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Abstract: A mixed-valence manganese selenite, Mn3O(SeO3)3, was successfully synthesized using a
conventional hydrothermal method. The three-dimensional framework of this compound is com-
posed of an MnO6 octahedra and an SeO3 trigonal pyramid. The magnetic topological arrangement
of manganese ions shows a three-dimensional framework formed by the intersection of octa-kagomé
spin sublattices and staircase-kagomé spin sublattices. Susceptibility, magnetization and heat capac-
ity measurements confirm that Mn3O(SeO3)3 exhibits two successive long-range antiferromagnetic
orderings with TN1~4.5 K and TN2~45 K and a field-induced spin–flop transition at a critical field of
4.5 T at low temperature.

Keywords: mixed-valence; magnetic properties; topological structures

1. Introduction

Mixed valence transition metal (TM) oxides with three-dimensional electronic configu-
rations are of great significance in the fields of materials chemistry, electrochemical energy
and condensed matter physics due to their diverse crystal structures and electronic configu-
rations [1,2]. From the ancient application of Fe3O4 in the compass to today’s copper-based
high temperature superconducting materials, mixed valence TM oxides exhibit exciting and
unusual chemical and physical behaviors, including high-temperature superconductors [3],
colossal magnetoresistance [4], ion deintercalation [5], metal-insulator transition [6], elec-
trocatalysis/photocatalysis [7,8], etc. More specifically, copper oxides with bidimensional
characters, together with the mixed valency of Cu+/Cu2+ or Cu2+/Cu3+, are responsible
for superconducting properties [9,10]. The ferromagnetic (FM) material La0.67Sr0.33MnO3
exhibits metallic conductivity due to the Zener double exchange mechanism between Mn3+

and Mn4+ ions, but BaFe12O19 (also an FM material) is insulative due to the limitation of the
ratio of Fe2+ and Fe3+ ions [11]. Compound K2Cr8O16 (hollandite), with a rare Cr3+/Cr4+

mixed valence state, exhibits a metal-insulator transition in a FM state [12]. The transition
metal valence state of cathode material LiMO2 (M = Mn, Co, Ni) will switch back and forth
between M2+ and M4+ during charging and discharging processes in Li-ion batteries [13,14].
X. Yu et al. reported the experimental observation of skyrmionic bubbles with various
topological lattices in colossal magnetoresistive manganite La1−xSrxMnO3 [15]. In order
to discover new materials with unusual physical/chemical properties, it is necessary to
explore new mixed-valence transition metal compounds. The compound Mn3O(SeO3)3
(MnIIMnIII

2O(SeO3)3) was first reported by Wildner [16]. Structure analysis confirmed that
this compound shows a channel structure with a three-dimensional magnetic topological
framework formed by the intersection of octa-kagomé spin sublattices and staircase-kagomé
spin sublattices; however, there are few studies regarding its magnetic properties. In this
paper, we report the discovery of a mixed valence manganese selenate Mn3O(SeO3)3.
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Magnetic measurements indicate that this compound possesses two successive antifer-
romagnetic (AFM) transitions at low-temperature. Moreover, a spin–flop transition is
observed at 2 K with an applied magnetic field of ~4.5 T.

2. Experimental Section
2.1. Synthesis of Mn3O(SeO3)3

Single crystals of Mn3O(SeO3)3 were obtained using a conventional hydrothermal
method. A mixture of 2 mmol Mn(NO3)2·xH2O (3 N, 0.3943 g), 2 mmol LiI (2 N, 0.2704 g),
1 mmol SeO2 (4 N, 0.1110 g) and 5 mL deionized water was sealed in an autoclave equipped
with a Teflon liner (28 mL). The autoclave was gradually heated to 230 ◦C at a rate of
1 ◦C/min, held for 4 days and then naturally cooled to room temperature. The product
contained the desired black noodle-like crystals with a 90% yield. The crystals’ sizes and
morphologies were characterized using a stereomicroscope and field emission scanning
electron microscopy (FE-SEM, SU8100, Hitachi, Tokyo, Japan). Figure S1 shows images of
the crystals under the stereomicroscope and FE-SEM. It can be observed that the crystal
size is approximately 0.3 × 0.08 × 0.05 mm. The product’s impurities were manually
removed under a microscope. Powdered samples were prepared for physical measurement
by crushing small single crystals; purity was confirmed by powder X-ray diffraction (XRD)
analysis (Figure 1). Moreover, the reagent LiI acted as a mineralizer, as the quality of
crystals was unsatisfactory without it.
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Figure 1. Rietveld refinement of powder X-ray (Cu Kα) diffraction patterns for Mn3O(SeO3)3. The
refined lattice constants are a = 15.484(9) Å, b = 6.665(8) Å, c = 9.703(1) Å and β = 118.79(4)◦ with
space group C2/m, which is consistent with the reported parameters of ref. [16].

2.2. Methods

XRD patterns were collected using a Bruker D8 diffractometer with Cu-Kα radi-
ation (λ~1.5418 Å) at room temperature. Rieltveld refinement was performed using
GSAS-EXPGUI software [17]. Refined crystal structures were analyzed using VESTA
software [18]. Furthermore, element analysis was observed using FE-SEM with an X-ray
energy-dispersive spectrometer (EDS). EDS analysis confirmed the molar ratio of Mn/Se as
3.1/2.0, which is in good agreement with the X-ray structure analysis. Thermogravimetric
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analysis (TGA) of Mn3O(SeO3)3 was collected on NETZSCH STA 449C instruments with
an Al2O3 crucible from 50 to 900 ◦C at a rate of 10 ◦C/min under N2 atmosphere.

Magnetic measurements of a powdered sample of Mn3O(SeO3)3 were performed
using a PPMS (Quantum Design, San Diego, CA, USA). The powdered sample (20.6 mg)
was placed in a plastic capsule, which was suspended in a copper tube slot. Magnetic
susceptibility was measured at 0.1 T from 2 to 300 K. Magnetization was measured at
different temperatures at applied field from 0 to 9 T. Heat capacity was measured with the
same PPMS system at zero field and determined using a relaxation method on a 5.6 mg
sample.

3. Results and Discussion

The structure of compound Mn3O(SeO3)3 was first reported by Wildner [16]. Mn3O(SeO3)3
crystallizes in the monoclinic system with the space group C2/m. As shown in Figure
S2, both Mn and Se atoms have three crystallographic sites. The oxidation state is +2 for
Mn1 and +3 for Mn2/Mn3. All manganese atoms are coordinated by six oxygen atoms
forming MnO6 distorted octahedra; Mn–O bond lengths range from 2.100(1) to 2.361(8)
Å for Mn12+O6 octahedra and from 1.854(2) to 2.310(6) Å for Mn23+O6 and Mn33+O6,
respectively. In other words, the degree of distortion for Mn12+O6 octahedra is smaller
than that of Mn23+O6 and Mn33+O6. This is due to the Mn3+ (t2g

3eg
1) octahedron with a

remarkable Jahn–Teller effect, which may induce a larger structure distortion than Mn2+

(t2g
3eg

2). All selenium atoms are in trigonal pyramid geometry with a stereoactive lone
pair of 4 s2 in Se4+ ions; the Se-O bond lengths are approximately 1.70 Å. It should be noted
that Se1/Se2/Se3 atoms are surrounded by 4/5/6 manganese atoms with a Se-O-Mn route,
respectively. These 4/5/6 manganese atoms contain two Mn2+ atoms and 2/3/4 Mn3+

atoms, respectively.
As shown in Figure 2, Mn3O(SeO3)3 shows a tunnel structure along the b-axis, in

which the framework is constituted by MnO6 octahedra and SeO3 trigonal pyramids.
Mn1O6 octahedra share their edges (O5–O6) to form uniform [-Mn1-] chains along the
b-axis. Mn3+O6 octahedra are interconnected via edge-sharing oxygen atoms, forming a
two-dimensional [-Mn3+-] layered structure parallel to (001). The detailed linkage mode
between manganese ions is shown in Figure 3. Two Mn2O6 octahedra connect to each
other by edge-sharing oxygen atoms (O4–O4) to form a [Mn2O10] dimer along the a-axis.
The Mn2-O4-Mn2 angle is 101.34(9)◦. Mn3O6 octahedra are interconnected by corner-
sharing oxygen atoms (O7) to form uniform [-Mn3-] chains along the b-axis. One Mn2O6
octahedron and two Mn3O6 octahedra are connected in an isosceles triangle configuration.
The neighbored [-Mn3+-] layers are separated by [-Mn1-] chains and SeO3 trigonal pyramids.
Furthermore, we noted that Mn1O6 octahedra are interconnected with Mn2O6 octahedra via
conner-sharing O5 atoms, but Mn1O6 and Mn3O6 octahedra are connected by SeO3 groups
in the manner of Mn1-O-Se-O-Mn3. After removing the nonmagnetic SeO3

2− groups, the
topological arrangement of magnetic Mn ions is a three-dimensional framework (Figure 2b).
Mn3+ ions form a two-dimensional octa-kagomé lattice parallel to (001) (Figure 2c). The
adjacent octa-kagomé layers are connected by [-Mn1-] chains. It is significant that there is
a staircase-kagomé lattice composed of Mn2+ and Mn3+ parallel to (100) in the magnetic
topological framework (Figure 2d). The shortest Mn–Mn distance in both [-Mn1-] and
[-Mn3-] chains is 3.332(9) Å. However, the detailed connection mode of MnO6 octahedra
in [-Mn1-] chains are edge-sharing, whereas in [-Mn3-] chains it is corner-sharing. The
Mn-O-Mn angles in [-Mn1-] and [-Mn3-] chains are 89.77(1)◦/102.90(8)◦ and 127.61(5)◦,
respectively. The Mn2–Mn2 and Mn2–Mn3 distances in the octa-kagomé lattice are 3.150(0)
Å and 3.069(6) Å, respectively, whereas the Mn1–Mn2 distance is 3.902(1) Å.
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Figure 4a shows the temperature dependence of magnetic susceptibility χ(T) of
Mn3O(SeO3)3 measured at 0.1 T. Magnetic susceptibility increases with decreasing temper-
ature; two peaks can be observed at TN1~4.5 K and TN2~45 K., showing AFM transitions.
At high temperature (80–300 K) inverse susceptibility χ−1(T) follows the Curie–Weiss law
with a Weiss temperature of θ = −8.89 K and a Curie constant of C = 11.03 emu·mol−1·K.
The effective magnetic moment is calculated to be µeff = 5.42(3) µB, obtained by µ2

eff = 8C/n,
where n = 3. This value of µeff is slightly smaller than the spin-only value of 5.91(6) µB
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for Mn2+ (3d5, high spin) and larger than the spin-only value of 4.89(9) µB for Mn3+ (3d4,
high spin). As Mn ions are mixed-valent, the theoretical magnetic moment of the titled
compound is µtheo = 5.25(9) µB obtained by the equation µ2

eff = [µ2
eff (Mn2+) + 2µ2

eff
(Mn3+)]/3. The value of µeff is quite close to that of µtheo, confirming that Mn ions in the
structure are mixed valence. The negative value of θ suggests the presence of dominative
AFM interactions between neighboring Mn ions. Figure S3 shows the χT-T curve, in which
the value of χT decreases with decreasing temperature, which is characteristic of typical
AFM interactions. As shown in Figure 4b, the heat capacity data of Mn3O(SeO3)3 show a
λ-type peak at T~45 K and a corner-type transition at 4.5 K, providing concrete evidence
for the two long-range magnetic orderings observed in the magnetic susceptibility curves.
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To further investigate the magnetic properties of the system, magnetization (M) as
a function of applied field (H) was observed at 30 K and 2 K. As shown in Figure 5, at
30 K, magnetization increased linearly with increasing field, and did not saturate at 9 T.
Furthermore, no hysteresis or remanent magnetization was observed. These features of
the M–H curve suggest that the magnetic anomaly at T~45 K is the onset of an AFM
ordering. At 2 K, the magnetization (M) shows a linear increase in magnetization at
low field, indicative of a characteristic AFM ground state. A clear change in slope in
the magnetization is observed at approximately 4.5 T, indicating field-induced magnetic
transition. Furthermore, no hysteresis can be observed on the M–H curve.
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It is well-known that the magnetic properties of solid magnets are strongly related
to their structural features. The three-dimensional manganese topological framework of
Mn3O(SeO3)3 is formed by the intersection of octa-kagomé lattices and staircase-kagomé
lattices. Firstly, we know that the kagomé-like lattices containing equilateral or isosceles
triangle sublattices may exhibit strong frustrated magnetic properties [19–21]. We note
the value of frustration factor, f =|θ|/TN~0.20, with Weiss temperature θ = −8.89 K and
Neel temperature TN2~45 K, ruling out spin frustration in the system. It is well known
that primary magnetic interactions originate from the superexchange of Mn-O-Mn. A
detailed description of superexchange interactions is shown in Figure 2c,d and itemized
in Table 1; there are five main magnetic exchange interactions, numbered J1–J5, within the
three-dimensional spin-lattice according to the Goodenough–Kanamori–Anderson rules
(GKA rules) [22]. There are two isosceles triangular topological configurations composed
by J1–J4 on the staircase-kagomé spin sublattice. According to the GKA rules, J2 and J3
are AFM interactions. J1 and J4 both have two Mn-O-Mn superexchange interactions,
as the corresponding MnO6 octahedra share their edges. In general, the spin exchange
parameter, J, can be written as J = JFM + JAFM, where JFM indicates ferromagnetic exchange
and JAFM indicates antiferromagnetic exchange (JFM > 0 and JAFM < 0) [23]. So, J1 =
J1FM(O5) + J1AFM(O6), and the AFM interaction via O6 in J1 is negligible; this means that
J1 ≈ J1FM(O5) > 0. Using the same analytical method, the spin exchange parameter, J4, is
ambiguous, as the magnitude of J4AFM(O7) is difficult to calculate. J5 should be a weak AFM
interaction. This analysis indicates that AFM interactions are dominant in the system, which
is consistent with the negative value of θ. It is significant that the neighboring octa-kagomé
sublattices are separated by [-Mn1-] chains and that the neighboring staircase-kagomé
sublattices are connected by [Mn2O10] dimers. It is safely said that these two long-range
magnetic orders are driven by interlayer magnetic coupling. It is noteworthy that [-Mn1-]
chains are composed of Mn2+ ions. If Mn2+ ions are replaced with nonmagnetic ions with
a radius similar to Mn2+, such as Mg2+ or Zn2+ [24], an octa-kagomé lattice composed of
Mn3+ ions might form. The expected compounds may exhibit spin-liquid or other quantum
physical properties [25,26]. Exploratory synthesis of related compounds is underway.

Table 1. Geometric parameters of dominant magnetic superexchanges in Mn3O(SeO3)3 *.

J1 d(Mn-O) (Å) d(Mn-Mn) (Å)
Mn-O-Mn
Angle (◦) Magnetism

J1

Mn1-2.130(7)-
O6-2.130(7)-Mn1

Mn1-2.361(4)-
O5-2.361(4)-Mn1

3.332(9)

Mn1-O6-Mn1
. . .

102.90(8)AFM-w
Mn1-O5-Mn1

. . . 89.77(1)FM-S

FM

J2
Mn3-1.857(1)-

O7-1.857(1)-Mn3 3.332(9)
Mn3-O7-Mn3

. . .
127.61(5)AFM-S

AFM

J3
Mn1-2.361(4)-

O5-2.278(1)-Mn2 3.902(1)
Mn1-O5-Mn2

. . .
114.49(4)AFM-S

AFM

J4

Mn2-2.049(5)-
O3-2.310(4)-Mn3

Mn2-1.854(2)-
O7-1.857(1)-Mn3

3.069(6)

Mn2-O3-Mn3
. . . 89.29(7)FM-S
Mn2-O7-Mn3

. . .
111.59(8)AFM-S

?

J5

Mn2-1.896(5)-
O4-2.169(5)-Mn2

Mn2-2.169(5)-
O4-1.896(5)-Mn2

3.150(0)

Mn2-O4-Mn2
. . .

101.34(9)AFM-w
× 2

AFM

* The S or W behind AFM or FM (in the Mn-O-Mn Angle (◦) column) refers to the magnitude of the J value; S
refers to strong and W refers to weak.



Materials 2022, 15, 5773 7 of 9

As shown in Figure 6, Mn3O(SeO3)3 undergoes a slow weight gain of approximately
0.20% from 100 to 200 ◦C and a slow weight loss of approximately 0.40% from 300 to 400
◦C. As the weight of the sample is only approximately 7 mg, slight weight gain/loss may
be caused by instrument error. As the temperature rises, two successive steps of weight
loss of approximately 57% occur from 450 to 630 ◦C, corresponding to the calculated 59%
loss of 3SeO2. The 2% difference may also be caused by instrument error. Based on this
analysis, the final residues of Mn3O(SeO3)3 should be Mn3O4; however, this was difficult
to characterize, as the residues melted in the Al2O3 crucible after being heated to 900 ◦C.
We re-selected the sample and sintered it in a smooth quartz crucible at 800 ◦C in a nitrogen
atmosphere for 10 min. We then scraped off the sintered product and performed powder
X-ray diffraction analysis. As shown in Figure S4, the residue was confirmed as Mn3O4
(PDF #80-0382). This result is consistent with the decomposition characteristics of most
manganese-based compounds.
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decomposition above 630 ◦C is Mn3O4.

4. Conclusions

A mixed-valence compound, Mn3O(SeO3)3, was successfully synthesized using a con-
ventional hydrothermal method. The reagent LiI acted as a mineralizer. Mn3O(SeO3)3 was
shown to have a channel structure with a three-dimensional magnetic topological frame-
work formed by the intersection of octa-kagomé spin sublattices and staircase-kagomé
spin sublattices. Magnetic and specific heat data confirmed that Mn3O(SeO3)3 exhibits two
successive long-range AFM orderings with TN1~4.5 K and TN2~45 K, and a field-induced
spin–flop at a 4.5 T critical field at low temperature. Moreover, magnetic measurements con-
firmed that the ratio of Mn2+/Mn3+ ions in this compound is 1:2, which is consistent with
the structural analysis. The exploratory synthesis of Mg2+ or Zn2+ replaced compounds is
in progress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15165773/s1, Figure S1. Single crystals of Mn3O(SeO3)3
obtained by a conventional hydrothermal method. Figure S2. The oxygen-coordination environments
for (a) Mn1, (b) Mn2, (c) Mn3, (d) Se1, (e) Se2 and (f) Se3 atoms in Mn3O(SeO3)3. Figure S3. The
variation in χT with the temperature of Mn3O(SeO3)3. With the decreasing temperature, the value of
χT decreases. Figure S4. Powder X-ray diffraction pattern for the final residues of Mn3O(SeO3)3 after
sintered at 800 ◦C for 10 min in nitrogen atmosphere.
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