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Abstract: The purpose of the research is to predict the compressive and flexural strengths of the
concrete mix by using waste marble powder as a partial replacement of cement and sand, based
on the experimental data that was acquired from the laboratory tests. In order to accomplish the
goal, the models of Support vector machines, Support vector machines with bagging and Stochastic,
Linear regression, and Gaussian processes were applied to the experimental data for predicting the
compressive and flexural strength of concrete. The effectiveness of models was also evaluated by
using statistical criteria. Therefore, it can be inferred that the gaussian process and support vector
machine methods can be used to predict the respective outputs, i.e., flexural and compressive strength.
The Gaussian process and Support vector machines Stochastic predicts better outcomes for flexural
and compressive strength because it has a higher coefficient of correlation (0.8235 and 0.9462), lower
mean absolute and root mean squared error values as (2.2808 and 1.8104) and (2.8527 and 2.3430),
respectively. Results suggest that all applied techniques are reliable for predicting the compressive
and flexural strength of concrete and are able to reduce the experimental work time. In comparison
to input factors for this data set, the number of curing days followed by the CA, C, FA, w, and MP is
essential in predicting the flexural and compressive strength of a concrete mix for this data set.

Keywords: concrete; compressive strength; flexural strength; support vector machines; gaussian
processes; linear regression

1. Introduction

The emission of CO2 is a major environmental concern. It is important to take specific
steps in order to minimize the amount of CO2 emissions into the environment. India ranks
third in the world in terms of CO2 emissions. Concrete is a major contributor to increased
CO2 levels in the atmosphere. Concrete consists of three major ingredients such as cement,
which contributes to the improvement of concrete’s strength; aggregates, which provides
the bulkiness to the concrete; and water, which reacts with cement, which leads to the
hydration process and provides strength to concrete. Except for cement, all of the other
components are readily available across the world. The only method to produce cement is to
manufacture it. CO2 is released during cement production, which pollutes the environment.
Over-exploitation of materials is on the rise as a result of their widespread use.
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The most efficient method for reducing the negative effects that concrete has on the
environment is to reduce the amount of cement that is used in its production. This goal
can be accomplished through the use of alternative building materials [1–3]. Concrete is
frequently utilized in industries, which increases its demand and will result in its depletion.
It would be economically viable to employ waste material in infrastructure development
if it met the required specifications [4,5]. Various hazardous wastes are generated as a
result of industrialization, which can be managed by incorporating them into basic concrete
components. Some mineral additions in concrete, for example, fly ash, silica fumes, and
blast furnace slag, might increase the demand for water in the concrete mix, which can be
addressed with the use of a superplasticizer [6].

The bond strength of the concrete matrix can be improved by using calcium carbonate
whiskers and basalt fiber in the concrete matrix [7]. Furthermore, silica fume can be used in
place of cement in concentrations ranging from 0 to 10%, which improves the interface bond.
Apart from silica-fume and basalt fiber, some researchers use coconut fiber as a partial
replacement for cement [8]. As an alternative [9–12], WMP can be used instead of cement
or fine aggregates. WMP is a promising resource that may be used to partially replace
cement and sand. CaO, SiO2, Al2O3, and Fe2O3 are significant constituents, whereas
MgO, SO3, K2O, and Na2O are minor constituents. India is the world’s third largest
producer of marble trash. From the beginning of the mining process until the end, waste
is produced. If the waste created by the marble business is not correctly utilized, it may
have an adverse effect on both the environment and the economy. Marble is frequently
used for ornamental purposes, increasing its market demand. Marble manufacturing
results in a variety of chemical formations that are classified as hazardous waste. Waste
disposal is not cost-effective, and the environment is also a concern. The use of properly
integrated industrial waste can help to minimize the amount of cement required in the
concrete mix [13]. Marble sludge may be recycled and used as a major component of
concrete mix, which can then be used as a construction material or in road pavements,
among other things [14]. In comparison to the nominal mix, Soliman [15] found that as
the amount of WMP in the nominal concrete in place of cement increases, it deteriorates
concrete strength. The effect of partially replacing cement with WMP and finding suggests
that tensile strength with WMP begins to deteriorate as the amount of waste marble powder
increases [16]. Replacement of 10% WMP with cement improves the tensile behavior of
concrete [17]. Many researchers use waste marble powder as a replacement for cement by
weight [18,19]. When an experiment was carried out by Kelestemur [20] on a concrete mix
containing various amounts of glass fiber, it can be seen that by adding WMP, it achieves
the highest compressive strength. The capillarity properties of SCC were altered by adding
WMP in place of cement, and it was found that the addition of WMP had no effect on
workability, but tensile strength decreased [21]. Ashish [22] investigated the possibility
of using WMP as a partial replacement for fine aggregate and cement amalgam. Uysal
and Yilmaz [23] performed experiments incorporating lime, basalt and WMP as Portland
cement substitutes. Hebhoub [24] found that when gravel or both were substituted with
sand, the 28-day tensile strength was higher. The use of marble powder as a filler was
found to be adequate by Corinaldesi [25]. As per literature, use of 10% WMP in lieu of
sand during the 28 days of curing offers maximum compressive strength at roughly the
same workability as cement replacement. Due to its fineness, marble powder offers good
cohesiveness to mortar. SCC was used as an alternative to WMP [26]. At the 28-day curing
time, Demirel [27] discovered that when the fine particles in the matrix were replaced
with waste marble powder, the porosity decreased but the compressive strength increased.
The use of WMP as a filler affected the concrete’s mechanical and physical properties [28].
Talah [29] looked at the results of tests carried out with and without WMP and found that
MP can be used to make high-performance concrete.

Soft computing approaches are now being used by researchers to solve the issues [30–38].
The hardened property of concrete is primarily determined by the amount of cement,
aggregates, water, admixtures, and wastes used in the mix. These factors can be used as
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an input parameter to aid in the prediction of the final result. The linear and non-linear
regression approaches are mostly used in traditional methods for anticipating outcomes.
However, in recent years, AI approaches such as ANN, LR, GMDH, RF, SVM and RT have
been used to estimate the mechanical characteristics of concrete [39,40]. The majority of the
study is focused on predicting the mechanical characteristics of concrete mixes. Several
regressions, NNT, and ANFIS models are constructed by Sobhani [32] using concrete
components as input parameters in the estimation of the hardened property of concrete. The
outcome demonstrates that the NNT and ANFIs algorithms are more accurate compared to
proposed standard regression algorithms for predicting the 28-day compressive strength.
Madandoust [41] used GMDH, NNT, and ANFIs modelling for predicting the CS of concrete
using cementitious materials. A genetic algorithm was used in the study to build the GMDH
kind of neural network. In order to forecast output strength, parameters such as length
to diameter ratio, core diameter, and so on were used as input. The study was directed
by Ayat [42] to evaluate the affectability of the constructed model to some basic factors
influencing concrete compressive strength. It was discovered that the suggested ANNs
model’s performance was outstanding with a highly effective tool for the simulation of the
compressive strength with LF. Deepa [43] estimates the CS of concrete utilizing classification
methods such as M5P Tree models, Multilayer Perceptron’s, and Linear Regression. The
results show that tree-based algorithms predict better results for concrete strength.

The purpose of this study was to determine whether or not machine learning could
be used to make accurate predictions regarding the compressive and flexural strengths of
concrete mixtures by adding waste marble powder in place of cement and sand together.
To achieve the objective of the study, experimental data obtained by using waste marble
powder as a partial replacement with cement and sand in the following proportions: 0–100,
25–75, 50–50, 75–25, and 100–0, respectively, was analyzed with soft computing techniques
such as Support Vector Machines (SVM), Gaussian Processes (GP), and Linear Regressions
(LR). The findings were than compared by using statistical parameters such as Coefficient
of correlation (CC), Mean absolute error (MAE), Root mean square error (RMSE), relative
absolute error (RAE), and Root relative squared error (RRSE). Further to identify the most
relevant parameters (C, FA, CA, w, MP, and CD) in terms of predicting the compressive
and flexural strength of concrete mixes and to ascertain the best modelling technique for
predicting the compressive and flexural strength of concrete, sensitivity analysis has been
carried out.

2. Machine Learning Techniques
2.1. Support Vector Machine (SVM)

SVM, is a complex machine learning algorithm which is used by researchers to solve
challenging engineering problems such as categorization, forecasting, and regression analy-
sis. It is a part of artificial intelligence [44,45]. The SVM analysis approach includes training
and testing sub-sets coupled with input and output. The optimal margin classifier is one
of two methods used in SVM analysis to separate the linear classifier. Another alternative
is to use the kernel function technique. The fixed mapping technique is used after map-
ping the input data with n-dimensional characteristics. There has been no change in the
actual input space when the kernel mapping is applied to actual observations during a
high-dimensional feature [45].

2.1.1. Bagging

Bagging is used to improve poor learning machine predictions [46]. Bagging factor
determines how much of the original database will be recombined [47]. Each model uses
bootstrap resampled observed data. Bagging algorithms have three steps: Bootstrapping
uses replacements to create a new training set. Distributed voting is used to associate
classifier results. This approach improves generalisation and classification variance. To
use this method, the basic classifier must be imbalanced; otherwise, no classification will
arise. The K-Nearest Neighbor classifier is stable, while the MLPC is not [48]. In this study,
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bagging is applied to check the reliability of the SVM model for predicting the strength
property of concrete.

2.1.2. Stochastic

Stochastic meta-assembly improved the traditional techniques-based model. It is used
to solve nonlinear engineering problems. In some studies, stochastic methods improve
random forest models [31]. The designing process is filled with uncertainties, such as
natural randomness of physical quantities, Model assumptions due to shortcomings in
the computer model compared to real structural data, and statistical assumptions during
the identification of a quantity due to a lack of data [49]. A stochastic process consists of
arbitrary variables whose values are determined by Q’s state vector. Indexing the gathering
uses another set Z.

2.2. Gaussian Processes (GPs)

During the preceding years, a substantial amount of work has been carried out in
subject of machine learning. GP is a machine learning method for analyzing the models’
using kernels which provides a hands-on approach to learning about kernel [50]. It is a
set of random variables with a mutual normal distribution for each discrete variable. The
two fundamental functions used in the GP l(a) are the mean function m(a) and the kernel
function n(a, a′). It states that:

l(a) = GP(m(a), n(a,a′)), (1)

The GP’s primary goal is to find, how the input variables can be used to accomplish
the objective. For every objective value, such as y, there is an arbitrary regression function
l(a) and independent Gaussian noise (
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l(a) = GP(m(a), n(a,a′) + σn
2I), (3)

The identity matrix is represented by I.

2.3. Linear Regression (LR)

Linear regression is a regression analysis model that employs linear equations to
represent the relationship of the two or more dependent and independent variables [32].
The primary goal of a linear regression model is to identify the linear line that best predicts
the relationship of the dependent and independent variables. It is only conceivable if the
total of the squares of the vertical lines is less than the specified line. Linear regression
models are made up of dependent and independent variables, such as d and z from the
given dataset. To discover the optimum numerical forecast, it forms a simple mathematical
equation. It also aids in determining the correlation coefficient capable of describing the
variances in the dataset. The closer the value is to one, the more dependable the data. [43].

d = c0 + c1z1 + c2z2 + C3z3 + C4z4 + C5z5 + C6z6 + . . . (4)

Objective of the Study

A detailed review of the literature revealed that no study had employed these mod-
elling techniques to predict the compressive and flexural strength of concrete mix. Con-
sidering their application in construction material, an attempt was made to evaluate their
potential in predicting the compressive and flexural strength of concrete mixtures by adding
waste marble powder in place of cement and sand together using laboratory data.
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3. Methodology

The following methods must be followed in order to achieve the study’s purpose of
estimating concrete compressive and flexural strength.

1. Experimental data on the compressive and flexural strength.
2. Used soft computing techniques.

3.1. Collection of Data

For the prediction of the compressive and flexural strength, sufficient data was neces-
sary, which was supplied by performing experimental research using waste marble powder
in various proportion as a partial replacement of cement and sand.

3.2. Experimental Investigation

Concrete with complicated structures is comprised of multiple complex materials,
making them difficult to comprehend, e.g., the problem of matrix/aggregate interactions,
the region between the aggregate and the matrix, the size of aggregates, etc. The size and
quantity of particles, for instance, have been found to affect the fracture energy and fracture
toughness of concrete. The matrix can be composed of several materials in variable amounts,
which can alter their qualities, such as the w/C and C/S, among others. The same holds
true for aggregate, which may be composed of pebbles, with smooth, rounded surfaces,
or crushed rock with irregular shapes, varying chemical and mineralogical compositions,
and extremely rough surfaces. The aggregates appearance and texture have a big effect on
how well they fit together with mortar. Further, due to the large specific surface area of
the marble powder (MP), which is obtained from the processing of marble waste sludge,
it has the potential to be utilized as a filler in concrete. The following materials and
testing methods were used on 189 cubes and 188 beam specimens with dimensions of
150 × 150 × 150 mm and 700 × 150 × 150 mm, respectively.

3.2.1. Aggregate

Coarse aggregate with nominal sizes of 10 and 20 mm was used in the concrete mix.
The aggregate’s particle size distribution was graded [51]. According to ASTM C-128 and
ASTM C-127 [52,53], specific gravity, crushing, and impact were found to be 2.61%, 23.67%,
and 6.74%, respectively. Table 1 shows the characteristics of fine and coarse aggregate.

Table 1. Physical characteristics of aggregates.

Test Unit Value Permissible
Limit Standard

Impact value test of coarse aggregate % 6.74 <10 [52]
Crushing test of coarse aggregate % 23.67 >45 [52]

SG (CA) gm/cm3 2.61 -
[53]Apparent SG (CA) gm/cm3 2.82 -

WA(CA) % 2.82 -

SG (FA) gm/cm3 2.47 -
[53]Apparent SG (FA) gm/cm3 2.51 -

WA (FA) % 0.6 -

3.2.2. Cement

As per ASTM C150 [54] Type-I cement was used in this study. ASTM C184, ASTM
C187, ASTM C151, ASTM C188, ASTM C191 [55–59] was used to calculate the mechanical
properties of cement. Values obtained for fineness, Consistency, Soundness, and Specific
Gravity were 5.77, 32, 3.33, and 3.1 and initial and final setting time of cement was 40 and
360 min.
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3.2.3. Marble Powder

A nearby marble market supplied the WMP. The physical properties of WMP obtained
for fineness, and Specific Gravity were 2.01% and 2.44 g/cm3.

3.2.4. Mix Design

Batches were created according to the prescribed quantities of cement, sand and
marble powder, while other elements such as coarse aggregates, and water/cement ratio
were utilized in the same amounts throughout. Different sets of specimens were made,
each consisting of three cubes and three beams. A total of 189 cubes and 188 beams
were created. The proportion of reference specimens, as well as mixes with 5, 10, 15, and
20% replacement, is listed in Table 2. In terms of compressive and flexural strength, the
mechanical properties of marble powder (MP) modified concrete were investigated as a
partial replacement of cement and sand in proportions of 0–100, 25–75, 50–50, 75–25, and
100–0% where 5% of MP, designated as MP 5(C0:S100), MP 5(C25:S75), MP 5(C50:S50),
MP 5(C75:S25), MP 5(C100:S0), 10% of MP, designated as MP 10 (C0:S100), MP 10(C25:S75),
MP 10(C50:S50), MP 10(C75:S25), MP 10(C100:S0), 15% of MP designated as MP15 (C0:S100),
MP 15(C25:S75), MP 15(C50:S50), MP 15(C75:S25), MP 15(C100:S0),and 20% of MP, des-
ignated as MP 20(C0:S100), MP 20(C25:S75), MP 20(C50:S50), MP 20(C75:S25), and MP
20 (C100:S0), with cement and sand in a percentage of 0–100, 25–75, 50–50, 75–25 and
100–0, respectively.

Table 2. Mix design of concrete.

Sr. No. Mix-ID
Materials, kg/m3

C FA CA w MP

1 Conventional Mix 395.74 600.15 1103.09 217.65 0
2 MP 5(C0:S100) 395.74 570.14 1103.09 217.65 30.00
3 MP 5(C25:S75) 390.79 577.65 1103.09 214.93 27.44
4 MP 5(C50:S50) 385.85 585.15 1103.09 212.21 24.89
5 MP 5(C75:S25) 380.89 592.64 1103.09 209.49 22.34
6 MP 5(C100:S0) 375.95 600.15 1103.09 206.77 19.78
7 MP 10(C0:S100) 395.74 540.13 1103.09 217.65 60.01
8 MP 10(C25:S75) 385.85 555.13 1103.09 212.21 54.90
9 MP 10(C50:S50) 375.95 570.14 1103.09 206.77 49.75

10 MP 10(C75:S25) 366.06 585.15 1103.09 201.33 44.68
11 MP 10 (C100:S0) 356.16 600.15 1103.09 195.89 39.57
12 MP 15(C0:S100) 395.74 510.12 1103.09 217.65 90.02
13 MP 15(C25:S75) 380.89 532.63 1103.09 209.49 82.35
14 MP 15(C50:S50) 366.06 555.13 1103.09 201.33 74.69
15 MP 15(C75:S25) 351.21 577.65 1103.09 193.16 67.02
16 MP 15(C100:S0) 336.37 600.15 1103.09 185.00 59.36
17 MP 20(C0:S100) 395.74 480.12 1103.09 217.65 120.03
18 MP 20(C25:S75) 375.95 510.12 1103.09 206.77 109.80
19 MP 20(C50:S50) 356.16 540.13 1103.09 195.89 99.58
20 MP 20(C75:S25) 336.37 570.14 1103.09 185.00 89.43
21 MP 20(C100:S0) 316.59 600.15 1103.09 174.12 79.14

Additionally, modified concrete was mixed in a mixer, and the necessary substitution
for ordinary cement was carried out during the mixing process. The mixes were mixed
to with MP, and (150 × 150 × 150) mm cubes and (150 × 150 × 700) mm beams were
created. After that, samples were given a certain number of days in curing tanks to cure
(CD). The CD that was chosen for this investigation ranged from 7 to 180 days. After
curing, cube and beam samples were sun-dried and tested in the institute’s lab using a
standard compression and flexural testing machine. The CS and FS tests were carefully
performed to determine the mix proportion from the collection of casted samples suitable to
achieve approximately the same or better compressive and flexural strength for a selection
of percentage substitutions [60,61].
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3.2.5. Data Collection

The dataset is critical for predicting the outcome. The observations collected from
laboratory study were divided into two sub-sets at random, with 70–30 ratio for the training
and testing sub-sets, respectively.

In this paper, three techniques were used, namely LR, SVM, SVM Bagging and SVM
Stochastic and GP, with input parameters such as C, FA, CA, w, MP, and CD, to achieve the
desired outcome, with CS and FS as the output parameter, using Weka 3.9. Tables 3 and 4
lists the characteristics of the total, training, and testing datasets for CS and FS, respectively,
and user defined parameters listed in Table 5. Each model’s performance was evaluated
using CC, MAE, RMSE, RAE, and RRSE. These variables were beneficial in finding the best
model. A greater CC value and a lower error value suggest better results. A significant
number of studies resulted in these user-defined ideal settings for diverse techniques. The
best settings dictated the performance of each model. The optimal settings must be carefully
determined because they will have an impact on the model’s performance. As a result, the
parameters in these examples were ideal for both training and testing datasets.

Table 3. Characteristics of datasets for CS.

Dataset Statistics Minimum Maximum Mean Standard
Deviation Kurtosis Skewness

Total Dataset
(189 observations)

C 316.59 395.74 372.18 22.28 −0.06 −0.89
FA 480.12 600.15 564.43 33.79 −0.06 −0.89
CA 1103.09 1103.09 1103.09 0.00 −2.02 1.01
w 174.13 217.66 204.70 12.25 −0.06 −0.89

MP 0.00 120.03 59.28 31.82 −0.88 0.10
CD 7.00 180.00 71.67 77.29 −1.51 0.67
CS 7.96 35.78 18.92 7.49 −1.1 0.34

Training Dataset
(133 Observations)

C 316.59 395.74 372.08 23.51 −0.03 −0.95
FA 480.12 600.15 563.83 35.96 −0.14 −0.91
CA 1103.09 1103.09 1103.09 0.00 −2.03 1.01
w 174.13 217.66 204.65 12.93 −0.03 −0.95

MP 0.00 120.03 59.98 33.17 −0.88 0.08
CD 7.00 180.00 72.32 77.76 −1.54 0.65
CS 7.96 35.78 19.00 7.78 −1.09 0.37

Testing Dataset
(56 Observations)

C 336.38 395.74 372.42 19.23 −0.74 −0.58
FA 510.13 600.15 565.86 28.21 −0.59 −0.62
CA 1103.09 1103.09 1103.09 0.00 −2.08 1.03
w 185.01 217.66 204.83 10.58 −0.75 −0.58

MP 0.00 109.80 57.62 28.58 −1.03 0.15
CD 7.00 180.00 70.11 76.81 −1.44 0.74
FS 0.89 13.87 6.91 3.7 −1.11 0
CS 9.56 32.22 18.72 6.81 −1.32 0.24

Table 4. Characteristics of datasets for FS.

Dataset Statistics Minimum Maximum Mean Standard
Deviation Kurtosis Skewness

Total Dataset
(188 observations)

C 316.59 395.74 372.06 22.27 −0.07 −0.88
FA 480.12 600.15 564.40 33.88 −0.08 −0.88
CA 1103.09 1103.09 1103.09 0.00 −2.02 1.01
w 174.13 217.66 204.63 12.25 −0.07 −0.88

MP 0.00 120.03 59.43 31.83 −0.88 0.09
CD 7.00 180.00 72.01 77.35 −1.52 0.67
FS 0.71 20.98 8.19 4.98 −0.54 0.46
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Table 4. Cont.

Dataset Statistics Minimum Maximum Mean Standard
Deviation Kurtosis Skewness

Training Dataset
(132 Observations)

C 316.59 395.74 370.44 23.43 −0.21 316.59
FA 480.12 600.15 563.95 34.47 −0.12 480.12
CA 1103.09 1103.09 1103.09 0.00 −2.03 1103.09
w 174.13 217.66 203.74 12.89 −0.21 174.13

MP 0.00 120.03 61.50 31.56 −0.75 0.00
CD 7.00 180.00 76.43 79.04 −1.69 7.00
FS 0.71 20.98 8.73 5.35 −0.84 0.71

Testing Dataset
(56 Observations)

C 336.38 395.74 375.86 18.92 −0.28 −0.89
FA 480.12 600.15 565.45 32.73 0.12 −0.97
CA 1103.09 1103.09 1103.09 0.00 −2.08 1.03
w 185.01 217.66 206.73 10.41 −0.28 −0.89

MP 0.00 120.03 54.57 32.23 −0.91 0.42
CD 7.00 180.00 61.59 72.83 −0.90 1.02
FS 0.89 13.87 6.91 3.70 −1.11 0.00

Table 5. Use defined parameters.

Model Used
User Defined Parameters

CS FS

LR S = 0 S = 0
SVM C = 5, RBF(G = 10) C = 1.5, PUK (O = 4, S = 1)

SVM Bagging C = 10, RBF(G = 11) C = 1.5, PUK (O = 5, S = 1)
SVM Stochastic C = 1.5, PUK (O = 1, S = 1) C = 1.5, PUK (O = 5, S = 1)

GP L = 0.1 and O = 0.1 and S = 1.0. L = 0.01, O = 3 and S = 3

4. Evaluation Parameters

Evaluating parameters must be applied to the applicable algorithms in order to verify
their performance. Coefficient of correlation (CC), Mean absolute error (MAE), Root mean
square error (RMSE), relative absolute error (RAE), and Root relative squared error (RRSE)
were utilized as evaluating parameters in this study.

Coefficient of correlation (CC): The coefficient of correlation (R) was utilised as the
primary criterion to assess the effectiveness of the created models. The following equation
was used to acquire the value of CC:

CC =
y
(
∑

y
i=1 ZW

)
−
(
∑

y
i=1 Z)(∑

y
i=1 W

)√
[y ∑

y
i=1 Z2 − (∑

y
i=1 Z)2

]
√
[y ∑

y
i=1 W2 − (∑

y
i=1 W)

2
]

(5)

Root mean square error (RMSE): Mean Squared Error is the most often used method
for determining a model’s success. It is the square root of Mean-Squared-Error with the
same dimensions as the estimated values. The root mean square error (RMSE) is computed
as follows:

RMSE =

√
1
y
(∑y

i=1(W− Z)2) (6)

Mean absolute error (MAE): The mean absolute error is used to assess the accuracy of
numerical estimation. The mean absolute error (MAE) is calculated as follows:

MAE =
1
y
(∑y

i=1|W− Z|) (7)
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Relative absolute error (RAE): The relative absolute error (RAE) is a metric used to
assess the performance of a predictive model. It is calculated by using following equation:

RAE =
∑

y
i=1|Z−W|

∑
y
i=1
(∣∣Z− Z

∣∣) (8)

Root relative squared error (RRSE): It is defined as the square root of a predictive
model’s sum of squared errors normalized by the sum of squared errors of a simple model.
To put it another way, it is the square root of the Relative Squared Error (RSE) and calculated
by using formula:

RRSE =

√√√√ ∑
y
i=1(Z−W)2

∑
y
i=1
(∣∣W−W

∣∣)2 (9)

Z = Observed readings; Z = Average of observed readings; W = Predicted readings;
y = Number of readings.

Coefficient of correlation (CC) values vary from −1 to +1; the greater the CC number,
the better the anticipated outcomes. Lower the values better will be the outcomes, i.e., if
computed error is low, it predicts better output results [62].

5. Result and Discussion

To solve complex engineering problems, researchers apply a variety of machine learn-
ing techniques [63–71]. This study examined SVM, LR, and GP-based models, and the
findings from this analysis are discussed in this section.

5.1. SVM Based Assessment

PUK base function is used in this model, along with certain user-defined parameters
such as C and omega (O), and sigma (S) A large number of trials were conducted in order to
arrive at the best result, which was the greatest CC value with the least errors. The dataset
utilized in this study produced the best results with a c value of 1.5 and O = 4, S = 1. Table 6
lists the performance metrics of SVM for both the training and testing datasets. For the
training and testing phases, the CC values were 0.9110 and 0.8153, the RMSE values were
2.2287 and 3.0367, the MAE values were 1.5123 and 2.3456, the RAE values were 33.28%
and 67.87%, and the RRSE values were 41.79% and 74.13%, respectively. The agreement
plot between actual and predicted flexural strength of concrete mix is shown in Figure 1.

Table 6. Performances of SVM, GP, and LR for FS.

Approaches CC MAE RMSE RAE RRSE

Training

GP 0.9170 1.7012 2.1276 37.45% 39.90%
LR 0.8309 2.4992 2.9666 55.01% 55.64%

SVM 0.9110 1.5123 2.2287 33.29% 41.80%
SVM-Bagging 0.9149 1.596 2.1456 35.62% 40.57%

SVM-Schotastic 0.9115 1.3424 2.2013 29.96% 41.62%

Testing

GP 0.8235 2.2808 2.8527 66.00% 69.64%
LR 0.7802 2.3822 2.7717 68.94% 67.66%

SVM 0.8153 2.3456 3.0367 67.88% 74.13%
SVM-Bagging 0.8088 2.3148 2.9142 65.92% 70.05%

SVM-Schotastic 0.7815 2.4504 3.2176 69.78% 77.34%
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Figure 1. The scatter graph represents the observed and predicted FS values using SVM. (a) Training;
(b) Testing.

The radial basis function kernel (RBF kernel) is used in this model, along with certain
user-defined parameters such as C and gamma (G). A large number of trials were conducted
in order to arrive at the best result for compressive strength of concrete, which was the
greatest CC value with the least errors. The dataset utilized in this study produced the
best results with a c value of 5 and a Gvalue of 10. Table 7 lists the performance metrics of
SVM for both the training and testing datasets. For the training and testing phases, the CC
values were 0.9545 and 0.945, the RMSE values were 2.3289 and 2.2908, the MAE values
were 1.2472 and 1.7305, the RAE values were 18.33% and 28.46%, and the RRSE values
were 30.04% and 33.93%, respectively. The agreement plot between actual and predicted
compressive strength of concrete mix is shown in Figure 2.

Table 7. Performances of SVM, GP, and LR for CS.

Approaches CC MAE RMSE RAE RRSE

Training

GP 0.9704 1.2800 1.8734 18.82% 24.17%
LR 0.8745 3.0323 3.7593 44.58% 48.50%

SVM 0.9545 1.2472 2.3289 18.34% 30.04%
SVM-Bagging 0.9636 1.4074 2.113 20.69% 27.25%

SVM-Schotastic 0.9593 1.2541 2.1936 18.43% 28.29%

Testing

GP 0.9429 1.8728 2.4377 30.80% 36.11%
LR 0.8712 2.6909 3.3921 44.26% 50.24%

SVM 0.9450 1.7305 2.2908 28.46% 33.93%
SVM-Bagging 0.9404 1.7678 2.3477 29.07% 34.77%

SVM-Schotastic 0.9462 1.8104 2.343 29.77% 34.70%

Tables 6 and 7 presents analytical performance measures for training and testing
datasets to aid in the evaluation of proposed models for FS and CS of concrete, respectively.
To achieve a precise performance, the CC should be close to one and the RMSE and MAE
values should be close to zero. The SVM algorithm predicts compressive strength better
than flexural strength with higher CC (0.9450) value.

Tables 6 and 7 show that when SVM, SVM-Bagging, and SVM-Stochastic were evalu-
ated, SVM-Stochastic is more reliable for predicting compressive strength with highest CC
value of 0.9462.
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Figure 2. The scatter graph represents the observed and predicted CS values using SVM. (a) Training;
(b) Testing.

5.2. GPs Based Assessment

Gaussian Processes are a type of regression that uses a PUK function and certain
user-defined parameters such as L, omega (O) and sigma (S). Several experiments were
conducted in order to arrive at the optimal value, which was the maximum CC value with
the lowest errors. The dataset utilized in this investigation yielded the best results with L
values of 0.01, O = 3 and S as 3. Table 6 lists the performance metrics for both the training
and testing datasets for general practice. The CC values for the training and testing phases
were 0.9170 and 0.8235, respectively, with RMSE values of 2.1276 and 2.8527, MAE values of
1.7012 and 2.2808, RAE values of 37.44% and 66%, and RRSE values of 39.90% and 69.63%.
Figure 3 depicts the agreement plot between the actual and predicted flexural strength of
concrete mix.
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Figure 3. The scatter graph represents the observed and predicted FS values using GP. (a) Training;
(b) Testing.
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The dataset utilized in this investigation yielded the best results with L values of 0.1
and O as 0.1 and S as 1.0. Table 7 lists the performance metrics for both the training and
testing datasets for general practice. The CC values for the training and testing phases were
0.9704 and 0.9429, respectively, with RMSE values of 1.8734 and 2.4377, MAE values of
1.28 and 1.8728, RAE values of 18.81% and 30.80%, and RRSE values of 24.16% and 36.10%.
Figure 4 depicts the agreement plot between the actual and predicted compressive strength
of concrete mix.
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Figure 4. The scatter graph represents the observed and predicted CS values using GP. (a) Training;
(b) Testing.

5.3. LR Based Assessment

LR based model predict the relationship between two variables or factors. The results
of Table 6 show the linear regression model technique for flexural strength for both training
and testing dataset Figure 5 is the graphical representation of actual versus predicted
flexural strength with coefficient of correlation CC is 0.7802, RMSE is 2.7717, MAE is 2.3822,
RAE is 68.93% and RRSE is 67.66%, for testing dataset as listed in Table 6. Equation (10)
was developed by LR algorithm from Weka 3.9.5 for the prediction of flexural strength
of concrete.

FS = 0.0563× curing days + 4.4332 (10)

LR based model predict the relationship between two variables or factors. The results
of Table 7 show the linear regression model technique for the compressive strength for
both training and testing dataset. Figure 6 is the graphical representation of actual versus
predicted compressive strength with coefficient of correlation CC is 0.8712, RMSE is 3.3921,
MAE is 2.6909, RAE is 44.26% and RRSE is 50.24%, for testing dataset listed in Table 7.
Equation (11) was developed by LR modelling through Weka 3.9.5 for the prediction of
compressive strength for a given set of data.

CS = −0.0164 ∗Marble Powder(kg/m3) + 0.087 ∗ Curing Days + 13.6919 (11)
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Figure 5. The scatter graph represents the observed and predicted FS values using LR. (a) Training;
(b) Testing.
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Figure 6. The scatter graph represents the observed and predicted CS values using LR. (a) Training;
(b) Testing.

6. Comparison

Various machine learning approaches were used in this research. When these models
are compared, it appears that the GP model outperforms the others for both training and
testing datasets for FS. Figure 7 represents the scatter plot for the observed and predicted FS
values using SVM, GP, and LR. Table 6 indicate that the GP model has the greatest CC value
for both training and testing datasets for FS, i.e., 0.9170 and 0.8235, respectively, as well as
the lowest error values, i.e., MAE (2.2808) and RAE (66%), for the testing dataset. It can be
seen from Figure 8 that the error band width is lesser in GP based model as compared to
other applied models for the prediction of FS of concrete mix [63]. Figures 1, 3 and 5 for
the SVM, GP, and LR testing models show that the GP model has a high correlation with
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the maximum R2 value for the flexural strength of concrete, whereas Figures 2, 4 and 6
for the SVM, GP, and LR testing models show that the SVM-Stochastic model has a high
correlation for the compressive strength of concrete.
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Figure 7. The scatter graph represents the observed and predicted FS values using SVM, GP, and LR.
(a) Training; (b) Testing.
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Figure 8. Error comparison between SVM, GP, and LR, for FS.

Figure 9 represents the scatter plot for the observed and predicted compressive
strength values using SVM, GP, and LR. Table 7 indicate that the SVM model has the
greatest CC value for testing datasets for the compressive strength, i.e., 0.9450, as well as
the lowest error values, i.e., MAE (1.7305), RMSE (2.2908), RAE (28.46%) and RRSE (33.93%)
for the testing dataset. It can be seen from Figure 10 that the error band width is lesser in
SVM based model as compared to other applied model for the prediction of CS of concrete
mix. Figure 11 represents the scatter plot between no. of observation and ratio of actual and
predicted strength. It shows that SVM-Schotastic based model is reliable for compressive
strength prediction followed by SVM [64] as compared to GP model for flexural strength
because the values are more scatter in the ratio of actual and predicted flexural strength.
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Figure 9. The scatter graph represents the observed and predicted CS values using SVM, GP, and LR.
(a) Training; (b) Testing.
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Figure 11. Scatter plot between No. of observation and ratio of actual and predicted strength for
testing dataset.
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In addition to the actual value, quartile values of 25%, 50%, and 75% were assessed for
the evaluation of FS and CS of concrete containing marble powder, as shown in Table 8.
The inter quartile range (IQR) of SVM-Schotastic and SVM Bagging is closer to the IQR of
real data, as seen in Figures 12 and 13 for FS and CS, respectively.

Table 8. Statistics of actual and predicted CS and FS values of testing dataset using various soft
computing techniques.

Investigated
Property Statistic GP LR SVM SVM Bagging SVM Schotastic Actual

Flexural Strength

Minimum 1.60 4.83 1.43 1.49 0.88 0.89
Maximum 19.18 14.56 19.40 19.67 19.40 13.87

1st Quartile 4.01 4.83 3.59 4.19 3.72 3.82
Mean 7.81 7.90 7.66 7.92 7.96 6.91

3rd Quartile 12.40 14.56 11.90 13.09 11.87 10.54
IQR 8.40 9.74 8.31 8.90 8.15 6.71

Compressive
Strength

Minimum 8.85 12.50 8.85 9.23 8.80 9.56
Maximum 31.84 29.03 31.83 31.90 31.91 32.22

1st Quartile 13.19 13.84 13.33 13.36 13.19 12.61
Mean 19.00 18.84 18.72 18.68 18.83 18.71

3rd Quartile 26.37 27.89 26.06 25.66 26.66 24.55
IQR 13.17 14.05 12.73 12.29 13.46 11.94
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7. Sensitivity Analysis

Using sensitivity analysis, the most significant factor among input factors for pre-
dicting the CS and FS with WMP was determined. Since GP and SVM-Schotastic model
performed the best among the other models for FS and CS for this dataset, sensitivity
analysis was carried out on it by changing the input combination and taking out one
input parameter at a time, as shown in Tables 9 and 10. Statistical assessment metrics
such as CC, MAE, and RMSE were used to assess each model’s performance [72–82].
Tables 9 and 10, demonstrates that the number of curing days followed by CA, C, w and
MP is critical in predicting the flexural and compressive strength of a concrete mix. Due to
the pozzolanic reactions, concrete recovers 60% of its strength after 7 days of curing and
increases by 99% after 28 days, resulting in a low CC value after removing the aforemen-
tioned characteristic [76–79]. The pozzolanic reaction is a slow process, and as the curing
period lengthens, the amount of gel produced in the mix increases, resulting in greater
strength [65]. Hydration products form when water is added to cement mixes, filling gaps
between aggregate particles and increasing the density and strength of the concrete.

Table 9. Sensitivity analysis results using a GP-based model for FS.

Removed Parameter
GP Based Model

CC MAE RMSE

- 0.8235 2.2808 2.8527
CD 0.0900 3.5782 4.2731
CA 0.8235 2.2808 2.8527
C 0.8251 2.2193 2.7812
w 0.8251 2.2193 2.7811

MP 0.8263 2.112 2.7555
FA 0.8335 2.1823 2.7226
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Table 10. Sensitivity analysis results using SVM-based model for CS.

Removed Parameter
SVM-Schotastic Based Model

CC MAE RMSE

- 0.9462 1.8104 2.3430
CD 0.0872 5.8869 7.2242
C 0.9440 1.8569 2.4131
W 0.9443 1.8504 2.4066
FA 0.9459 1.7980 2.3270
MP 0.9461 1.7495 2.3227
CA 0.9462 1.8104 2.3430

8. Conclusions

This study compared the CS and FS using WMP by three machine learning techniques:
SVM, LR, and GP based models. CC, MAE, RMSE, RAE, and RRSE were applied to evaluate
the performance of these models. The following is a summary of the study’s findings:

The GP and SVM model’s results were shown to be the best for predicting concrete
flexural and compressive strength of concrete mix, respectively. For the testing dataset,
GP predicts better outcomes followed by SVM with CC values of 0.8235 and 0.8153, lower
MAE values of 2.2808 and 2.3456, and lower RMSE values of 2.8527 and 3.0367, respectively,
for flexural strength of concrete. SVM-Schotastic predicts better results with CC values
of 0.9462, lower MAE values of 1.8104 and lower RMSE values of 2.3430 for compressive
strength of concrete. The scatter plot reveals that the GP and SVM-Schotastic has the
smallest error band width and is a strong match for predicting flexural and compressive
strength as output, respectively.

In comparison to input factors for this data set, the number of curing days followed
by the CA, C, w and MP is essential in predicting the flexural and compressive strength
of a concrete mix for this data set. These findings are restricted to a 0–20% cement sand
substitute with marble powder. Additionally, CD is a more sensitive parameter, and some
further investigation is warranted. In addition, Tables 9 and 10 demonstrate that CA, C, FA,
MP and w have minimal effects on CC. This indicates that additional study is required to
examine the input variables.
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Abbreviations

ANFIs Adaptive neuro-fuzzy inference system
AI Artificial intelligence
ANN Artificial neural networks
C Cement
CA Coarse aggregate
CC Coefficient of correlation
CS Compressive strength
CD Curing days
FA Fine aggregate
FS Flexural strength
GP Gaussian Process
GMDH Group method of data handling
LF Lime filler
LR Linear regression
MP Marble powder
MAE Mean absolute error
NNT Neural networks
RF Random Forest
RT Random tree
RAE Relative absolute error
RMSE Root mean squared error
RRSE Root relative squared error
SG Specific Gravity
SVM Support vector machine
w Water
WMP Waste marble powder
WA Water absorption
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