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Abstract: The rapid wear of conical picks used in rock cutting heads in the mining industry has
a significant economic impact in cost effectiveness for a given mineral extraction business. Any
mining facility could benefit from decreasing the cost along with a substantial durability increase
of a conical pick; thus, the hardfacing method of production and regeneration should be taken into
account. In order to automatize the regeneration, the wear rate assessment is necessary. This paper
presents a methodology used to create a 3D photogrammetric model of most of the commercially
available tangential-rotary cutters in their before and after abrasive exploitation state. An experiment
of three factors on two levels is carried out to indicate the proper setup of the scanning rig to obtain
plausible results. Those factors are: light level, presence of polarizing filter and the distance from
the scanned object. The 3D scan of the worn out specimen is compared to the master model via
algorithm developed by the authors. This approach provides more detailed information about the
wear mechanism and can help either in roadheader cutting head diagnostics or to develop a strategy
and optimize the toolpath for the numerically controlled hardfacing machine.

Keywords: conical pick; photogrammetry; mining; hardfacing; photogrammetric method

1. Introduction

Wear of any kind of industrial tool is an inevitable phenomenon. The tools are
subjected to many divergent wear mechanisms [1], depending mainly on the material
selection and working environment [2]. The mining industry can be considered to be one
of the extreme cases, considering the high loads and abrasive conditions to which the
“end tools” are subjected. Considering tool wear measurement, one can stumble upon
many approaches. Some of them are based on measurement of the response for a vibratory
excitation [3,4]; others utilize mass measurement or harness a vision system [5].

A conical pick (sometimes named “tangential-rotary cutter”) is a good example of
a mining tool, designed to withstand harsh working conditions and crush hard rocks,
yet it still tends to lose its primal shape and durability after a certain operational period.
Replacement of the tool is problematic and expensive, but is sometimes needed even after a
few hours of work, which leads to the need for remanufacturing of the tool [6,7]. The main
challenge of the regeneration process of worn out tools at the first stage is the difficulty
of classifying its wear rate and deciding whether the tool can still be in use or should be
discarded. Whenever the cavities are excessive, it is crucial to determine the possibility of
regeneration. If the particular pick is suitable for reconstruction, the next step is to develop
a strategy for fabrication of a hardfaced coating [8]. This process is usually performed by
skilled welders manually; however, today one can incorporate a numerically controlled
hardfacing machine.

Previous research such as [9–11] proposes a method to define the C2 parameter which
determines the wear rate that relies on the conical pick’s loss in weight after the machine
tool process. The method consists of disassembly of picks and measurement of their
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mass and the volume of output cut material obtained during the work of picks subjected
to testing.

Using only a weighing sensor and measurements of the cut mineral makes it a suitable
method of obtaining the parameter for rough analysis in difficult environment conditions
such as mining facilities. This, however, does not bring about any further information on
spatial deformation but only on the overall wear when compared to the master model,
which can be misleading, especially during analysis of tools that have local cavities corre-
lated to tools that have uniform abrasions (Figure 1). The products of plastic deformations
of the working part can still be attached to the pick’s body; therefore, theoretically, they can
also add distortions to the mass measurement. Additionally, the tungsten carbide tip can
have up to double the density of the steel, which can make mass measurements even less
informative [12].
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In [13], the quality assessment procedure for picks was presented. Apart from cal-
culating the C2 parameter, classification takes into account other criteria. Some of the
measurements described in the paper require laboratory conditions; therefore, this process
cannot be conducted in a difficult environment.

The next method of determining wear level is to analyze the mining power consump-
tion signal [14]. The classification is carried out with the use of a wavelet transform for
noise reduction of measurement data of the mining power signal and artificial intelli-
gence. Despite the results being satisfactory, attention should be paid to selection of the
base wavelet, which influences the obtained final results. This means that every sample
should be analyzed by a person who should decide on the mathematical operator of the
calculations, which can complicate the process.

Another method of obtaining the digital parameters of tool wear is image process-
ing [15,16]. This gives some or all of the information that can be gathered by the human
eye, creating a digital model that can be processed further on. For an industrial company
that has the possibility to conduct LIDAR scanning, such a model can be obtained using the
methodology described in [17–19]. However, this type of measurement uses the method
of physically hitting a model’s feature with light and measuring the reflection so that the
texture of the object is not included in the results.

The solution to this problem that was chosen by the authors is the usage of a pho-
togrammetry process that relies on images captured by a camera to reconstruct the 3D
model coordinates using image overlap [20]. The photogrammetric model method brings
forth enough information for conical picks regeneration, as the output data include infor-
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mation about local cavities of the operating part, its texture and its ability to be automated.
This method does not require any expensive equipment or personnel training.

There are many photogrammetric methods, but one can distinguish three main ones
considering the dynamic of an object that is projected and the cameras that are needed for
image acquisition [21]:

• Static object, many cameras are triggered at the same moment, placed around the object;
• Static object, one camera moving around the object while taking pictures;
• Rotating object, static camera.

The authors have chosen the last method because of feasibility of the automation
and low cost of the module capture setup. Data acquisition for photogrammetry should
be conducted in a controlled environment [22–24] to ensure that the image quality is not
influenced by factors such as extensive light, transparent surfaces, light reflections and
surrounding objects. To do so, the choice of light source should be adapted to the object
surface as well. It is best when the object diffuses light which is common as the outcome of
the object’s roughness. For metallic surfaces that can reflect light easily, the source light
should be uniform and diffused [25]; additionally, cross-polarization and chromatic filters
may enhance the results [26–28]. The baseline/distance ratio, i.e., the distance between
two camera positions to the distance between the camera to the object ratio should be
between 1/15 and 1/20 [29]. Crucial parameters that have a great impact on the suitability
for photogrammetric synthesis are:

• Exposure time (shutter speed);
• Aperture;
• Depth of field;
• Sensitivity of light to camera (ISO).

Those parameters should be selected as a compromise, to result in capturing sharp
images that are the appropriate input for the processing algorithm. The use of a tripod
usually facilitates the process, especially for underexposed objects or long exposure time
camera settings. The aperture parameter and shutter speed should be set according to ISO,
the value of which should be the lowest possible to avoid digital noise in the images.

In the current study, the authors attempt to build a low-cost photogrammetric scan-
ning setup for conical picks and estimate the process capabilities and general robustness,
where the main goal of this paper is to develop and study a potential pick wear assess-
ment algorithm scheme. The acquired data can serve many purposes, both as a practical
tool for mining consumable evaluation and regeneration and as a mathematical model
verification benchmark. The results of the scanning can be compared with the numerical
models, such as EDEM approach by Liu et al. [30] or the peak cutting force model built by
Kuidong et al. [31] or other tangential-rotary cutter theoretical approaches [32–39]. All of
the cited research could benefit from introducing the method of confirmation of calculated
mechanical properties with the output geometry of an exploited tool, existing in reality.

In the following sections, the authors describe the studied conical picks at various
stages of wear and the scanning setup, both from the hardware and software point of view.
Afterwards, the aligning and scaling algorithm is presented and tested on the divergent
geometry. Lastly, the authors test robustness of their method with the help of the Taguchi
Orthogonal Arrays design, in which they estimate which factor (light level, presence of
polarizing film and the distance from camera to scanned object) has the biggest impact on
the process stability.

2. Materials and Methods
2.1. Studied Specimen

In this study, the authors examine road cutting conical picks, manufactured from
34CrMo4 steel with geometry that is compliant with Figure 2. The tool in Figure 3 noted as
CP0 is a brand-new pick, which will serve as a reference specimen for the degraded tools
which had contact with abrasive rock.
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Figure 3. Image of all inspected conical pick specimens. The authors annotated them in the following
manner: (a)—CP0 (master model), (b)—CP1, (c)—CP2, (d)—CP3, (e)—CP4.

2.2. Measurement Setup

The setup consisted of the phone camera, motorized turntable and the lightbox
(Figure 4) and a computer with the required software installed.

Materials 2022, 15, x FOR PEER REVIEW 5 of 17 
 

 

 
  

(a) (b) (c) 

Figure 4. Measurement setup: (a)—lightbox, (b)—turntable, (c)—phone stand with 3D printed 
holder. Please note that the above images present a pre-hardfaced pick, which is not included in 
this study. 

In order to ensure the stable movement with constant velocity, the authors designed 
and manufactured a special rotary mount. This turntable was built from a stator base, a 
bearing and a belt-driven rotor pick holder. The motion was created by a bipolar stepper 
motor, controlled by a TMC2208 stepper driver (Trinamic GmBH, Hamburg, Germany), 
connected to an Arduino Nano microcontroller (Arduino, Sommerville, USA). The pick 
holder was rotating at n = 0.6 rot/min. The golden and silver symbols on each of the 12 
walls of the rotor holder serve as the reference pattern for the 3D reconstruction algo-
rithm—if the reader was to rerun the experiment, he can apply any kind of non-repeating 
pattern. That pattern brings forth an especially valuable contribution when one scans a 
reflective and undeformed revolving solid. 

2.3. Data Acquisition 
Instead of image acquisitions, the authors decided to capture a video and split it into 

60 frames. The video clip was captured with a 12.2 MP Sony IMX333 sensor (Sony, To-
kyo, Japan), integrated in a Samsung Galaxy S8 smartphone (Samsung, Suwon, South 
Korea). The authors did not use the Samsung proprietary video-capturing software due 
to the possible presence of unknown filters and video enhancements; instead, they uti-
lized IVCam software (e2esoft, Shanghai, China) and the capture was executed via a cli-
ent installed on the computer. Measurement series were conducted using groups of pa-
rameters of values from the settings limit in Table 1. Selected parameters groups are de-
scribed in Section 2.4. 

Table 1. Camera and setup limits. 

Light Level 
[lux] 

Shutter [s] ISO 
Distance from 

Camera to Object 
[mm] 

Polarizing 
Filters 

Aperture 

102–288 1/1000–1/20 200 155–250 yes/no f/1.7 

2.4. Image Processing 
The authors used open-source software Meshroom, version 2021.1.0 (AliceVision 

Association, Paris, France) to obtain 3D models. It is a program based on the AliceVision 
framework with a specific pipeline for a project. Single steps of the pipeline consist of 3D 
model calculating algorithm steps: 

Figure 4. Measurement setup: (a)—lightbox, (b)—turntable, (c)—phone stand with 3D printed holder.
Please note that the above images present a pre-hardfaced pick, which is not included in this study.



Materials 2022, 15, 5783 5 of 16

In order to ensure the stable movement with constant velocity, the authors designed
and manufactured a special rotary mount. This turntable was built from a stator base, a
bearing and a belt-driven rotor pick holder. The motion was created by a bipolar stepper
motor, controlled by a TMC2208 stepper driver (Trinamic GmBH, Hamburg, Germany),
connected to an Arduino Nano microcontroller (Arduino, Sommerville, MA, USA). The
pick holder was rotating at n = 0.6 rot/min. The golden and silver symbols on each of
the 12 walls of the rotor holder serve as the reference pattern for the 3D reconstruction
algorithm—if the reader was to rerun the experiment, he can apply any kind of non-
repeating pattern. That pattern brings forth an especially valuable contribution when one
scans a reflective and undeformed revolving solid.

2.3. Data Acquisition

Instead of image acquisitions, the authors decided to capture a video and split it into
60 frames. The video clip was captured with a 12.2 MP Sony IMX333 sensor (Sony, Tokyo,
Japan), integrated in a Samsung Galaxy S8 smartphone (Samsung, Suwon, South Korea).
The authors did not use the Samsung proprietary video-capturing software due to the
possible presence of unknown filters and video enhancements; instead, they utilized IVCam
software (e2esoft, Shanghai, China) and the capture was executed via a client installed on
the computer. Measurement series were conducted using groups of parameters of values
from the settings limit in Table 1. Selected parameters groups are described in Section 2.4.

Table 1. Camera and setup limits.

Light Level [lux] Shutter [s] ISO
Distance from

Camera to
Object [mm]

Polarizing
Filters Aperture

102–288 1/1000–1/20 200 155–250 yes/no f/1.7

2.4. Image Processing

The authors used open-source software Meshroom, version 2021.1.0 (AliceVision
Association, Paris, France) to obtain 3D models. It is a program based on the AliceVision
framework with a specific pipeline for a project. Single steps of the pipeline consist of 3D
model calculating algorithm steps:

• Natural feature extraction [40–44];
• Image matching [45];
• Features matching [46];
• Structure from motion [47];
• Depth maps estimation [48];
• Meshing [49];
• Texturing [50].

The first step was to extract 60 frames from captured videos. To do so, authors
prepared the MATLAB (MathWorks, Natick, MA, USA) script that enabled saving images
in a certain directory. Afterwards, a new project in Meshroom was created and the images
saved were determined as the input for the algorithm.

The results of consecutive steps are presented in Section 3. The final step was to
save the 3D model of the working part of the scanned picks in .stl format and analyze its
geometry in the MATLAB environment (Section 2.5).

2.5. Statistical Analysis

The optimization process was planned as presented in Table 2. The first step was to
choose appropriate parameter values for parametric analysis. The ISO value of 200 was
set a priori and the light levels were set with the use of LED lights switch. The rest of the
parameters were selected accordingly, for two of the light levels as in Table 3. The light
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level was measured at the position of the conical pick’s tip with the GH59-14759A light
sensor.

Table 2. Experimental scenarios.

Run Light Level Distance from
Camera to Object Polarizing Filters

1 − − −
2 − − +
3 − + −
4 − + +
5 + − −
6 + − +
7 + + −
8 + + +

Table 3. Camera and setup settings.

Light Level [lux] Distance from Camera
to Object [mm]

Polarizing Filters
Included

Lower limit (−) 102 155 No
Upper limit (+) 288 250 Yes

The impact of light level, distance to object and polarizing filter was analyzed by
performing eight tests on the master model to choose optimal settings for the process.
Optimization consisted of analysis of the influence of three factors with two levels (L8) on
the resulting output function values that determined the model quality.

The process was optimized for best output model accuracy. For this purpose:
The algorithm for cavities classification was made and objective Function (1) was

constructed for maximization target.

f
(
ni, np, a

)
=

ni
N

+
np

Pmax
+ am, (1)

where:

ni—number of images classified as proper, N ≥ ni ≥ 0;
N—number of all input images, N = 60;
np—number of characteristic points matched, Pmax ≥ ni ≥ 0;
Pmax—number of maximal amount of characteristic features matched points achieved;
am—accuracy of the 3D model, am ⊂ {0; 0.5; 1}.

The am parameter was determined by the authors following the rules: if the 3D model
properly projects the geometry of the conical pick and is the suitable input for the wear
classification algorithm, the am value is equal to 1. If it is conditionally suitable, the am
value is equal to 0.5. If the model is improper, the am value is equal to 0.

2.6. Wear Classification

Five samples of conical picks after exploitation were evaluated. Their 3D models
were examined in the geometry analysis process. Their symmetrical wear was stated (2)
as below.

S =

{
1; σA ≤ 0.3AM
0; σA > 0.3AM

, (2)

where:

S—symmetry determinant;
σA—standard deviation of cross-sections of 3D model;
AM—area of the cross-section of the master model.
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3. Results
3.1. Parametric Optimization

The parametric optimization process for obtaining the model of the conical pick
resulted in the eight 3D models presented in Table 4. In Table 5, the properly and improperly
projected picks are presented. Observations of output are described below:

• Run 3, 7—geometry projected on a plane, cameras detected improperly. In both runs,
image is far from camera.

• Run 1, 5—geometry is generally proper, the carbide part has geometry artifacts from
the reflected line as it is smooth material.

• Run 4, 8—no valid initial pair found automatically.
• Run 2, 6—geometry is proper.

Table 4. Parametric optimization results.

Run Light
Level (A)

Distance
(B)

Polarizing
Filter

(C)

Randomized
Trial

[-]

Images
Classified

ni

Points
Matched

np

Accuracy
am

Objective
Function

fi

SNi

1 − − − 1 60 5806 0.5 2.5 7.9588
2 − − + 6 60 3050 1 2.525 8.0452
3 − + − 4 59 886 0 1.136 1.1076
4 − + + 8 0 0 0 0 −100
5 + − − 2 60 5529 0.5 2.452 7.7904
6 + − + 5 60 5262 1 2.906 9.2659
7 + + − 3 60 734 0 1.126 1.0308
8 + + + 7 0 0 0 0 −100

Table 5. Properly projected geometry, f = 2.525; improperly projected geometry, f = 1.126.
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2
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• Calculation of signal to noise ratio according to the rule “the-larger-is-better”:

SNi = −10 ∗ log10

∑n
1

(
1

Y2

)
n

(3)

• Calculation of impact of each factor on the subjective function value:

F(A) =
f 5 + f 6 + f 7 + f 8

4
− f 5 + f 6 + f 7 + f 8

4
= 0.0807

F(B) =
f 3 + f 4 + f 7 + f 8

4
− f 5 + f 6 + f 1 + f 2

4
= −2.0303

F(C) =
f 2 + f 4 + f 6 + f 8

4
− f 1 + f 3 + f 5 + f 7

4
= −0.4458

• Calculation of the resistance of each factor to noise:

SN(A) =
SN5 + SN6 + SN7 + SN8

4
− SN5 + SN6 + SN7 + SN8

4
= 0.2439

SN(B) =
SN3 + SN4 + SN7 + SN8

4
− SN5 + SN6 + SN1 + SN2

4
= −57.7305

SN(C) =
SN2 + SN4 + SN6 + SN8

4
− SN1 + SN3 + SN5 + SN7

4
= −50.1441

Parametric optimization results are shown in Figure 5 and the parameters’ influence
on the objective function value is shown in Figure 6.
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3.2. Features Extraction

Individual model features were determined using MATLAB scripts to perform calcu-
lations on the .stl models. The first step was to center the data (3D points cloud) at zero.
Next, the direction of most variance and rotation of the data was found to align it to the Z
axis and translate it afterwards so that all of the data points are aligned so that z values are
greater than 0 (Figure 7).

As can be seen in Figure 7, the resulting geometry may have a different orientation
along the X axis. To change the pick’s position so that the carbide has the X coordinate
equal to 0 and the rest of its geometry lies on the right side of the axis, linear regression of
density in the domain of the X coordinate was calculated and the slope value was checked.
If a model is represented by regression with a slope value bigger than zero, all of the points
were rotated along the Y axis (Figure 8).
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The next step was to find the X axis coordinate of the pick’s holder end and then to
scale the model. It was made using calculation of data point density and the scale factor
comparing maximal diameter values of the holder and its projected geometry (Figure 9).
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Figure 9. Scaled and cropped data points; (a)—master model, (b)—pick after exploitation.

The symmetry was calculated for 37 areas of cross-sections of the model with 10◦

of difference between: φ = [0◦, 10◦, . . . , 350◦, 360◦]. The 2D boundary of the model was
determined and its area was calculated. Additionally, the plastic deformation area was
defined, determining each sum of cross-section boundaries of the master and the rest of the
picks (Figure 10). Afterwards, the difference between the summed boundary and the pick’s
original boundary was calculated (Table 6). Figure 11 presents the aggregated results for
the examined picks.
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Figure 10. The difference between the minimal and maximal cross-section area of the scanned picks.
(a) shows the min/max cross-sectional area of CP01 pick, (b) of CP02, (c) of CP03 and (d) of CP04.
Their physical representation is shown in Figure 3.

Table 6. Table containing the calculated data regarding the examined picks. The S parameter is a
Boolean value assigned according to set threshold—in this case, the authors set the critical value
at 3%. The threshold value may vary in the case of different tool geometry. The maximum plastic
deformation coefficient calculates the area of surplus material, exceeding the contour of the master
model cross-section.

Pick Mean [cm2] Std Dev. [cm] Max. Plastic Def.
Area [cm2]

Max. Area Diff.
[cm2]

Area Diff. as a Part
of Mean Area [%]

S (Symmetrical
Parameter)

CP0 19.869 0.03048 0 0.1080 0.5 1
CP1 18.911 0.038211 0 0.1480 0.7 1
CP2 18.496 0.11077 0 0.3470 1.9 1
CP3 18.416 0.22452 0 0.6360 3.5 0
CP4 17.791 0.48366 0.4910 1.3490 7.5 0
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Cross-section boundary points of the pick nr 4 are considered to be worn out and are
not suitable for regeneration.

As expected, the CP0, being the reference specimen, has low deviation and the highest
average cross-section value. The eccentrically placed mean value (red line) in the CP2, CP3
and CP4 provides information about the asymmetrical wear of the picks. The bigger the
box, the bigger the value of asymmetry.

4. Discussion

The scanned conical picks are typical examples of a set of tools removed during
maintenance of the cutting head. If they were to be rated for their further usability, one
could divide them among subsequent categories:

• Eligible for use: CP0, CP1;
• Eligible for hardfacing: CP0, CP1, CP2;
• Catastrophic wear: CP3, CP4.

The photogrammetric measurement of volume followed by the symmetry assessment
script provides plausible results, especially considering its low cost and high reliability.
The authors believe that implementing this method in the mining repair plants could be
beneficial indeed. This approach could also serve as a basic quality control unit in a mining
tool factory or another facility which manufactures parts with an axis of symmetry. Yet, it is
noteworthy to consider the surface roughness (or reflectiveness, to be more precise) of the
scanned part. The very reflective, polished objects with the Ra parameter below 2.5–5 µm
cause some issues, namely, unexpected bumps or cavities in the place of a very bright spot.
The solution for those issues is either to have those surfaces dulled with talc or another
powder or to incorporate a different method for obtaining the 3D geometry.

Overall, this approach to tool wear characterization is relatively easy to use and
provides much information about the wear mechanism. The current algorithm used in
this paper will be applicable only to objects which are solids of revolution, since one of
the steps is to find the axis of symmetry and align scanned objects according to the found
axis. Nevertheless, after some modifications, a similar approach can be utilized to assess
the wear rate (or even metrological compliance of the physical object with the designed
virtual model) of other tools or parts. The setup that the authors used was supposed to be
affordable for most populations, thus some efficiency-related concerns were a trade-off. Yet,
increasing the efficiency is theoretically simple, since one has only to add more cameras to
capture the images “at once”, with little to no scanned object rotation.

One of the strengths of the current setup is that it separates the scanned object from
the environment, being a method of scanning which is—quite literally—as robust as the
walls of the lightbox. On the other hand, the necessity of the lightbox limits the maximum
size of the scanned part.

5. Conclusions

Described methods of classification of the picks’ wear are presented in the table
below (Table 7).

Table 7. Limits of the methods of classification of the picks’ wear and its features.

Type of Scanning Method Implementation in a
Difficult Environment Automation Possibilities Enough Output Data

for Regeneration

C2 parameter + + −
Parametric factors − − +

Fuzzy neural network + +/− −
LIDAR measurements + +/− −

Photogrammetric model + + +
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By analyzing the presented methods from previous research, it can be stated that the
parametric factors method is not suitable to be implemented in harsh conditions, i.e., in
mining factories. The parametric factors method consists of laboratory measurements,
including microscopic image analysis, which cannot be conducted in such conditions.
Parametric factors, LIDAR and fuzzy neural network methods are not feasible to automate
because of the large number of various processes included when it comes to the parametric
factors method and the need for selection of the mathematical operator for a sample
when it comes to the neural network method. The LIDAR method does not bring forth
information about texture that can be the input for the algorithm of classification. The
crucial disadvantage of this method is the poor availability of equipment compared to
photogrammetry. The chosen method tends to be universal, as it can be performed using a
phone camera. The C2 parameter assessment is still the quickest approach to conical pick
wear rate evaluation; nevertheless, it does provide the user only with basic information
about the wear characteristics.

The most influential of the studied parameters appeared to be the distance between
the camera and the object. Nevertheless, the distances in this study were adjusted to the
quality and focal point of the particular lens. Having an image-capturing device with a
lens able to zoom in without any image distortion, the distances could vary significantly.
The presence of the polarizing filter appeared to decrease the number of bright reflections,
which resulted in 3D reconstructions with greater fidelity.

The goal of further work is to reduce the scanning and data processing time. Addi-
tionally, the authors plan to build a portable scanning device, which will enable the mining
company maintenance team to gather the data on-site. This task, however, would require
some extra steps in order to meet the requirements of underground heavy industry, e.g.,
a dustproof casing, spark-proof design of the drive and electronics and perhaps a conical
pick initial cleaning device.

Another goal for future study might be connected with the advantage of photogram-
metry over LIDAR or other laser-based scanning techniques, namely, the texture analysis.
Since photogrammetry provides some otherwise lost information on the color of the surface
of the scanned object; the textured 3D file could be subjected to more sophisticated analysis,
such as hardfaced material overheat detection. Another great use of the method studied
by the authors is the possibility to scan and instantly send a 3D textured file to a locally
unavailable wear expert for analysis.

The algorithm, after development, could also serve as a low-cost linear and angular
measurement system for the manufactured tools. In the case of conical picks, the geometry
of the working part makes it difficult to utilize conventional means of measurement.
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