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Abstract: Sodium bismuth titanate (Bi0.5Na0.5TiO3, BNT) has attracted much attention because of its
excellent dielectric, piezoelectric and electromechanical properties. The microstructure of sodium
bismuth titanate-doped ferrum niobium material (Bi0.5Na0.5TiO3 doped (Fe0.5Nb0.5)4+, BNT-xFN)
shows a triangle as its typical defect shape. Since piezoelectric devices usually operate under dynamic
loads, they fail easily owing to dynamic stress concentration or dynamic fracture. Elastic waves can
simulate many types of dynamic loads, and the dynamic stress concentration caused by an anti-plane
shear wave is the basis for the calculation of the stress field strength factor of type III-dynamic
fractures. In this study, the electroelastic coupled-wave diffraction and dynamic stress concentration
of BNT-xFN materials with triangular defects under the incidence of anti-plane shear waves were
studied. Maxwell equations are decoupled by auxiliary functions, and the analytical solutions of the
elastic wave field and electric field are obtained. Based on the conformal mapping method, the triangle
defect was mapped to the unit circle defect, and the dynamic stress concentration coefficient around
the triangle defect was obtained by calculating the undetermined mode coefficients in the expression
through boundary conditions. The numerical calculation shows that the size of the triangular hole,
the frequency of the applied mechanical load, the incidence angle of mechanical load and the amount
of FN doping have a great influence on the stress concentration of BNT-xFN materials.

Keywords: ferrum niobium ion; electroelastic wave; triangular defect; dynamic stress concentration
factor; FN doping fraction

1. Introduction

Piezoelectric materials exhibit a mechanical response to electrical inputs, or an electri-
cal response to mechanical inputs, which makes them strong candidates for applications
as sensors, ultrasonic transducers and piezoelectric actuators, etc. [1]. Sodium bismuth
titanate (Bi0.5Na0.5TiO3) is a kind of important perovskite type lead-free ferroelectric and
piezoelectric material with excellent dielectric, piezoelectric and electromechanical proper-
ties. Zhang et al. discovered the extremely large electrostrain-induced properties for the
first time in the study of the system (BNT-BT-KNN), with the maximum unipolar strain
as high as 0.45%. BNT matrix materials are considered to be promising to replace the
lead-based materials in commercial piezoelectric actuators. However, due to the tempera-
ture stability, the driving electric field and fatigue resistance characteristics will limit their
application, so the normal ferroelectrics are doped FN in order to improve the material
structure and related electrical properties. In the existing studies, the doping of FN has
made a significant disruption of the long-range ferroelectric order of BNT, resulting in its
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high unipolar strain and piezoelectric constant, which plays a significant role in regulating
the electrical properties of ceramics and is suitable for making large-displacement lead-free
piezoelectric brakes, etc. [2].

However, defects usually occur in mechanical parts and engineering structures during
fabrication and service process, such as dislocations, cracks, holes, and inclusions, which
may seriously affect the service life and the performance of those piezoelectric devices
and structures. Especially under various dynamic loading and severe conditions (high
speed, high temperature and vibration, etc.) at the discontinuous interface or apertures
and openings, the dynamic stress concentration may increase markedly, which results
in structural strength reduction, structural fatigue or fracture [3–6]. Therefore, it is of
practical significance to analyze the dynamic stress of the problem of cracked holes under
the coupling of a force field and electric field.

From the available literature, a great number of numerical, experimental and the-
oretical studies on the piezomagnetic/piezoelectric materials with cracked holes have
been carried out to improve the strength and stability of piezomagnetic materials and
structures [7–11]. Jiao et al. [7] studied the diffraction problems of elastic waves in a piezo-
electric half-space and piezoelectric half-space sandwiched in gradient blocks by using
the transfer matrix method. Liang et al. [8] studied the magneto-elastic coupling effect of
infinite soft ferromagnetic materials with cracks. The magneto-elastic coupling interface
of soft magnetic materials with cracks under uniform magnetic induction was studied [9].
For cracks in functional composites with piezomagnetic, piezoelectric and magnetoelectric
coupling effects, Wang and Mai [10] provided a theoretical method to calculate the strength
factor, magnetic induction and electric displacement near the crack tip. Cao et al. [11]
studied the propagation characteristics of Lamb waves in functionally graded piezoelec-
tric/piezomagnetic composites with continuous changes along the thickness direction.
The dispersion equations under different boundary conditions are given. The influence of
parameter variation on a dispersion curve and cutoff frequency in an electromagnetic field
is discussed in detail. Wang et al. [12] studied the anti-plane problem of isotropic piezoelec-
tric elastic solids with equilateral triangular holes with smooth vertices by constructing a
new conformal mapping. Singh et al. [13] studied the propagation characteristics of Shear
Horizontal Waves (SH waves) in two semi-infinite voltage magnetic materials and obtained
different forms of the explicit nonuniformity of the dispersion relation. Rogowski [14]
considered the problems of two asymmetric edge cracks originating from electro-magneto-
elastic loads of elliptical holes in coupled media. Wang and Gao [15] used Stroh’s formula
to study the anti-plane problem of middle-edge triangular holes in transversely isotropic
piezoelectric materials.

Wang and Gao [16] studied the mode III fracture problem of circular hole edge crack
in an infinite piezoelectric body based on the complex variable method, and proposed a
complex potential, field strength factor and energy release rate expression of the mode
III fracture problem of circular hole edge crack in an infinite piezoelectric body based on
the compound variable method. Tian et al. [17] analyzed the propagation of SH waves
in a layered structure composed of functionally gradient piezoelectric layers and piezo-
magnetic half-space. The relationship between the gradient coefficient and the thickness
of the medium layer in SH wave propagation is explained. Pang et al. [18] studied the
propagation and position of positive and oblique waves in piezoelectric/piezomagnetic
layered periodic structures based on the transfer matrix method and the stiffness matrix
method. The corresponding dispersion curve, localization factor and response spectrum
characteristics are obtained by calculation. Fang et al. [19] studied the surface/interface
stress of dynamic stress around spherical non-uniformity under asymmetric dynamic
loading. Guo et al. [20,21] obtained the exact solution for the anti-plane problem of two
edge asymmetric cracks in an elliptical hole of piezoelectric material under the assumption
of electrical impermeability and permeability. Gao and Noda [22] studied the anti-plane
problem of infinite piezoelectric materials with arbitrary holes by using Faber series and the
complex method. Due to the particularity of the actual working environment of materials
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and the severity of the defect shapes, the above research either lacks the simulation of
different working environments or the analysis of specific material defect shapes. Therefore,
in this paper, we choose to use incident waves in different directions and on triangular
defects to analyze the mechanical properties of materials.

In this paper, the electroelastic coupling wave is used to simulate the vibration of
the BNT-xFN material in different working environments, and the typical triangular de-
fect structure observed under the microscope is used to characterize the defect shape.
Meanwhile, the specific mechanical properties are characterized by the dynamic stress
concentration factor (DSCF) [23]. Firstly, the Maxwell equation and dynamic equation
are used to establish the overall model, and then the elastic wave field and potential are
described by the wave function expansion method. Among them, the specific coefficients of
the diffraction field expansion of BNT-xFN can be determined by combining the boundary
conditions. After substituting the specific coefficients, the analytical expression of DSCF
can be obtained. The effects of the incident wave number, the doping amount of FN and
the geometric parameters on DSCF around the aperture are analyzed and discussed.

2. Dynamics Equation and Maxwell Equation in BNT-xFN Materials and
the Decoupling

A triangular hole embedded in the infinite BNT-xFN material is shown in Figure 1.
The BNT-xFN material is set to be uniform and homogeneous. The anti-plane shear wave
propagates in the direction of degrees to the x-axis in the infinite BNT-xFN material. In
this case, the anti-plane dynamics equation and simplified Maxwell equation in BNT-xFN
materials in a polar coordinate system are [23].

1
r

∂τθz
∂θ + ∂τrz

∂r + τrz
r = ρ ∂2w

∂t2
∂(rDr)

∂r + ∂(Dθ)
∂θ = 0

(1)

where τθz, τrz are the shear stress components, ρ is the density, w is the displacement in the
z-direction and Dr, Dθ are the electric displacement intensities.
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The constitutive relation of BNT-xFN materials with electric electromechanical cou-
pling can be obtained:

τrz = c44
∂w
∂r + e15

∂φ
∂r

τθz = c44
1
r

∂w
∂θ + e15

1
r

∂φ
∂θ

Dr = e15
∂w
∂r − ε11

∂φ
∂r

Dθ = e15
1
r

∂w
∂θ − ε11

1
r

∂φ
∂θ

(2)

where c44 is the elastic stiffness constant of BNT-xFN materials, e15 is the piezoelectric stress
constant, ε11 is the dielectric constant and ϕ is the potential in materials.

By substituting Equation (2) into Equation (1), the following expressions are given:

c44(
1
r2

∂2w
∂θ2 + ∂2w

∂r2 + 1
r

∂w
∂r ) + e15(

1
r2

∂2 ϕ

∂θ2 + ∂2 ϕ

∂r2 + 1
r

∂ϕ
∂r ) = ρ ∂2w

∂t2

e15(r ∂2w
∂r2 + 1

r
∂2w
∂θ2 + ∂w

∂r )− ε11(r
∂2 ϕ

∂r2 + 1
r

∂2 ϕ

∂θ2 + ∂ϕ
∂r ) = 0

(3)

The governing equations of displacement and electric potential need to be decoupled
and the decoupling function is introduced [24]:

γ = ϕ− e15

ε11
w (4)

Using a Laplace operator to simplify the equation, the wave and Laplace equation are obtained:

∇2w = 1
cs2

∂2w
∂t2

∇2γ = 0
(5)

where cs =
√
χ/ρ0 is the propagation velocity of anti-plane shear waves.

3. Total Wave Field in BNT-xFN Materials

Consider an anti-plane shear wave propagating at an angle of degrees to the x-axis. In
the polar coordinate system (r, θ), the incident waves can be expanded as

wi = w0ei[k(x cos α+y sin α)−ωt]

wi = e15
ε11

w0ei[k(x cos α+y sin α)−ωt] (6)

According to Equation (5), the scattered field caused by the aperture in BNT-xFN
materials can be given as

ws =
∞
∑

n=−∞
An H(1)

n (kr)einθ

γ =
∞
∑

n=0
Bnk−nr−neinθ

ϕs = e15
ε11

ws + γ

(7)

An and Bn are the undetermined coefficients used to describe the scattered elastic
wave field and the scattered electric field, while H(1)

n (·) is the 3rd-order Bessel function and
k = ω/cs is the incident wave number.

By superimposing the incident field, the scattered field and the reflected field, the
electroelastic field in BNT-xFN materials can be expressed as

wt = wi + ws

ϕt = e15
ε11

(wi + ws) + γ
(8)

4. Boundary Conditions and Refracted Mode Coefficients

In order to solve the problem in Figure 1, the following two new variables are intro-
duced:

ζ = x + iy
ζ = x− iy

(9)
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The shape before and after the change is shown in Figure 2, the S-plane can be mapped
to the η − plane by using the conformal transformation [25]

ζ = Ω(η) = R

[(
1
η

)
− 1

3
·
(

1
η

)−2
+

1
45
·
(

1
η

)−5
]

(10)

where R = 0.8381a.
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Substituting the conformal transformation formula into the two-wave formula can be
shown as

w(s) =
∞
∑

n=−∞
An Hn

(1)(k|Ω(η)|)
{

Ω(η)
|Ω(η)|

}n

ϕ(s) = e15
ε11

w(s) +
∞
∑

n=0
Bnk−n(Ω(η))

−n (11)

w(i) = w0
∞
∑

n=−∞
in Jn(k|Ω(η)|)

{
Ω(η)
|Ω(η)|

}n
e−inα

ϕ(i) = e15
ε11

w(i) = w0
e15
ε11

∞
∑

n=−∞
in Jn(k|Ω(η)|)

{
Ω(η)
|Ω(η)|

}n
e−inα

(12)

The boundary conditions in plane can be written as

τρz
∣∣
ρ=a = 0

Dρ

∣∣∣ρ=a = Dρ
c
∣∣∣ρ=a = −ε11

∂ϕc

∂ρ

∣∣∣
ρ=a

ϕ(t)
∣∣∣ρ=a = ϕc

(13)

By substituting the formula after conformal transformation into the boundary condi-
tions, a determined infinite algebraic equation system can be formed:

∞

∑
n=−∞

EnXn = E (14)

Multiplying both ends of equation by e−isθ and using the orthogonality of the function
system obtains

∞

∑
n=−∞

EnsXn = Es (15)

According to Equation (15), we can derive the infinite system of linear equations for
computing the mode coefficients.

5. Dynamic Stress Concentration Factor of BNK-xFN

According to the definition of DSCF, DSCF is the ratio of the hoop shear stress around
the aperture to the maximum stress:

DSCF =

∣∣∣∣τθz
τ0

∣∣∣∣ (16)
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where τ0 = w0χk and

τθz = c44
1
r

∂w
∂θ

+ e15
1
r

∂ϕ

∂θ
(17)

According to the conformal transformation and the derivation rule, the derivation
formula can be obtained as follows:

τθz = c44i(
∂w
∂ζ

eiθ − ∂w
∂ζ

e−iθ) + e15i(
∂varphi

∂ζ
eiθ − ∂ϕ

∂ζ
e−iθ) (18)

Using the derivation of the Bessel function, the final expression can be obtained:

∂wt

∂ζ
=

k
2

+∞

∑
n=−∞

[w0in Jn−1(k|Ω(η)|)e−inα + An H1
n−1(k|Ω(η)|)][ Ω(η)

|Ω(η)| ]
n−1

(19)

∂wt

∂ζ
= − k

2

+∞

∑
n=−∞

[w0in Jn+1(k|Ω(η)|)e−inα + AnH1
n+1(k|Ω(η)|)][ Ω(η)

|Ω(η)| ]
n+1

(20)

∂ϕt

∂ζ
=

ke15

2ε11

+∞

∑
n=−∞

[w0in Jn−1(k|Ω(η)|)e−inα + An H1
n−1(k|Ω(η)|)][ Ω(η)

|Ω(η)| ]
n−1

(21)

∂ϕt

∂ζ
= − ke15

2ε11

+∞

∑
n=−∞

[w0in Jn+1(k|Ω(η)|)e−inα + An H1
n+1(k|Ω(η)|)][ Ω(η)

|Ω(η)| ]
n+1

−
+∞

∑
n=0

nBnk−nΩ(η)
−(n+1)

(22)

Thus, the DSCF around the triangle aperture in the BNT-xFN material is expressed as

DSCF = k
2 c44i(1 + e2

15
c44ε11

)
∞
∑

n=−∞

{
η
a [w0in Jn−1(k|Ω(η)|)e−inα + An H1

n−1(k|Ω(η)|)][ Ω(η)
|Ω(η)| ]

n−1

+ η
a [w0in Jn+1(k|Ω(η)|)e−inα + AnH1

n+1(k|Ω(η)|)][ Ω(η)
|Ω(η)| ]

n+1
}
+ e15i

+∞
∑

n=0

η
a nBnk−nΩ(η)

−(n+1)
(23)

6. Numerical Examples Simulation and Discussion

Using the above expression, we can accurately calculate the DSCF distribution around
the triangular defect. Equation (23) is a continuous infinite series, but after the test cal-
culation, the result meets the requirement of engineering accuracy after truncation at
n greater than 10. For the BNT-xFN material mentioned above, when the FN doping
amount x changes from 0 to 0.06, the corresponding piezoelectric constants change from
8.425 C·m2 to 3.774 C·m2, and the constants of other materials are relatively stable, as
follows: ε11 = 1.32× 10−8 C

Vm , c44 = 15.3× 1010 N·m−2. In order to facilitate the analysis, the
defect size and wave number were dimensionally processed. Then, the DSCF distribution
at different incident angles was explored under the conditions of low frequency and high
frequency, and the influence of different doping amounts on the mechanical properties
of the materials was further studied. Firstly, the distribution of DSCF is discussed under
different frequency conditions when the incident angle is 0.

At relatively low frequencies, the DSCF distribution curves used to describe equilateral
triangle defects are shown in Figures 3–5. It can be observed that when the wave number
is small, the distribution of DSCF has an obvious law: the stress distribution presents a
triangular distribution, and the maximum value is obtained at ϑ = 0, ϑ = π/3, ϑ = 2π/3.
Since the defect is triangular in shape, the stress concentration is easily achieved at the
triangle, which is consistent with the engineering practice.
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At this point, by observing the curve arrangement, it can be found that the different
doping amount of FN has a great influence on the mechanical properties of the BNT
material. When the frequency parameter ka = 0.8 and the FN doping amount is 0, the
DSCF value at 0 is 1.3 times that of the FN doping amount 0.06. With an increase in the
incident frequency, DSCF values with a different FN doping amount all began to decrease
and were more evenly distributed. When ka = 1.2, the left DSCF decreased more gently.
The above indicates that the mechanical properties of materials are easily affected with
an increase in the doping amount at low frequency, and the doping amount should be
designed reasonably.
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Figure 5. Distribution diagram of DSCD (ka = 1.2).

Figure 6 describes the DSCF distribution curve at regular triangle defects at relatively
high frequencies, and the incident wave numbers are k a = 3, ka = 3.5 and ka = 4. At this
point, the distribution of DSCF is no longer an obvious triangular distribution and reaches
its maximum when ϑ is about 2π/3, and the maximum value of DSCF decreases gradually
with the increase in frequency. Different from the case of a relatively low frequency, the
increase and decrease of DSCF are not obvious with the increase in the doping amount,
which indicates that at a relatively high frequency, the FN doping amount has little influence
on the mechanical properties of the overall material and can be added appropriately.
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Figures 7 and 8 show the DSCF distribution changes caused by different incident
angles at low and high frequencies. The incidence angle of the incident wave is set as
ϑin = 0, π/3,π/4,π/6 , and the wave number is set as ka = 1 and ka = 2. It can be observed
that the positions of the three vertex angles where the extreme values were originally
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located at the incident angle ϑin = 0 were all offset with the change of angle, but the
offset was slight due to the stress concentration. At the same time, the DSCF values at
ϑin = 0, 2π/3 reached the maximum when ϑin = 0, while the DSCF values at ϑ = 0
were small when ϑin = 0, indicating that the incident angle has a certain influence on the
DSCF values of the three vertices of the triangular defect, and the incident angle has a
strengthening effect on the DSCF values of the corresponding vertex.
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In Figure 9, we can see that with the increasing incident angle, the maximum value of
DSCF of BNT-xFN materials with different doping amounts gradually decreases, which
means that the DSCF value can be greatly reduced by avoiding the incident wave directly
shooting along the direction of triangular defects.
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7. Conclusions

In this paper, we study the DSCF distribution and triangular defects in BNT-xFN
materials under anti-plane shear waves. For numerical calculation, we use the wave
function expansion method (WFE) and conformal mapping. Firstly, the triangular defect is
mapped to the unit circle defect, and the displacement component and stress component
are represented by the superposition of the wave function, where the wave function
is the first and the third Bessel function. For the undetermined mode coefficients, the
nonlinear equations are written by using the boundary conditions at the defects, and then
the nonlinear equations are reduced to linear equations by orthogonalization. Then, the
DSCF distribution of the BNT-xFN material with a triangular defect under a dynamic load
simulation was studied from the following aspects: the size of the triangular defect hole,
the distribution rule of the triangular defect, the frequency of the applied mechanical load
and the amount of FN doping.

In order to obtain the general distribution law of DSCF under the working condition
of the BNT-xFN material, the incident angle was fixed at 0 degrees, the relative incident
frequency was from low frequency to high frequency and the FN doping amount was
from 0 to 0.06 to simulate and solve the stress distribution of the BNT-xFN material. The
distribution law was obtained in a triangular shape, that is, the DSCF value reaches the
extremum at the three vertex angle positions. At the same time, the relative incident
frequency and the FN doping amount were controlled to remain unchanged, and the
influence of their increase and decrease on DSCF distribution was studied. When the
incident wave number is fixed, the effects of the FN doping amount on the mechanical
properties of BNT materials show different characteristics. When the number of incident
waves is small, the increase or decrease of the FN doping amount has a significant effect
on DSCF distribution, especially at an intermediate frequency, and an increase in the
FN doping amount tends to lead to an increase in the DSCF value. With the increase of
the wave number, the influence of the doping amount gradually disappears. Therefore,
in different application environments, the doping amount proportion can be rationally
selected according to this law.

When the doping amount is fixed, the relative incident wave number has little influ-
ence on DSCF at medium and low frequencies, but with an increase in the relative incident
wave number, DSCF has a downward trend as a whole. Considering material optimization,
the influence of the defect distribution law inside the BNT-xFN material on DSCF was
transformed into a fixed defect distribution, and the incident angle was changed to simplify



Materials 2022, 15, 5781 11 of 12

the problem. When the incident angle is at a certain angle, the triangular distribution law
is weakened, and the DSCF value near the incident point increases, while the DSCF value
far away from the incident point decreases. In addition, with an increase in the incident
angle, the maximum DSCF value decreases under different doping amounts, which means
that the overall distribution trend of triangular defects has a great influence on the overall
mechanical properties of the material, and the DSCF value can be better reduced to avoid
the triangular defects of more materials being shot into parallel by incident waves.

According to the above analysis, the BNT-xFN material can be better applied in
different industrial environments, and with the increasing work requirements of the BNT-
xFN material, this set of theories can provide a certain range of doping proportion selection
for the optimal FN doping scheme.
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