setup
is shown in Figure 2. The loading frequency was 2 Hz with a half-sine compressive stress
and, in total, 100,000 cycles were applied for each test. For each load cycle, the loading time
was 0.1 s and followed by a rest time of 0.4 s. The accumulative permanent vertical strain
and resilient modulus was determined to investigate the mechanical properties. After the
dynamic ACVT, the tested aggregate was taken out and the sieve analysis performed for
the particle distribution.
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2.2.3. Marshall Hammer Compaction

The Marshall mix design and compaction method are the primary method for asphalt
mix design around the world. The bituminous specimens are prepared and compacted
using Marshall impact hammers, as indicated in Figure 2. The compressive impact loads
are delivered by the compaction hammer of a 4.5 kg weight after a free fall of 457 mm.
The designed number of impact blows are selected according to the design traffic category
of the asphalt mixture. For light traffic, 50 blows for each side are usually applied, while
75 blows for each side are applied for heavy traffic. The impact loads induced by the
Marshall hammer are expected to result in aggregate crushing and breakage, and thus
affect the volumetric and mechanical properties of the compacted asphalt concrete. This is
especially true for the application of fragile aggregates. In this study, a Marshall impact
hammer was applied to investigate the crushing behavior of coarse aggregates without
the addition of fine aggregate, filler and bitumen. About 800 g of coarse aggregate with a
single size of 9.5–13.2 mm was carefully put into the steel mold with an inside diameter of
101.6 mm and a height of 75 mm. The sample was compacted by 100 impact blows on the
top side. After compaction, the tested aggregate was taken out from the mold and the sieve
analysis carried out to obtain the particle size distribution.

2.2.4. Gyratory Compaction

Compared to Marshall compactors, gyratory compactors are able to simulate the
aggregate particle orientation during actual field compaction and thus is considered to
be a better method of laboratory compaction. Compaction in a gyratory compactor was
reported to be highly sensitive to the compaction pressure, the angle of gyration and the
number of gyrations [20]. In this study, a gyratory compactor, as indicated in Figure 2,
was used to compact coarse aggregate samples instead of hot asphalt mixture samples.
The gyratory compaction test was carried out with a compaction pressure of 600 kPa, a
gyration rate of 30 revolutions per minute and a constant angle of gyration of 1.25 degrees.
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The number of gyrations was selected as 205 gyrations to reflect the effects of heavy traffic.
About 3 kg of coarse aggregate with a single size of 9.5–13.2 mm was carefully put into the
steel mold with an inside diameter of 150 mm in three layers. After gyratory compaction,
the tested aggregate was taken out from the mold and the sieve analysis carried out.

2.2.5. Steel Roller Compaction

Asphalt mixture specimens can also be prepared in the laboratory by the wheel-rolling
method. These specimens are commonly used for the high-temperature rutting test and
other mechanical tests. In this study, a steel roller compactor, as indicated in Figure 2, was
used to compact the unbound coarse-aggregate test sample, instead of a hot asphalt mixture.
The roller had a diameter of 500 mm and a width of 300 mm. The roller compaction was
applied by a deadweight of 9000 N, thus introduced a static linear load of 300 N/cm. The
steel mold used was 300 mm in length, 300 mm in width and 50 mm in depth. About
7 kg of coarse aggregate with a single size of 9.5–13.2 mm was put into the mold for roller
compaction. According to Standard Test Methods of Bitumen and Bituminous Mixtures for
Highway Engineering, the number of rolling can be varied between 24 and 48 passages,
depending on the type of mixture and the desired density of asphalt concrete test specimens.
In this study, 36 passages were selected for roller compaction, which represented the typical
compaction level for asphalt concrete slab specimens. Similarly, the tested aggregate was
taken out from the mold and the sieve analysis carried out after roller compaction.

3. Results and Discussion
3.1. Static ACVT Results

Table 2 gives a summary of aggregate particle distribution after the static ACVTs for
various types of aggregate. It should be noted that the tested aggregate was a single size
between 9.5 mm and 13.2 mm for each static ACVT. After testing, a wide range of aggregate
particle distribution was observed, as listed in Table 2. Most of the aggregate was crushed
and became a portion of finer fractions. The crushing characteristics strongly depended on
type of aggregate. In general, basalt aggregate showed a strong crushing resistance, with
53.54% of the aggregate retained with a sieve size of 9.5 mm. The worst case was found
with recycled concrete aggregate, with only 11.75% of the aggregate retained with a sieve
size of 9.5 mm.

Table 2. Aggregate particle distribution after static ACVTs for various types of aggregate.

Type of Aggregate 9.5–13.2 mm 4.75–9.5 mm 2.36–4.75 mm 1.18–2.36 mm 0.6–1.18 mm 0–0.6 mm

Basalt aggregate 53.54 28.57 8.30 3.35 3.83 2.42
Steel slag 47.80 29.90 5.50 5.30 5.00 6.50

Limestone aggregate 23.57 35.33 20.89 5.06 6.12 9.03
Marble aggregate 21.80 41.75 13.87 8.17 5.21 9.20

Recycled concrete aggregate 11.75 43.38 18.13 9.24 7.25 10.25
Slightly weathered

limestone aggregate 16.50 35.30 20.38 10.68 7.38 9.77

Figure 3 shows the aggregate grading curves after static ACVTs for various types of
aggregate. Basalt aggregate had a relatively lower passing percentage through a wide sieve
size, which indicates a strong resistance to breakage under compression. Steel slag showed
a comparable curve with that of basalt aggregate. Limestone and marble aggregates showed
a similar grading after static ACVT, with a slight difference in the passing percentage with
a 4.75 mm sieve. The unfavorable types of aggregate were found to be recycled concrete
aggregate and slightly weathered limestone aggregate. As expected, these two types of
aggregate exhibited a curve of high passing percentage. Since a single-size aggregate
between 9.5 mm and 13.2 mm was tested, the passing percentage of the 9.5 mm sieve can
be defined as the breakage ratio, which indicated the percentage of aggregate that was
crushed and became smaller than 9.5 mm. In this case, basalt aggregate had a breakage
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ratio of 46.5%, followed by steel slag with a breakage ratio of 52.20%, while limestone and
marble aggregates had a breakage ratio of 76.4% and 78.2%, respectively. The unfavorable
aggregates, recycled concrete aggregate and slightly weathered limestone aggregate, have
a breakage ratio of 88.25.4% and 83.50%, respectively. This indicates the strong crushing
resistance of basalt aggregate and steel slag compared with other types of aggregate.
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In order to investigate the change of aggregate size before and after testing, the
aggregate equivalent size was calculated using the following equations:

d or d′ = ∑∞
n=1Pi × di (1)

∆d = d− d′ (2)

where:

d = Aggregate equivalent size before testing;
d′ = Aggregate equivalent size after testing;
∆d = Change of equivalent aggregate size;
di = Aggregate equivalent size at i-th sieve;
Pi = Percentage of aggregate with a single size of di.

As shown in Figure 4, the aggregate breakage can be divided into three different modes,
including fracture, attrition and abrasion [21]. Each breakage mode has its distinctive particle
size distribution. Among these modes, the fracture mode tends to break aggregate into
multiple coarse parts, while the attrition mode is likely to result in small parts due to local
fragmentation. The abrasion mode leads to the finest parts due to surface grinding [22,23].

In order to give a better assessment of particle breakage over the whole range of particle
sizes, relative breakage potential was proposed based on an ultimate size of 0.075 mm for
the possible aggregate crushing [24]. The relative breakage potential (RBP) was defined
as follows:

RBP = A0/A1 × 100% (3)

where:

A0 = the total breakage defined as the area between the initial and crushed aggregate
grading curves;
A1 = the potential for breakage defined as the area between the initial and ultimate aggre-
gate grading curves.
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As illustrated in Figure 5, the sieve size was plotted in log scale as the horizontal
coordinate. The initial aggregate grading curve was indicated by the straight line of
A–B because of the single-size aggregate between 9.5 mm and 13.2 mm. The crushed
aggregate grading curve was presented by the curve of A–E–G–C. The total breakage A0
was determined by the total area enclosed by A–E–G–C–B. The potential for breakage A1
was defined by the area enclosed by A–B–C–D. In order to investigate the effect of the
breakage mode on relative breakage potential, the total breakage was further sub-divided
into three categories: the coarse (2.36–13.2 mm) fraction, the small (0.6–2.36 mm)-size
fraction and the fine (0.075–0.6 mm) fraction, which are indicated by the area of A–B–F–E,
F–E–G–H and H–G–C, respectively.
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Table 3 gives the results of the aggregate crushing characteristics under static ACVTs.
For the purpose of comparison, the breakage ratio, ACV, change of aggregate size and
relative breakage potential are listed in Table 3. Since a single-size aggregate between
9.5 mm and 13.2 mm was used, the aggregate equivalent size before test was determined
by the average of 9.5 mm and 13.2 mm, that is 11.35 mm. After testing, the aggregate
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equivalent size was reduced to 8.49 mm, 7.91 mm, 6.16 mm, 5.33 mm, 6.11 mm and 5.40 mm
for basalt, steel slag, limestone, marble, recycled concrete aggregate and slightly weathered
limestone aggregate, respectively. The corresponding change of aggregate equivalent size
ranged from 2.86 mm to 6.02 mm. This indicated that the coarse aggregates were crushed
into finer aggregate and the crushing behavior was dependent on the type of aggregate.

Table 3. Results of aggregate crushing characteristics under static ACVTs.

Type of Aggregate Breakage Ratio ACV d
′

∆d RBP RBP-cf RBP-sf RBP-ff

Basalt aggregate 46.46 9.59 8.51 2.84 10.08 7.90 1.68 0.50
Steel slag 52.20 16.80 7.91 3.44 14.13 9.60 3.18 1.35

Limestone aggregate 78.20 22.58 6.16 5.19 20.70 14.63 4.16 1.91
Marble aggregate 88.25 26.74 5.33 6.02 24.19 17.12 4.94 2.13

Recycled concrete aggregate 76.43 20.21 6.11 5.24 20.89 14.93 4.08 1.88
Slightly weathered limestone aggregate 83.50 27.82 5.40 5.95 24.13 17.17 4.93 2.03

Note: RBP = Relative breakage potential (0.075–13.2 mm); RBP-cf = Relative breakage potential of coarse fraction
(2.36–13.2 mm); RBP-sf = Relative breakage potential of small fraction (0.6–2.36 mm); RBP-ff = Relative breakage
potential of fine fraction (0.075–0.6 mm).

As indicated in Table 3, The relative breakage potential of coarse, small and fine
fractions was also determined after static ACVTs. In general, basalt aggregate had the
lowest relative breakage potential, followed by steel slag, limestone, recycled concrete
aggregate and slightly weathered limestone aggregate; marble aggregate tended to have
the highest relative breakage potential. However, the difference between marble aggregate
and slightly weathered limestone aggregate was very limited. A similar phenomenon was
also found between limestone and recycled concrete aggregate. Among the contributions
of coarse (2.36–13.2 mm) fraction, small (0.6–2.36 mm)-size fraction and fine (0.075–0.6 mm)
fraction, the coarse fraction had the greatest influence on relative breakage potential,
indicating the fracture mode was dominant for aggregate breakage under static ACVTs.
Effects of the attrition and abrasion modes was relatively small. This was also in agreement
with the test data obtained from the breakage ratio and ACV.

Figure 6 shows the relations of breakage ratio, change of aggregate size and relative
breakage potential to ACV. Linear relations with ACV were observed for these three breakage
parameters. Higher ACV tended to result in a higher breakage ratio, change of aggregate size
and relative breakage potential. It strongly indicated that these crushing indexes had good
correlations and each one can well explain the aggregate crushing resistance.

Materials 2022, 15, x FOR PEER REVIEW 10 of 26 
 

 

Figure 6 shows the relations of breakage ratio, change of aggregate size and relative 
breakage potential to ACV. Linear relations with ACV were observed for these three 
breakage parameters. Higher ACV tended to result in a higher breakage ratio, change of 
aggregate size and relative breakage potential. It strongly indicated that these crushing 
indexes had good correlations and each one can well explain the aggregate crushing re-
sistance. 

 
Figure 6. Relations of breakage ratio, change of aggregate size and relative breakage potential to 
ACV. 

3.2. Dynamic ACVT Results 
3.2.1. Resilient Modulus and Accumulative Permanent Strain 

Figures 7–10 show the development of resilient modulus and accumulative perma-
nent strain of basalt aggregate and recycled concrete aggregate under cyclic loading. Sim-
ilar test results were also obtained on other types of aggregate. For the purpose of sim-
plicity, only the data obtained from basalt aggregate and recycled concrete aggregate were 
plotted for illustration. Since all types of aggregate exhibited similar development tenden-
cies of resilient modulus and accumulative permanent strain under cyclic loading, the fol-
lowing two equations were used to fit the obtained test results: E ൌ A ൈ lnሺNሻ ൅ 𝐸଴ (4)𝜀௣ ൌ C ൈ lnሺNሻ (5)

where:  
E = resilient modulus;  
A, C = the model fitting parameter;  
N = the number of loading cycles;  
E0 = the initial resilient modulus; 𝜀௣ = the accumulative permanent strain. 

As indicated in Figures 7–10, the proposed equations fit the obtained test data well. 
Some of the fitting lines were completely covered by the data points. The fitting results of 
the related model parameters are listed in Table 4. For each type of aggregate, three com-
pressive stress levels were carried out for dynamic ACVTs. As indicated in Figures 7 and 
9, the resilient modulus increased rapidly at the early state. Further increased loading cy-
cles led to a steady increase in resilient modulus. Increasing stress levels resulted in an 

Figure 6. Relations of breakage ratio, change of aggregate size and relative breakage potential to ACV.



Materials 2022, 15, 5865 10 of 24

3.2. Dynamic ACVT Results
3.2.1. Resilient Modulus and Accumulative Permanent Strain

Figures 7–10 show the development of resilient modulus and accumulative permanent
strain of basalt aggregate and recycled concrete aggregate under cyclic loading. Similar
test results were also obtained on other types of aggregate. For the purpose of simplicity,
only the data obtained from basalt aggregate and recycled concrete aggregate were plotted
for illustration. Since all types of aggregate exhibited similar development tendencies of
resilient modulus and accumulative permanent strain under cyclic loading, the following
two equations were used to fit the obtained test results:

E = A× ln(N) + E0 (4)

εp = C× ln(N) (5)

where:

E = resilient modulus;
A, C = the model fitting parameter;
N = the number of loading cycles;
E0 = the initial resilient modulus;
εp = the accumulative permanent strain.

As indicated in Figures 7–10, the proposed equations fit the obtained test data well.
Some of the fitting lines were completely covered by the data points. The fitting results of
the related model parameters are listed in Table 4. For each type of aggregate, three com-
pressive stress levels were carried out for dynamic ACVTs. As indicated in Figures 7 and 9,
the resilient modulus increased rapidly at the early state. Further increased loading cycles
led to a steady increase in resilient modulus. Increasing stress levels resulted in an obvious
increase in resilient modulus. For instance, the resilient modulus of basalt aggregate in-
creased from 155 MPa to 180 MPa and 210 MPa as the corresponding stress level increased
from 0.7 MPa to 1.4 MPa and 2.1 MPa, respectively. This indicated a strong stress depen-
dency of the resilient modulus. A similar phenomenon was also observed for recycled
concrete aggregate. The resilient modulus increased from 138 MPa to 170 MPa and 198 MPa
as the corresponding stress level increased.
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Table 4. Fitting results of model parameters for the development of resilient modulus and the
accumulative permanent strain.

Type of Aggregate Stress Level
Modulus Fitting Permanent Strain Fitting

A E0 R2 C R2

Basalt aggregate
0.7 MPa 1.15 139 0.935 0.050 0.991
1.4 MPa 1.33 160 0.958 0.089 1.000
2.1 MPa 1.62 191 0.950 0.103 0.996

Steel slag
0.7 MPa 1.67 127 0.946 0.099 0.992
1.4 MPa 1.98 153 0.981 0.158 1.000
2.1 MPa 2.10 179 0.958 0.192 0.989

Limestone aggregate
0.7 MPa 2.81 121 0.949 0.147 0.995
1.4 MPa 2.95 139 0.981 0.176 1.000
2.1 MPa 3.15 168 0.892 0.269 0.987

Marble aggregate
0.7 MPa 2.28 118 0.852 0.149 0.985
1.4 MPa 2.43 135 0.983 0.235 1.000
2.1 MPa 2.60 166 0.935 0.290 0.984

Recycled concrete aggregate
0.7 MPa 2.56 113 0.970 0.135 0.993
1.4 MPa 3.16 134 0.990 0.195 0.994
2.1 MPa 3.56 152 0.992 0.275 0.993

Slightly weathered limestone aggregate
0.7 MPa 3.03 109 0.964 0.245 0.993
1.4 MPa 3.85 125 0.985 0.335 0.994
2.1 MPa 4.12 160 0.948 0.395 0.993
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With respect to accumulative permanent strain, as indicated in Figures 8 and 10, a
rapid increase was observed at the beginning state. As loading cycle increased, a knee point
appeared and followed a steady growth. The accumulative permanent strain exhibited
an obvious stress dependency. For example, after 10,000 loading cycles, the accumulative
permanent strain of basalt aggregate was 0.65%, 1.08% and 1.21% for the corresponding
stress levels of 0.7 MPa to 1.4 MPa and 2.1 MPa, respectively. At the same stress level, a
higher accumulative permanent strain was found for recycled concrete aggregate under
cyclic loading.

Figure 11 shows the stress dependence of the model parameters, including A, E0 and
C, based on normalized analysis using the value at 0.7 MPa as a reference. For each type
of aggregate, the value at 0.7 MPa was first normalized as 1, and the remaining values at
1.4 MPa and 2.1 MPa were calculated by the relative ratio using the corresponding value
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divided by the one at 0.7 MPa. As indicated, E0 and C showed a stronger stress dependency
compared with the value of A. This further proved that higher stress levels could lead to
a higher E0 and permanent strain of unbound coarse aggregate. This stress dependency
seemed to be independent of the tested type of aggregate.
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3.2.2. Aggregate Crushing Characteristics under Dynamic ACVTs

Table 5 gives the particle size distribution after dynamic ACVTs for various types
of aggregate with a single size of 9.5–13.2 mm. As observed in Table 5, more than 85%
of aggregates were retained between 9.5 mm and 13.2 mm after testing. This meant that
less than 15% of single-size aggregates were crushed after 100,000 loading cycles. Among
the crushed aggregates, the coarse (2.36–13.2 mm) fraction was more than 98%, the small
(0.6–2.36 mm) fraction was less than 1% and the fine (0–0.6 mm) fraction was less than
0.5%. Compared with traditional static ACVTs, the aggregate crushing mode and extent
were obviously different under dynamic ACVTs. The main reason can be attributed to
the distinct difference of applied loading level. In static ACVTs a stress level of 22 MPa
was applied, while in dynamic ACVTs, a stress level ranging from 0.7 MPa to 2.1 MPa
was applied in this study. The analysis of aggregate particle distribution also indicated
100,000 repeated loading cycles did not result in a marked aggregate crushing. As the
applied stress level increased, the percent retained between 9.5 mm and 13.2 mm tended to
decline. This tendency to decline was slight for basalt aggregate, while it became significant
for recycled concrete aggregate and slightly weathered limestone aggregate. Steel slag
showed a comparable crushing resistance with basalt aggregate under dynamic loads.
When compared with the percent retained at various aggregate sizes, it was found that
most of the crushed aggregate became a substantial portion of 4.75–9.5 mm aggregate.
The contribution of coarse (2.36–9.5 mm) fraction, small (0.6–2.36 mm) fraction and fine
(0–0.6 mm) fraction remained within 0.13–10.87%, 0.02–1.1% and 0.07–0.58%, respectively,
under dynamic ACVTs. This indicated that the crushing mechanism was prominent for the
fracture mode due to a limited amount of fragile aggregate.

Table 5. Aggregate particle distribution after dynamic ACVTs.

Type of Aggregate Stress Level 9.5–13.2 mm 4.75–9.5 mm 2.36–4.75 mm 1.18–2.36 mm 0.6–1.18 mm 0–0.6 mm

Basalt aggregate
0.7 MPa 99.78 0.11 0.02 0.01 0.01 0.07
1.4 MPa 99.55 0.27 0.04 0.02 0.02 0.10
2.1 MPa 99.16 0.47 0.10 0.04 0.03 0.20

Steel slag
0.7 MPa 99.32 0.46 0.08 0.04 0.02 0.08
1.4 MPa 98.66 0.97 0.12 0.08 0.05 0.12
2.1 MPa 97.57 1.81 0.27 0.14 0.06 0.15

Limestone aggregate
0.7 MPa 97.98 1.60 0.18 0.05 0.05 0.14
1.4 MPa 95.00 3.71 0.73 0.11 0.22 0.23
2.1 MPa 92.37 5.76 0.98 0.16 0.33 0.39

Marble aggregate
0.7 MPa 97.67 1.61 0.29 0.09 0.17 0.17
1.4 MPa 92.94 5.28 0.89 0.23 0.30 0.36
2.1 MPa 89.58 7.77 1.21 0.44 0.45 0.55

Recycled concrete aggregate
0.7 MPa 96.60 2.40 0.43 0.17 0.18 0.22
1.4 MPa 90.41 7.28 0.83 0.52 0.54 0.42
2.1 MPa 87.46 9.92 0.95 0.55 0.55 0.56

Slightly weathered
limestone aggregate

0.7 MPa 97.37 1.86 0.24 0.17 0.16 0.20
1.4 MPa 91.40 6.95 0.55 0.31 0.47 0.32
2.1 MPa 88.80 9.10 0.77 0.51 0.25 0.58

Table 6 gives the results of aggregate crushing characteristics under dynamic ACVTs.
It indicates that the breakage ratio, ∆d, and relative breakage potential all increased with
the increased stress level. However, compared with the data listed in Table 3, the changes
of these three indexes were found to be relatively limited. For example, the breakage ratio
ranged from 0.22% to 12.54% for dynamic ACVTs, while for static ACVTs, it ranged from
46.46% to 88.25%. With respect to ∆d, the range was within 0.02~0.67 mm and 2.86~6.02 mm
for dynamic and static ACVTs, respectively. Similarly, the relative breakage potential was
within 0.08~2.18% and 10.91~24.19% for dynamic and static ACVTs, respectively. As
indicated above, the results obtained from dynamic and standard ACVTs have an order
of magnitude difference. This implied that the crushing behavior under static loads with
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a high stress level failed to reflect well that under dynamic loads with relatively low
stress levels.

Table 6. Results of aggregate crushing characteristics under dynamic ACVTs.

Type of Aggregate Stress Level Breakage Ratio d
′

∆d RBP RBP-cf RBP-sf RBP-ff

Basalt aggregate
0.7 MPa 0.22 11.33 0.02 0.08 0.04 0.02 0.01
1.4 MPa 0.45 11.32 0.03 0.13 0.08 0.03 0.02
2.1 MPa 0.84 11.29 0.06 0.26 0.16 0.06 0.04

Steel slag
0.7 MPa 0.68 11.31 0.04 0.16 0.11 0.03 0.02
1.4 MPa 1.34 11.27 0.08 0.28 0.21 0.05 0.02
2.1 MPa 2.43 11.22 0.13 0.45 0.36 0.06 0.03

Limestone aggregate
0.7 MPa 2.02 11.24 0.11 0.36 0.28 0.05 0.03
1.4 MPa 5.00 11.08 0.27 0.89 0.73 0.12 0.05
2.1 MPa 7.63 10.94 0.41 1.37 1.10 0.19 0.08

Marble aggregate
0.7 MPa 2.33 11.21 0.14 0.49 0.37 0.09 0.04
1.4 MPa 7.06 10.96 0.39 1.28 1.03 0.18 0.07
2.1 MPa 10.42 10.78 0.57 1.92 1.53 0.27 0.11

Recycled concrete
aggregate

0.7 MPa 3.40 11.16 0.19 0.68 0.53 0.11 0.05
1.4 MPa 9.59 10.83 0.52 1.75 1.40 0.26 0.09
2.1 MPa 12.54 10.68 0.67 2.18 1.76 0.31 0.12

Slightly weathered
limestone aggregate

0.7 MPa 2.63 11.20 0.15 0.56 0.41 0.10 0.04
1.4 MPa 8.60 10.90 0.45 1.46 1.18 0.21 0.07
2.1 MPa 11.20 10.77 0.58 1.89 1.53 0.24 0.12

3.3. Aggregate Crushing Characteristics under Marshall Hammer Compaction

Tables 7 and 8 give the aggregate particle distribution and crushing characteristics after
Marshal hammer compaction. It can be seen that the percent retained between 9.5 mm and
13.2 mm varied from 64.05% to 87.38%. This indicated that approximately 12.62~35.95%
of the single-size aggregates were crushed after 100 impact blows induced by a Marshal
hammer. In general, basalt aggregate and steel slag had a fairly good crushing resistance,
with a breakage ratio of about 12.62~18.14%, while the remaining four types of aggregate
showed a relatively larger breakage ratio between 30% and 35%. The aggregate tended to be
crushed and mainly became a portion of 4.75–9.5 mm fraction and 2.36–4.75 mm fraction. The
contribution of coarse (2.36–9.5 mm) fraction, small (0.6–2.36 mm) fraction and fine (0–0.6 mm)
fraction remained within 11.34–29.09%, 0.61–5.13% and 0.69–2.37%, respectively.

Table 7. Aggregate particle distribution after Marshal hammer compaction.

Type of Aggregate 9.5–13.2 mm 4.75–9.5 mm 2.36–4.75 mm 1.18–2.36 mm 0.6–1.18 mm 0–0.6 mm

Basalt aggregate 87.38 10.57 0.77 0.35 0.26 0.69
Steel slag 81.86 10.72 4.06 1.28 0.90 1.19

Limestone aggregate 69.32 20.81 6.36 1.12 0.71 1.69
Marble aggregate 66.84 22.13 5.77 1.90 1.08 2.28

Recycled concrete aggregate 65.38 23.47 5.62 1.83 1.34 2.37
Slightly weathered

limestone aggregate 64.05 23.64 5.42 2.30 2.83 1.76

As listed in Table 8, the range of ∆d. was within 0.64~2.13 mm and the relative breakage
potential was within 2.07~7.45% for Marshall hammer compaction. However, the data in
Table 3 show static ACVTs had the range of ∆d. within 2.86~6.02 mm and a relative breakage
potential within 10.91~24.19%. The difference indicated that the effects of static ACVTs on
aggregate crushing was 3–4 times stronger than that of Marshall hammer compaction. With
respect to the relative breakage potential of coarse, small and fine fractions after Marshall
hammer compaction, it was found that the relative breakage potential of coarse fractions
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occupied a predominant position. The percent retained at various aggregate sizes combined,
it was found that the fracture mode was prominent for Marshall hammer compaction.

Table 8. Results of aggregate crushing characteristics after Marshal hammer compaction.

Type of Aggregate Breakage Ratio d
′

∆d RBP RBP-cf RBP-sf RBP-ff

Basalt aggregate 12.62 10.71 0.64 2.07 1.66 0.26 0.14
Steel slag 18.14 10.23 1.12 3.97 3.12 0.60 0.25

Limestone aggregate 30.68 9.61 1.74 5.79 4.75 0.69 0.35
Marble aggregate 33.16 9.42 1.93 6.74 5.29 0.98 0.47

Recycled concrete aggregate 34.62 9.34 2.01 7.01 5.47 1.05 0.49
Slightly weathered

limestone aggregate 35.95 9.22 2.13 7.45 5.86 1.22 0.37

3.4. Aggregate Crushing Characteristics under Gyratory Compaction

Tables 9 and 10 give the aggregate particle distribution and crushing characteristics
after gyratory compaction for various types of aggregate. It can be seen that the breakage
ratio was within a range of 11.24~48.20% for various types of aggregate after 205 gyra-
tions. Among these aggregates, both basalt aggregate and steel slag showed a fairly good
crushing resistance, with a breakage ratio of about 11.24~14.24%, while the remaining
four types of aggregate showed a relatively larger breakage ratio between 30% and 50%.
Similarly, the aggregate tended to be crushed and mainly became a portion of 4.75–9.5 mm
fraction and 2.36–4.75 mm fraction. The contribution of coarse (2.36–9.5 mm) fraction,
small (0.6–2.36 mm) fraction and fine (0–0.6 mm) fraction remained within 9.66–38.00%,
0.68–5.46% and 0.90–4.80%, respectively.

Table 9. Aggregate particle distribution after gyratory compaction.

Type of Aggregate 9.5–13.2 mm 4.75–9.5 mm 2.36–4.75 mm 1.18–2.36 mm 0.6–1.18 mm 0–0.6 mm

Basalt aggregate 88.76 8.87 0.79 0.34 0.34 0.90
Steel slag 85.76 10.99 1.29 0.62 0.43 0.91

Limestone aggregate 62.76 19.70 7.74 3.00 2.46 4.35
Marble aggregate 67.81 21.49 4.19 1.94 1.56 3.01

Recycled concrete aggregate 54.57 30.26 6.63 1.75 2.43 4.36
Slightly weathered

limestone aggregate 51.80 29.70 8.30 2.70 2.70 4.80

Table 10. Results of aggregate crushing characteristics after gyratory compaction.

Type of Aggregate Breakage Ratio d
′

∆d RBP RBP-cf RBP-sf RBP-ff

Basalt aggregate 11.24 10.75 0.60 2.11 1.59 0.34 0.19
Steel slag 14.24 10.58 0.77 2.61 2.04 0.38 0.19

Limestone aggregate 37.24 8.89 2.46 9.73 6.93 1.90 0.90
Marble aggregate 32.19 9.43 1.92 7.13 5.23 1.28 0.63

Recycled concrete aggregate 45.43 8.65 2.70 10.07 7.35 1.82 0.91
Slightly weathered

limestone aggregate 48.20 8.38 2.97 11.26 8.21 2.06 1.00

As listed in Table 10, the range of ∆d was within 0.60~2.97 mm and the relative
breakage potential was within 2.11~11.26% for gyratory compaction. When compared
to static ACVTs, a distinct difference was also observed, which also indicated that the
effect of static ACVTs on aggregate crushing was 2–4 times stronger than that of static
gyratory compaction. The results of gyratory compaction were generally comparable to
those of Marshall hammer compaction. With respect to the relative breakage potential
of coarse, small and fine fractions after gyratory compaction, it was also found that the
relative breakage potential of coarse fractions was predominant compared with the other
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two relative breakage potentials. This indicated that the fracture mode was prominent for
gyratory compaction.

3.5. Aggregate Crushing Characteristics under Roller Compaction

Tables 11 and 12 show the aggregate particle distribution and crushing characteristic
under roller compaction for various types of aggregate. Similarly, the coarse aggregates
were crushed and mainly became a portion of 4.75–9.5 mm fraction and 2.36–4.75 mm
fraction. The contribution of coarse (2.36–9.5 mm) fraction, small (0.6–2.36 mm) fraction
and fine (0–0.6 mm) fraction remained within 10.00–30.80%, 0.62–2.10% and 1.05–2.80%,
respectively. It can be seen that the breakage ratio was within a range of 11.67~35.70%
for various types of aggregate. Among these aggregates, basalt aggregate and steel slag
had a fairly good crushing resistance, with a breakage ratio of about 11.67~14.29%, while
the remaining four types of aggregate showed a relatively larger breakage ratio between
20.33% and 35.70%.

Table 11. Aggregate particle distribution after roller compaction.

Type of Aggregate 9.5–13.2 mm 4.75–9.5 mm 2.36–4.75 mm 1.18–2.36 mm 0.6–1.18 mm 0–0.6 mm

Basalt aggregate 88.33 9.05 0.95 0.32 0.30 1.05
Steel slag 85.71 10.49 1.52 0.52 0.55 1.21

Limestone aggregate 79.67 16.61 1.25 0.46 0.61 1.40
Marble aggregate 78.31 18.00 1.65 0.46 0.48 1.10

Recycled concrete aggregate 67.85 25.24 2.87 0.75 0.97 2.31
Slightly weathered

limestone aggregate 64.30 27.80 3.00 0.80 1.30 2.80

Table 12. Results of aggregate crushing characteristics after roller compaction.

Type of Aggregate Breakage Ratio d
′

∆d RBP RBP-cf RBP-sf RBP-ff

Basalt aggregate 11.67 10.72 0.63 2.26 1.67 0.37 0.22
Steel slag 14.29 10.55 0.80 2.88 2.15 0.48 0.25

Limestone aggregate 20.33 10.29 1.06 3.60 2.77 0.54 0.29
Marble aggregate 21.69 10.25 1.10 3.53 2.87 0.43 0.23

Recycled concrete aggregate 32.15 9.63 1.72 5.89 4.52 0.88 0.48
Slightly weathered

limestone aggregate 35.70 9.42 1.93 6.76 5.09 1.09 0.58

As listed in Table 12, the range of ∆d was within 0.63~1.93 mm and the relative
breakage potential was within 2.26~6.76% for roller compaction. When compared to
static ACVTs, a distinct difference was also observed, which indicated that the effect of
static ACVTs on aggregate crushing was 3–4 times stronger than that of roller compaction.
However, the results of roller compaction were comparable to those of Marshall hammer
and gyratory compaction. This indicated that the traditional three compaction methods
tended to result in similar aggregate crushing. With respect to the relative breakage
potential of coarse, small and fine fractions after roller compaction, it was found that coarse
fraction was predominant, while the small and fine fractions were relatively limited. This
also indicated that the fracture mode accounted for the cause of aggregate crushing under
roller compaction.

3.6. Comprehensive Analysis of Aggregate Crushing Characteristics

Figures 12–14 show the effect of ACV on the breakage ratio, the change of aggregate
size and the relative breakage potential under various types of loads. As can be observed
from these three figures, standard ACVTs resulted in the most serious aggregate crushing,
followed by gyratory compaction, Marshall hammer compaction and roller compaction.
Dynamic ACVTs had the slightest effect on aggregate crushing. The effect of ACV seemed
to have a critical point at 20%. When ACV was below 20%, the effects of different com-
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paction loads, including gyration, Marshall and roller methods, were close to each other.
When ACV was above 20%, the effects of these three compaction methods were signif-
icantly varied. Since gyratory shear compaction and Marshall hammer compaction are
common compaction modes used for specimen preparation of asphalt concrete in the
laboratory, it was seen that gyratory shear compaction tended to result in more aggregate
crushing compared to the Marshall impact method. Roller compaction led to less aggregate
crushing compared to the gyratory and Marshall methods. Combining the data shown in
Figures 12–14, it was indicated that the traditional compaction methods can also result in
serious aggregate crushing, especially for coarse aggregates with ACV larger than 20%. In
this study, the breakage ratio can reach 20~40% in cases where single-size coarse aggregates
(9.5–13.2 mm) were tested. The effect of traffic loads, which were simulated by dynamic
ACVTs for 100,000 cycles, seemed to be very limited on aggregate crushing. Furthermore,
gyratory shear compaction, Marshall impact compaction and roller compaction all have
different loading methods; however, their effects on the aggregate crushing mode seemed
to be the same for strong aggregates with low ACV. Gyratory shear-induced force can
result in more serious aggregate crushing and thus relatively more small and fine fractions
compared to Marshall impact compaction and roller compaction.
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Figure 15 shows the relations between the breakage ratio, the change of aggregate
size ratio and relative breakage potential. A linear relation can fit the data obtained from
various types of loads well. A higher breakage ratio tended to result in a larger change in
aggregate size, as well as relative breakage potential. This implied that the breakage ratio
can be used as a good indicator for aggregate crushing resistance. In this case, the breakage
ratio should be controlled below 30% to prevent the risk of excessive aggregate crushing
during compaction, based on data in Figure 12. Combined with the regression equations,
as indicated in Figure 15, the critical value for the change of aggregate size and the relative
breakage potential can be determined as 2.0 mm and 7.5%, respectively. The breakage ratio
of 30%, the change of aggregate size of 2.0 mm and the relative breakage potential of 7.5%
can be used as the critical values for evaluation of aggregate crushing susceptibility.
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Figure 16 shows the relations between the breakage ratio and aggregate particle
distribution after being crushed. In total, six types of aggregate and five types of loads
were included in Figure 16. The crushed aggregates were divided into coarse fraction
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(2.36–9.5 mm), small fraction (0.6–2.36 mm) and fine fraction (0–0.6 mm) to investigate the
particle distribution characteristics. In general, the content of these three fractions linearly
increased with an increased breakage ratio, independent of type of load and aggregate. The
linear fitting results indicate that the coarse fraction accounted for 75%, while the content
for small and fine fractions was 15% and 10%, respectively. This strongly implied that the
contribution of the fracture mode was predominant, while the attrition and abrasion modes
remained relatively limited for aggregate crushing under various types of loads.
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4. Finite Element Modelling
4.1. Modelling of Roller Loads
4.1.1. Model Characteristics

Finite element modelling was carried out to investigate the effects of roller loads on
the compressive stress level and distribution within asphalt mixtures during construction
and compaction. The modelling stress level was thus compared with those stress levels
that were applied for dynamic ACVTs. By doing this, the risk of aggregate breakage was
evaluated. Heavy vibratory tandem rollers are usually able to generate more compaction
force compared to pneumatic tired rollers and thus result in a higher risk of aggregate
breakage during compaction. For this reason, a heavy vibratory tandem roller with a
working weight of 13 tons was selected for mixture compaction modelling. The steel wheel
had a diameter of 1236 mm and a width of 2135 mm. The static line pressure was 300 N/cm
and the exciting force was 126 kN. The modelled asphalt pavement consisted of an 80 mm
asphalt layer, 180 mm cement stabilized base course and 180 mm cement stabilized sub-
base course. The length of the pavement was selected as 2000 mm to reduce the boundary
effect. The base course and sub-base course were modelled as linear elastic with an elastic
modulus of 15,000 MPa and 14,000 MPa, respectively. It was reported that the dynamic
complex modulus of asphalt mixture at a high temperature of 60 ◦C was in the order
between 100 MPa and 1000 MPa [25,26]. As the compaction temperature is usually higher
than 135 ◦C, it can be foreseen that the asphalt mixture modulus at such a high temperature
should be in the order of 10 MPa and 100 MPa. For this reason, the asphalt layer was
modelled in a wide range of elastic modulus (10–320 MPa) by considering the increasing
modulus during compaction. Due to the huge modulus difference between the steel and
asphalt mixture, the steel wheel was modelled with a rigid body to limit the mathematical
size of the model. The contact properties between the roller wheel and asphalt mixture
were selected as hard contact and frictionless. For the purpose of simplification, the model
made use of the ABAQUS 2D plate stress model. The boundary condition was as follows:
movements at the bottom of the model were fully restrained; at the vertical boundaries of
the model, only horizontal movements were restrained.
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4.1.2. Modelling Results

Figure 17 gives the vertical compressive stress contour under vibratory compaction
at an asphalt mixture modulus of 100 MPa based on 2D modelling. The selected length
and depth of the pavement structure was enough to reduce the effect of the model bound-
ary. The stress contour indicated that high levels of vertical stress happened under the
roller–pavement contact region. The vertical stress tended to reduce as the pavement
depth increased. Figure 18 shows the detailed results of vertical stress distribution under
roller static and vibratory compaction. Effects of the asphalt mixture modulus were also
considered by changing the elastic modulus, including 10 MPa, 20 MPa, 40 MPa, 80 MPa,
160 MPa and 320 MPa, respectively. It should be noted that the degree of compaction of
the asphalt mixture is increased after each time of roller compaction. This also leads to an
increase in the asphalt mixture modulus. As a result, the increased modulus reduces the
contact area between roller and pavement and thus a higher vertical stress can be expected.
This was well reflected in the modelling results, as indicated in Figure 18. Roller vibratory
compaction can lead to a much higher vertical stress compared with static compaction. For
instance, the vertical stress level ranged from 1.0 MPa to 3.7 MPa for vibratory compaction,
while the corresponding level reduced to a range between 0.4 MPa and 2.3 MPa for static
compaction. In this case, the vibratory compaction was very effective in improving the de-
gree of compaction; however, it might be a disadvantage for aggregate crushing resistance.
This is especially true for those aggregates with high ACV. Combining the results obtained
from dynamic ACVTs, as well as roller compaction, it can be concluded that roller static
compaction can be an effective method to prevent aggregate crushing. In the early state of
compaction, the modulus was relatively low, the vibratory compaction can be applied to in-
crease the degree of compaction with a relatively low risk for aggregate crushing. Excessive
vibratory compaction should be avoided to prevent aggregate crushing, which can well be
identified by surface aggregate crushing or breakage. It could be concluded that the stress
level induced by the roller load was much lower than that applied for static ACVTs. The
application of static ACVTs may lead to an excessive requirement on aggregate crushing
resistance, which may be disadvantageous for the application of some certain types of
aggregate with high ACV, especially for recycled aggregates obtained from construction
and demolition wastes.
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4.2. Modelling of Marshall Hammer Compaction
4.2.1. Model Characteristic

During the mixture design phase, asphalt mixtures are mainly prepared by Marshall
compaction in the laboratory. For dense-graded asphalt mixtures, a compaction effort of
75 blows is commonly given on either side of the specimen, whereas it is only 50 blows in
the case of stone mastic asphalt and porous asphalt concrete. Reducing the blow number
in these two types of mixtures prevents severe aggregate breakage for higher compaction
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efforts due to the gap-graded structure and the presence of a strong coarse aggregate skele-
ton. Aggregate breakage is directly related to the compaction force/stress that the specimen
is subjected to. In order to obtain insight into the stress level during specimen preparation
using the Marshall blow method, finite element modelling was carried out to simulate
the interaction between the specimen and compaction hammer. The model made use of
the ABAQUS 3D dynamic explicit model. The model consisted of a compaction hammer
with a circular compaction foot (diameter 98.5 mm) and a cylinder specimen (diameter
101.6 mm and height 63.5 mm) of asphalt mixture. The modelled compaction hammer has
a 4.536 kg falling mass with a free fall of 457.2 mm. The steel hammer was modelled using
a rigid body to limit the mathematical size of the model. The asphalt mixture was modelled
as linear elastic in a wide range of modulus (10–320 MPa) by considering the increasing
modulus during compaction. The contact properties between hammer and asphalt mixture
were selected as hard contact and frictionless. The boundary condition was as follows: the
movements at the bottom of asphalt mixture cylinder specimen were fully restrained; at
the vertical boundaries of the outer surface, only horizontal movements were restrained.
The model was loaded by the gravity of the compaction hammer with a 4.536 kg falling
mass and a free fall of 457.2 mm. This led to the hammer impact mixture specimen after
falling 0.3055 s with a speed of 2.993 m/s.
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vibratory roller compaction (SC: static compaction; VC: vibratory compaction; 10 MPa, 10 MPa,
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4.2.2. Modelling Results

Figure 19 gives the development of vertical stress that the mixture specimen is sub-
jected to over time. As indicated in Figure 19, the model was able to reflect the impact
action of the falling hammer on the specimen surface well. The vibration after impact was
also able to be captured in the modelling results. Figure 20 gives the effect of the asphalt
mixture modulus on Marshall compaction-induced vertical stress. The vertical stress in-
creased linearly when the asphalt mixture modulus increased in the initial state. After
the modulus reached 160 MPa, the vertical stress tended to be stable. Further increasing
the modulus only led to a slight increase in vertical stress. The final vertical stress can
reach a high value of around 7.0 MPa, which is much higher than that obtained by roller
vibratory compaction, as shown in Figure 18. It indicates that Marshall compaction may
induce higher vertical stress that leads to aggregate breakage compared with real roller
compaction. This was demonstrated by the aggregate crushing characteristics between
Marshall and roller compaction.
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5. Conclusions

In this study, various experiments, including static and dynamic aggregate crushing
value tests (ACVTs), Marshall hammer compaction tests, gyratory compaction tests and
roller compaction tests, were conducted to evaluate the crushing characteristics of six dif-
ferent types of coarse aggregates. Finite element modelling was carried out to investigate
the effects of heavy vibratory tandem roller and Marshall hammer compaction loads on
compressive stress during the mixture compaction process. Based on the experimental
results and the analysis, the following conclusions were drawn:

1. Static ACVTs and dynamic ACVTs with 100,000 loading cycles resulted in a distinct
difference in aggregate crushing. Static ACVTs were unable to reflect the crushing
behavior of coarse aggregates under traditional Marshall, gyration and roller com-
paction well.

2. The development of the resilient modulus and accumulative permanent strain un-
der dynamic ACVTs can be well fitted by using a logarithm model and the model
parameter showed a strong stress dependency.

3. The type of aggregate had a strong influence on crushing resistance, independent of
type of load. When coarse aggregates with high ACV were considered for applica-
tion, tests should be done to evaluate the risk of aggregate breakage during mixture
preparation and construction compaction.
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4. The compaction process can be the critical phase for aggregate crushing because of
the high breakage ratio, while the risk of aggregate crushing under actual traffic loads
may be very limited. The selection of the right compaction methods can be helpful to
prevent the risk of excessive aggregate crushing.

5. Marshall, gyration and roller compaction was proved to be capable of evaluating the
aggregate crushing resistance by simulating the process of mixture compaction and
can distinguish coarse aggregates with high crushing susceptibility well.

6. The aggregate crushing resistance can be evaluated by using ACV, breakage ratio,
change of aggregate size and relative breakage potential. It was found that an ACV
of 20%, a breakage ratio of 30%, a change of aggregate size of 2.0 mm and a rela-
tive breakage potential of 7.5% were the corresponding critical values for aggregate
crushing susceptibility.

7. Gyration, Marshall and roller compaction had different loading methods, but they
showed a similar fracture mode on aggregate crushing. Gyration compaction induced
shear force and resulted in more serious aggregate crushing when compared to the
other two compaction methods.

8. The stress levels obtained from finite element modelling on roller compaction and Mar-
shall hammer compaction explained the aggregate crushing results under laboratory
roller and Marshall compaction well.

9. The aggregate particle distribution exhibited a linear relation with the breakage ratio.
The coarse fraction accounted for 75%, while the small and fine fractions were limited
to 15% and 10%, independent of type of load. This indicated that the crushing
mechanism was controlled by the fracture mode and the contribution of the attrition
and abrasion modes was relatively small.

The application of coarse aggregates with high ACV has to deal with the problem of
aggregate crushing during laboratory specimen compaction and field construction. The
selection of the proper compaction method and the optimization of the aggregate skeleton
may be of importance to prevent excessive aggregate crushing. The traditional dense
asphalt mixture structure and the presence of a higher concentration of fine aggregates
may be helpful to reduce the breakdown of the aggregate skeleton during compaction.
This study was limited to the investigation of coarse aggregates of a single size between
9.5 mm and 13.2 mm. The combination of different sizes of coarse aggregates should be
involved in future work. Furthermore, the effect of the addition of an asphalt binder, fine
aggregate and filler should be examined. Tests on asphalt mixture should be conducted for
the purpose of validation.
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