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Abstract: Knowing the thermodynamic and transport properties of liquid systems is very important
in engineering for the development of theoretical models and for the design of new technologies.
Models that allow accurate predictions of thermodynamic and transport properties are needed in
chemical engineering calculations involving fluid, heat, and mass transfer. In this study, the modeling
of viscosity deviation for binary and ternary systems containing benzyl alcohol, n-hexanol, and
water, less studied in the literature, was carried out using Redlich and Kister (R-L) models, multiple
linear regression (MLR) models and artificial neural networks (ANN). The viscosity of the binary and
ternary systems was experimentally determined at the following temperatures: 293.15, 303.15, 313.15,
and 323.15 K. Viscosity deviation was calculated and then correlated with mole fractions, normalized
temperature, and refractive index. The neural model that led to the best performance in the testing
and validation stages contains 4 neurons in the input layer, 12 neurons in the hidden layer, and one
neuron in the output layer. In the testing stage for this model, the standard deviation is 0.0067, and
the correlation coefficient is 0.999. In the validation stage, a deviation of 0.0226 and a correlation
coefficient of 0.996 were obtained. The MLR model led to worse results than those obtained with the
neural model and also with the R-L models. The standard deviation for this model is 0.099, and the
correlation coefficient is 0.898. Its advantage over the R-L type models is that the influence of both
composition and temperature are included in a single equation.

Keywords: viscosity deviation modeling; ANN; benzyl alcohol; n-hexanol; water

1. Introduction

Many products from the pharmaceutical or cosmetic industries consist of liquid
systems in the form of solutions that contain more than one solute. After they are used,
they reach the environment and can negatively influence it. Environmental pollution with
pharmaceuticals and cosmetics has represented a particularly important global problem
since ancient times [1]. The presence of pharmaceutical and cosmetic products in surface
waters negatively affects living organisms. Also, if they reach the human body, they can
cause various ailments. In order to reduce these negative effects on the environment,
numerous groups of researchers from around the world have focused their attention on
studies on the behavior of liquid mixtures [2–14]. It can be said that the pollution caused
by the products of the pharmaceutical and cosmetic industry represents an ever-increasing
challenge for the protection of the environment because the human population registers
a systematic increase in the use of medicines and personal care products [2]. Emerging
pollutants reach the environment and pollute wastewater through various pathways.
Medicines and pharmaceutical skin products such as creams, ointments, and body lotions
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belong to the category of emerging pollutants. Since they are not completely absorbed by
the skin, they can contaminate surface waters. Other examples of emerging pollutants can
be personal care products or some soaps. Benzyl alcohol and n-hexanol are the most widely
applied solvents in the pharmaceutical and cosmetic industries.

The properties most frequently evaluated in the case of aqueous solutions are density,
viscosity, refractive index, surface tension, thermal conductivity, etc. The importance of
evaluating the thermodynamic and transport properties of aqueous solutions derives from
the need to know them for the development of theoretical models and for the design and
development of new technologies. Knowing the dynamic viscosity of liquid mixtures is
imperative for chemical engineering calculations involving fluid, heat, and mass trans-
fer [3]. According to the literature, the viscosity data of liquid mixtures for binary systems
containing n-hexanol and ethanol were reported by Cano-Gómez et al. They highlighted
negative viscosity deviations from a mole fraction weighted average of the pure compo-
nent viscosities over the entire composition range [4]. Indraswati and his collaborators
determined the viscosity for binary mixtures containing n-hexanol and ethyl valerate or
hexyl acetate, also obtaining negative viscosity deviations over the entire composition
range [5]. Other data for the viscosity of binary systems containing n-hexanol were re-
ported by Audonnet et al. [6], Domanska et al. [7], Živković et al. [8], Estrada-Baltazar
et al. [9], and Das et al. [10]. In all these studies, the viscosity deviation was correlated
with the composition with polynomial models of the Redlich and Kister type. This model
correlates the excess properties of a multicomponent system with the mole fractions of
the components in the mixture for each temperature. The advantages of the Redlich and
Kister type models are given by the simplicity of the equations used and the very good
performances obtained.

A significant contribution to the study of the transport properties for benzyl alcohol
in different binary and ternary systems was made by Cruz and his collaborators and ob-
tained for the ternary system (benzaldehyde-toluene-benzyl alcohol), a standard deviation
between the experimental viscosities and those calculated with a Redlich and Kister type
model of 1.1% [11]. Nayak et al. evaluated the viscosity of benzyl alcohol in the binary
mixture formed by ethyl chloroacetate—benzyl alcohol at the following temperature values:
298.15, 303.15, and 308.15 K. The obtained results were correlated with a polynomial model
of the Redlich–Kister type [12]. Gramajo De Doz et al. calculated the viscosity deviation
for the ternary system benzyl alcohol, 4-hydroxy-4-methyl-2-pentanone, and water and
correlated the obtained values with mole fractions also using the Redlich–Kister model [13].
Chen et al. determined the density, refractive index, viscosity, and surface tension for
binary and ternary systems containing benzyl acetate, benzyl alcohol, and ethanol. Based
on the experimental determinations, they calculated the thermodynamic properties of
the excess, which were then correlated with the Redlich–Kister and Cibulkatype models.
They determined that the deviation from ideal behavior is probably due to the breaking of
hydrogen bonds between alcohol molecules. For ∆η viscosity deviations, negative values
were found over the entire range of composition variation for both binary and ternary
systems [14].

Studies presenting experimental determinations for the viscosity of binary or ternary
systems of benzyl alcohol, n-hexanol, and water are less common in the literature.

The design and development of new water depollution technologies require very
precise data on the thermodynamic properties, and in the absence of experimental data,
precise predictive methods are needed. The relations between thermodynamic properties,
composition, and temperature can be modeled using multiple linear regression (MLR)
methods and/or various artificial intelligence tools. In particular, the study of the physico-
chemical properties of binary and ternary, or multicomponent liquid mixtures over a wide
range of composition and temperature, represents an important source of information for
establishing the relation between the internal structure of the systems and their physical
properties [15].
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The prediction of density, refractive index, boiling point, dielectric constant, and
viscosity for a series of organic derivatives having the general structure X-CH2-CH2-
Y was carried out by Cocchi et al. using MLR-type models. The performances of the
obtained models were quantified by the standard deviation, finding very good correlations
between the values of the properties calculated with the MLR models and those determined
experimentally [16]. Zhao et al. performed the prediction of the viscosity of imidazolium-
based ionic liquids using the multiple linear regression (MLR) algorithm, but also artificial
intelligence tools, namely the support vector machine (SVM) algorithm. They used a
consistent database. The average deviation of the entire data set was 24.2% for the MLR
model and 3.95% for the SVM [17]. The statistical processing of the experimental data with
the multiple linear regression (MLR) method was used by our research group to estimate
some excess thermodynamic properties (the dependent variable) using the composition of
the mixtures the temperature and the refractive index [18,19] as independent variables.

Artificial neural networks have been used by Mehlman et al. to make density, viscosity,
and refractive index predictions for ternary and quaternary solvent mixtures using exper-
imental determinations of the properties of binary systems [20]. Rocabruno-Valdés et al.
made predictions of the dynamic density and viscosity of biodiesel from fatty acid methyl
esters composition, number of carbon atoms, number of hydrogen atoms, and temperature,
using single-layer neural networks with 1 to 6 hidden neurons. In the validation stage, the
performance of the built models was very good, and when comparing the experimental
values with the simulated ones, the correlation coefficients were higher than 0.92, and the
mean squared error (MSE) was higher than 0.0018 [21]. Correlation coefficients of 0.98 and
the average absolute relative deviation on the test set of 6.84% were recently obtained by Yu
et al. with a multilayer perceptron neural model for predicting the viscosity of an emerging
class of green solvents [22]. Other existing studies in the literature used neural networks to
predict the viscosity of mixtures containing ionic liquids [23,24] or nanofluids [25]. The use
of artificial neural networks for viscosity deviation modeling is less studied in the literature.

The development of models that allow predictions of the thermodynamic and transport
properties of multicomponent mixtures to be made is extremely important for chemistry
and chemical engineering. An important reason for these approaches is the multiple
economic advantages obtained both in terms of reducing the costs of research and in the
efficiency of the time needed to carry out experimental determinations, which are quite
laborious, and many repetitions are necessary for accurate data.

This paper presents the experimental determination of the viscosity of binary and
ternary mixtures of benzyl alcohol, n-hexanol, and water, which are less studied in the
literature. Also, with the help of neural networks, models are built that correlate viscosity
deviation with normalized temperature, composition, and refractive index. The obtained
results are compared with those provided by Redlich and Kister type polynomial models,
MLR models, and other regression algorithms.

2. Materials and Methods

The substances used for the experimental measurements were purchased from special-
ized companies, and according to the technical sheet, they have a purity level of at least
99%, namely benzyl alcohol (Purity 99.5%, Merck, Kenilworth, NJ, USA) and n-hexanol
(Purity 99%, Sigma-Aldrich, St. Louis, MO, USA). Bidistilled water was used to obtain the
binary and ternary systems.

The preparation of binary and ternary mixtures using the mentioned liquids was carried
out by weighing on an analytical balance type XP105 from Mettler Toledo (Columbus, OH,
USA), which ensures a measurement accuracy of ±0.01 mg. The estimation of mole fractions
was thus achieved with a precision of ±0.0001, and this will depend on the compound used.
The liquid mixtures were made in sealed vials to avoid preferential evaporation.

The viscosities of the pure components and binary and ternary mixtures were de-
termined with a Physica MCR 501 modular rheometer equipped with a CC27 concentric
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cylinder measuring system at a shear rate of 10 s−1 and at temperatures of 293.15, 303.15,
313.15, and 323.15 K.

Based on these experimental determinations, the thermodynamic properties of the
excess were evaluated, respectively the viscosity deviation (∆η) was determined.

To model the viscosity deviation, a database containing information on experimental
determinations of viscosity and refractive index for 27 binary and ternary mixtures con-
taining benzyl alcohol (X1), n-hexanol (X2), and water (X3) was built, at four temperature
values (293.15, 303.15, 313.15, and 323.15 K). Thermodynamic properties were evaluated
for 6 benzyl alcohol-water binary mixtures, 9 benzyl alcohol-n-hexanol binary mixtures,
6 n-hexanol-water binary mixtures, and 6 benzyl alcohol-n-hexanol-water ternary mixtures.

The Redlich and Kister model [26] is one of the most used models for representing the
thermodynamic properties of excess:

∆Y = x·(1 − x)∑
i

Ai·(2x − 1)i (1)

where x is the mole fractions and Ai is the coefficients in the polynomial equation.
The number of parameters that must be used to represent the experimental data

depends on the distribution of the data and is directly related to the complexity of the
process, the quality of the data and also the number of available experimental data. Thus,
for binary mixtures, the equation has the following form:

∆Y = x1x2

[
A12 + B12·(x1 − x2) + C12·(x1 − x2)

2 + · · ·
]

(2)

where x1, x2 is the mole fractions and A12, B12, and C12 are the coefficients in the polyno-
mial equation.

Considering that for binary mixtures, the complementarity of the mole fractions is
verified, then x1 − x2 = 2x1 − 1, and knowing that A12 = A0, B12 = A1, C12 = A2, . . . , etc.,
Equation (2) will have the following form:

∆η = x1(1 − x1)
n−1

∑
i=0

Ai(2x1 − 1)i (3)

in which the coefficient Ai is obtained through a least squares regression procedure. The
number of coefficients used in Equation (3) depends on the criterion chosen by the re-
searcher, using evaluations for this, including the number of experimental data, their
distribution, the purpose for which they are obtained, etc.

In the case of ternary systems, the Redlich and Kister model takes into account the
relation (3), which allows the calculation of deviations from the ideal behavior for binary
mixtures and Equation (4) for ternary mixtures [26].

∆Y1,2,3 = ∆Y1,2 + ∆Y1,3 + ∆Y2,3

+x1·x2·x3

[
A0,123 + A1,123·x1·(x2 − x3) + A2,123·x2

1·(x2 − x3)
2 + A3,123·x3

1·(x2 − x3)
3
] (4)

where ∆Y1,2, ∆Y1,3, and ∆Y2,3 are the deviations for binary mixtures, x1, x2, and x3 are the
mole fractions, and A0,123, A1,123, A2,123, and A3,123 are the coefficients in the polynomial
equation for ternary mixtures.

The relation between viscosity deviation, composition, normalized temperature,
and refractive index was evaluated using multiple linear regression (MLR) and artificial
neural networks.

The viscosity deviation calculated based on the experimental determinations of the
viscosity of pure compounds and binary and ternary mixtures was modeled by statistical
processing of the experimental data with the multiple linear regression method (MLR).
The use of Sigmaplot 11 software (Systat Software Inc., San Jose, CA, USA) allowed estab-
lishment of the dependence between the viscosity deviation (dependent variable) and the
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composition (X1 şi X2), the normalized temperature (T/273.15), and the refractive index
(independent variables).

Modeling with the help of neural networks was carried out with the Neurosolutions
commercial simulator produced by the NeuroDimension company (NeuroDimension Inc.,
Boston, MA, USA). This simulator has the advantage of providing users with a set of
neuron models, data set interaction models, and training algorithm models. They are easy
to use and have a visual representation that allows the user to easily build their neural
network structure. Through a graphic interface, the software provides elementary blocks
that, when combined, can generate various neural architectures. In this study, neural
models of multilayer perceptrons were built. The type of transfer function selected was
TanhAxon and learning rule momentum.

The methodology for modeling the viscosity deviation based on experimental deter-
minations of the refractive index and viscosity at different temperatures and mole fractions
of n-hexanol and benzyl alcohol involves following the steps shown in Scheme 1.
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The performance evaluation of the built models was carried out by calculating the
standard deviation with the following relationship:

σ =

√√√√ k

∑
i=1

[
∆ηexperimental − ∆ηmodel

]2
/(n − p) (5)

where n represents the number of experimental data and p is the number of parameters.
The performances of the built neural models were evaluated based on the mean

squared error (MSE) and the correlation coefficient (r2):

MSE =
(
∑P

j=1 ∑N
i=1

(
Dij − Oij

)2
)

/(N·P) (6)
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where N is the number of data, P is the number of output quantities (in this case, P = 1), Oij
is the output value for element i with element j processing, and Dij is the desired output for
i with element j processing;

r2 =
∑
(
Oexpi − Oexp

)
·
(
Oneti − Onet

)√
∑
(
Oexpi − Oexp

)2·
(
Oneti − Onet

)2
(7)

where O are the values of the output data, respectively, and exp and net denote the
experimental values and those obtained from neural models.

Other regression algorithms were also used for comparison: nearest neighbor (NN),
k-nearest neighbor (kNN), K*, support vector regression (SVR), and random forest. For
the kNN algorithm that searches for the most suitable training examples in the feature
space and then uses their average as a prediction, k = 3 or 10 neighbors and the inverse
distance function: wi = 1/di were used, and in the NN algorithm, k = 1 was considered. For
the K* algorithm, the global parameter gb = 10, 20, or 50 was considered. This parameter
can be considered a sphere of influence that implicitly specifies how many neighbors are
significant [27]. Support Vector Regression (SVR) is a method that seeks to minimize error
by finding output values that lie within a given range. Three types of kernels were used:
polynomial, Radial Basis Function (RBF), and Pearson Universal Kernel (PUK); and cost
parameters C = 100 or 10,000. This cost parameter controls the strictness of the objective
function that is optimized by the algorithm. If a greater value is used for C, there will be a
smaller margin of error, but it results in a lower generalizability [27]. The random forest
algorithm involved 100 or 1000 decision trees. Each decision tree calculates an output value,
and the forest ensemble calculates the average of these individual values [27].

3. Results and Discussions
3.1. Experimental Determination of Thermodynamic Properties for Binary and Ternary Systems

The ternary graph presented in Figure 1 indicates that experimental determinations
were made for the entire range of variation of mole fractions for the benzyl alcohol (1)—
n-hexanol (2) binary system and in the field of dilute solutions for the benzyl alcohol
(1)—water (3) and n-hexanol (2)—water (3) binary systems and for the benzyl alcohol
(1)—n-hexanol (2)—water (3) ternary system.

Materials 2022, 15, x FOR PEER REVIEW 6 of 16 
 

 

The performances of the built neural models were evaluated based on the mean 

squared error (MSE) and the correlation coefficient (r2): 

MSE = (∑ ∑ (Dij − Oij)
2N

i=1
P
j=1 ) /(N⸱P)  (6) 

where N is the number of data, P is the number of output quantities (in this case, P = 1), 

Oij is the output value for element i with element j processing, and Dij is the desired 

output for i with element j processing; 

r2 =
∑(Oexpi−O̅exp)⸱(Oneti−O̅net)

√∑(Oexpi−Oexp)
2
⸱(Oneti−O̅net)

2
  (7) 

where O are the values of the output data, respectively, and exp and net denote the 

experimental values and those obtained from neural models. 

Other regression algorithms were also used for comparison: nearest neighbor (NN), 

k-nearest neighbor (kNN), K*, support vector regression (SVR), and random forest. For 

the kNN algorithm that searches for the most suitable training examples in the feature 

space and then uses their average as a prediction, k = 3 or 10 neighbors and the inverse 

distance function: wi = 1/di were used, and in the NN algorithm, k = 1 was considered. For 

the K* algorithm, the global parameter gb = 10, 20, or 50 was considered. This parameter 

can be considered a sphere of influence that implicitly specifies how many neighbors are 

significant [27]. Support Vector Regression (SVR) is a method that seeks to minimize er-

ror by finding output values that lie within a given range. Three types of kernels were 

used: polynomial, Radial Basis Function (RBF), and Pearson Universal Kernel (PUK); and 

cost parameters C = 100 or 10,000. This cost parameter controls the strictness of the ob-

jective function that is optimized by the algorithm. If a greater value is used for C, there 

will be a smaller margin of error, but it results in a lower generalizability [27]. The random 

forest algorithm involved 100 or 1000 decision trees. Each decision tree calculates an output 

value, and the forest ensemble calculates the average of these individual values [27]. 

3. Results and Discussions 

3.1. Experimental Determination of Thermodynamic Properties for Binary and Ternary Systems 

The ternary graph presented in Figure 1 indicates that experimental determinations 

were made for the entire range of variation of mole fractions for the benzyl alcohol 

(1)—n-hexanol (2) binary system and in the field of dilute solutions for the benzyl alcohol 

(1)—water (3) and n-hexanol (2)—water (3) binary systems and for the benzyl alcohol 

(1)—n-hexanol (2)—water (3) ternary system. 

 

Figure 1. Ternary graph for the system: benzyl alcohol (1)—n-hexanol (2)—water (3). Figure 1. Ternary graph for the system: benzyl alcohol (1)—n-hexanol (2)—water (3).

The viscosity values experimentally measured at different temperatures for pure com-
pounds are presented in Table 1, and those for binary and ternary mixtures are presented
in Table 2.
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Table 1. Viscosity of pure compounds (n-hexanol, benzyl alcohol, water) determined experimentally.

Substantance Temperature, K
Viscosity η, cP

Experimental Literature

n-hexanol

293.15 5.258 5.35 a; 5.362 c

303.15 3.890 3.84 b; 3.93 c

3.829 d

313.15 2.920 2.90 b; 2.95 c

2.879 d

323.15 2.240 2.23 b; 2.259 c

2.215 d

benzyl alcohol

293.15 6.430 6.287 h ; 6.421 k

303.15 4.735 4.1352 e; 4.4255 f;
4.689 g; 4.579 h;4.515 l

313.15 3.535 3.2061 e; 3.531 g

3.335 h

323.15 2.740 2.747 g; 2.545 h

water

293.15 0.989 1.016 i; 1.0050 j

303.15 0.789 0.7972 i; 0.8007 j

313.15 0.645 0.6527 i; 0.6560 j

323.15 0.548 0.5465 i

Standard uncertainties u are u(T) = ±0.01 K and u(η) = ±0.02 cP; a [4], b [28], c [9], d [10], e [29], f [30], g [31], h [14],
i [32], j [33], k [11], l [12].

Table 2. Viscosity of binary and ternary mixtures of: benzyl alcohol (1), n-hexanol (2) and water (3).

System X1 X2 η, cP

Temperature, K 293.15 303.15 313.15 323.15

binary
benzyl alcohol—water

0.0012 0 0.981 0.806 0.658 0.548
0.0023 0 0.997 0.815 0.664 0.553
0.0031 0 1.020 0.829 0.676 0.564
0.0040 0 1.030 0.840 0.683 0.569
0.0051 0 1.050 0.850 0.690 0.572
0.0059 0 1.060 0.861 0.699 0.576

binary
benzyl alcohol—n-hexanol

0.0989 0.9011 5.103 3.775 2.845 2.198
0.2037 0.7963 4.983 3.710 2.820 2.183
0.2991 0.7009 4.970 3.690 2.813 2.190
0.3997 0.6003 5.015 3.740 2.843 2.223
0.4978 0.5022 5.045 3.770 2.865 2.243
0.5985 0.4015 5.170 3.848 2.938 2.300
0.7036 0.2964 5.308 3.963 3.023 2.348
0.7869 0.2131 5.540 4.113 3.130 2.440
0.8958 0.1042 5.885 4.343 3.288 2.560

binary
n-hexanol—water

0 0.0011 0.969 0.794 0.649 0.540
0 0.0009 0.971 0.790 0.646 0.538
0 0.0007 0.986 0.809 0.664 0.556
0 0.0005 0.971 0.799 0.657 0.550
0 0.0003 0.970 0.798 0.654 0.548
0 0.0001 0.967 0.796 0.651 0.545

ternary
benzyl alcohol—n-hexanol-water

0.0003 0.0033 1.030 0.835 0.683 0.572
0.0002 0.0013 0.989 0.808 0.663 0.584
0.0003 0.0059 1.070 0.864 0.703 0.585
0.0003 0.0053 1.060 0.857 0.699 0.581
0.0004 0.0043 1.040 0.846 0.688 0.572
0.0006 0.0038 1.030 0.833 0.681 0.567

Standard uncertainties u are u(T) = ±0.01 K and u(η) = ±0.02 cP.
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Table 1 reports the experimental data from this study to other data provided by the
specialized literature. Close values with those reported by other researchers at the same
temperature are found for the viscosities of the pure compounds.

The viscosity of the binary and ternary mixtures, according to the results presented
in Table 2, decreases as the temperature increases from 293.15 to 323.15 K. In the case
of the benzyl alcohol (1)—water (2) binary system, the viscosity increases slightly with
the increase in the molar fraction of benzyl alcohol at the same temperature. For the
benzyl alcohol (1)—n-hexanol (2) binary system, the viscosity decreases slightly up to
molar fractions X1 = 0.3, and then, due to the intensification of the interactions between the
components, the viscosity increases with the increase of the molar fraction of benzyl alcohol
at the same temperature. In this binary system, the predominant interactions between the
molecules of benzyl alcohol and n-hexanol are of the type (O . . . H—O), but there can also
be weaker dipole-dipole interactions [34]. For the n-hexanol-water binary system and the
ternary system, the viscosity varies less with composition at the same temperature.

The deviation from the ideal behavior is highlighted by the viscosity deviation (∆η)
(Figure 2), defined by relation (8):

∆η = η −
n

∑
i=1

xiηi (8)

where n varies from 1 to 3, η is the viscosity of binary/ternary systems, ηi is the viscosity of
pure compounds, and xi is the mole fractions.

According to the values obtained for the viscosity deviation graphically represented in
Figure 2, the binary and ternary systems containing water generally give positive deviations,
and the benzyl alcohol (1), n-hexanol (2) binary system gives negative deviations from the
ideal behavior. In systems containing water, positive viscosity deviations can be attributed
to specific interactions between different molecules in the mixture [35]. In the benzyl
alcohol (1)—n-hexanol (2) binary system, negative values appear due to the disruption or
breaking of the associative bonds of the molecules [9]. For this binary system (Figure 3)
lower and lower values of the viscosity deviation are found as the temperature increases
and a minimum is observed near the equimolar composition.

The refractive index is determined experimentally quite easily but also with a fairly
good measurement precision and with a small consumption of materials. According
to specialized literature, models can be built that correlate this parameter with other
properties that are much more difficult to measure, such as density, surface tension, or
viscosity [18,19,36]. For the binary and ternary systems [36] analyzed in this study, the
refractive index (Figure 4) varies depending on composition and temperature between
1.3 and 1.6.
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3.2. Statistical Analysis of Experimental Data and Construction of Training and Validation Sets

The statistical processing of the experimental data was carried out with the special-
ized program SigmaPlot 11.00. The program allowed the determination of mean values,
standard deviation, and standard mean error. Also, the confidence interval of the mean, the
amplitude, the minimum and maximum values, the median, and the distribution interval
of 25% and 75% of the data were established. The evaluation of the normal distribution of
the data was carried out by the Skewness and Kurtosis tests, the Kolmogorov–Smirnov test,
the Shapiro–Wilk test, and by calculating the sum of the data and the sum of squares [27].
According to the data presented in Table 3, there are no missing data. The analysis of
the distribution of the experimental data (Skewnss) reveals a positive asymmetry for the
mole fractions, the normalized temperature, and the refractive index and a negative one
for the viscosity deviation. The Kolmogorov–Smirnov normality test was also applied,
which quantifies the degree of overlap between the cumulative distribution of the analyzed
variables and the cumulative distribution of the variable that follows the shape of the
Gaussian curve. The obtained values indicate a normal distribution of the experimental
data and the fact that they are statistically significant (p < 0.001), an aspect confirmed by
the results obtained with the Shapiro–Wilk normality test.
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Table 3. Statistical description of the database.

No.
Col Size Missing Mean Std Dev Std. Error C.I. of

Mean Range Max Min Median

1 108 0 0.167 0.278 0.0268 0.0531 0.896 0.896 0.000 0.0022
2 108 0 0.168 0.280 0.0269 0.0533 0.901 0.901 0.000 0.0033
3 108 0 1.128 0.041 0.0039 0.0078 0.110 1.183 1.073 1.128
4 108 0 1.384 0.066 0.0063 0.0126 0.192 1.527 1.334 1.341
5 108 0 −0.111 0.224 0.0216 0.0428 0.866 0.0687 −0.797 0.0134

No.
Col

25
%

75
% Ske-Wnss Kur-Tosis K-S Dist. K-S

Prob.
Shapiro–

Wilk
Shapiro–Wilk

Prob. Sum Sum of
Squares

1 0.000160 0.299 1.467 0.717 0.385 <0.001 0.649 <0.001 18.031 11.293
2 0.000146 0.296 1.466 0.725 0.386 <0.001 0.651 <0.001 18.174 11.421
3 1.092 1.165 0.000 −1.367 0.172 <0.001 0.856 <0.001 121.839 137.36
4 1.338 1.447 0.942 −0.887 0.390 <0.001 0.703 <0.001 149.443 207.25
5 −0.230 0.0307 −1.539 1.420 0.328 <0.001 0.729 <0.001 −11.964 6.707

Col 1-x1, Col 2-x2, Col 3—normalized temperature, Col 4—refractive index, Col 5—viscosity deviation.

3.3. Modeling the Thermodynamic Properties of Excess with the Redlich and Kister Model

To model the viscosity deviation, the applicability of the Redlich and Kister (R-K)
polynomial model was verified, which correlates this thermodynamic quantity with the
composition (relations 3 and 4). The coefficients A0...A3 and the standard deviation for
these models are presented in Table 4. Figure 3 compares the values calculated based on
the experimental determinations for the viscosity deviation and those obtained from the
Redlich and Kister (R-K) model for the benzyl alcohol (1)—n-hexanol (2) binary system. It
is found that the experimental values are very close to those calculated with the R-K model,
and the standard deviations are between 0.0069 and 0.0161.

If we analyze the standard deviations shown in Table 4, we find very good performance
for this type of model for all the evaluated systems, but its disadvantage is the fact that
it requires one equation for each temperature, a lot of calculations to obtain them, and
respectively, a longer experimental data processing time.

Table 4. Parameters and standard deviation for the Redlich and Kister model.

System Temperature,
K A3 A2 A1 A0 σ

benzyl alcohol—water

293.15 2.482 × 107 7.366 × 107 7.366 × 107 2.402 × 107 0.0022
303.15 −3.616 × 107 −1.075 × 107 −1.066 × 108 −3.523 × 107 0.0024
313.15 −2.012 × 107 −5.986 × 107 −5.936 × 107 −1.962 × 107 0.0021
323.15 −1.608 × 107 −4.788 × 107 −4.752 × 107 −1.572 × 107 0.0021

benzyl alcohol—n-hexanol

293.15 −0.542 −1.049 −0.577 −3.154 0.0161
303.15 −0.426 −0.940 −0.315 −2.139 0.0098
313.15 −0.107 −0.627 −0.207 −1.425 0.0080
323.15 −0.047 −0.465 −0.215 −0.994 0.0069

n-hexanol—water

293.15 3.743 × 1010 1.121 × 1011 1.118 × 1011 3.723 × 1010 0.0039
303.15 −4.526 × 1010 −1.355 × 1011 −1.353 × 1011 −4.505 × 1010 0.0068
313.15 −1.305 × 1010 −3.909 × 1010 −3.903 × 1010 −1.299 × 1010 0.0025
323.15 −1.269 × 1010 −3.803 × 1010 −3.797 × 1010 −1.263 × 1010 0.0047

benzyl alcohol—n-hexanol-water

293.15 −4.492 × 1015 −5.523 × 1012 −2.059 × 109 −2.023 × 105 0.0039
303.15 6.036 × 1015 7.833 × 1012 3.312 × 109 4.866 × 105 0.0059
313.15 4.092 × 1015 5.366 × 1012 2.297 × 109 3.417 × 105 0.0047
323.15 1.627 × 1016 2.089 × 1013 8.557 × 109 1.129 × 106 0.0126

1-benzyl alcohol, 2-n-hexanol, 3-water; for the ternary system A0,123 . . . A3,123 (Equation (4)).

3.4. Multiple Linear Regression (MLR) Method

In previous studies [18,19,36], it was demonstrated that good results were obtained
for the correlation of excess thermodynamic properties with normalized temperature,
refractive index, and mole fractions, with the help of models obtained by the multiple linear
regression method.
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In this study, for modeling the viscosity deviation, an MLR model was built for which
the standard deviation is 0.099, the correlation coefficient is 0.898, and most of the values
obtained are located within a confidence interval of ±17% (Figure 5). The proposed MLR
model has the following mathematical expression:

∆η = −0.301 − (0.315·X1) − (0.283·X2) + (1.259·T/273.15) − (0.816·n) (9)
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3.5. Modeling with Neural Networks

To build the training and validation data sets, the mixing of the 108 available data
series was used. For this purpose, their processing in Excel was used by generating random
numbers for the experimental data, which were then ordered in ascending or descending
order, thus resulting in a good mixing of them. To generate the random numbers, the
following expression “=INT(n*RAND()+1)” was used, where n is a number equal to or
greater than the number of experimental data. A total of 87% of the available data were
used for training and 13% were used in the validation stage.

After mixing the 108 available experimental data, according to the mentioned algo-
rithm, 93 data were used in the training stage. Neural models were built with four neurons
in the input layer, one or two layers of hidden neurons, and one output. To avoid overtrain-
ing the neural models, the variation of the mean squared error (MSE) with the increase in
the number of epochs was followed, and it was determined that the optimal number of
training epochs is 60,000. For all the neural models, this result was taken into account, and
their performances are presented comparatively in Table 5.

The neural model containing 4 neurons in the input layer, 12 neurons in the hidden
layer, and one neuron in the output layer led to the best performance in the training stage.
Figure 6 compares the experimental data with those provided by the ANN(4:12:1) model in
the testing stage.
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Table 5. The structure of neural models and the performances obtained in the training stage.

No. Topology MSE r2 The Duration of the
Training Process (min)

1. ANN(4:4:1) 0.000422 0.998279 1.38
2. ANN(4:8:1) 0.000232 0.999430 1.55
3. ANN(4:12:1) 0.000204 0.999512 1.37
4. ANN(4:16:1) 0.000248 0.999391 1.29
5. ANN(4:20:1) 0.000239 0.999412 2.11
6. ANN(4:8:4:1) 0.000245 0.999426 2.19
7. ANN(4:12:4:1) 0.000227 0.999442 2.37
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The calculated standard deviation for the ANN(4:12:1) model in the testing stage with
relation (5) is 0.0067, and the correlation coefficient is 0.999.

For the neural model validation stage, 15 series of experimental data were used.
According to the representation in Figure 7, very good results are obtained, and the values
calculated with the ANN(4:12:1) model for the viscosity deviation are very close to the
experimental values. The standard deviation in this step of neural model validation is
0.0226, and the correlation coefficient is 0.996.

If we compare the results obtained with the ANN(4:12:1) model, with those given
by the previously presented MLR model, we see the clearly superior performance of the
neural model. The standard deviation for the neural model is several times smaller than
for the MLR model, and the correlation coefficient is higher than 0.99 for ANN compared
to 0.898 for MLR.
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3.6. Modeling with Regression Methods

On the same database, modeling was done with different regression methods: nearest
neighbor (NN), k-nearest neighbor (kNN), K*, support vector regression (SVR), and ran-
dom forest. The results of the regression with different algorithms and combinations of
parameter values are presented in Table 6. In this table, both the results obtained in the
training stage and in the cross-validation are presented.

Table 6. The results obtained with several regression algorithms.

Algorithm Training Cross-Validation

kNN (k = 3, wi = 1/di) 0.9999 0.9715
kNN (k = 10, wi = 1/di) 0.9996 0.9616
NN (k = 1) 1 0.9629
K* (gb = 10) 0.9996 0.9718
K* (gb = 20) 0.9981 0.9711
K* (gb = 50) 0.9860 0.9549
SVR (C = 10,000, PUK) 0.9997 0.9978
SVR (C = 100, poly d = 2) 0.9880 0.9785
SVR (C = 100, RBF γ = 1) 0.9994 0.9971
Random Forest (100 trees) 0.9981 0.9819
Random Forest (1000 trees) 0.9982 0.9842

Similar results to neural models were obtained in the cross-validation stage with
two of the SVR models, respectively with radial basis function (RBF) kernels with cost
parameter C = 100 and Pearson universal kernel (PUK) with C = 10,000.

4. Conclusions

With high-performance equipment, i.e., the Physica MCR 501 modular rheometer,
equipped with a CC27 concentric cylinder measuring system, at a shear rate of 10 s−1 and
at temperatures of 293.15, 303.15, 313.15, and 323.15 K, the viscosities for pure compounds
and binary and ternary mixtures of benzyl alcohol, n-hexanol, water, were determined.
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The viscosity deviation was calculated, which has negative values for the benzyl
alcohol (1)-n-hexanol (2) binary system and generally positive values for the binary and
ternary systems containing water. A database was created that was statistically processed
and with the help of which models were built that correlate viscosity deviation with
temperature, composition, and refractive index.

Very good results were obtained with the ANN(4:12:1) model. The viscosity deviation
values are very close to the experimental ones; the standard deviation in the test stage is
0.0067, and in the validation stage, it is 0.0226. The correlation coefficients are 0.999 in the
testing stage and 0.996 in the validation stage. In the cross-validation stage, close results
were also obtained with two regression models, namely SVR (C = 100, RBF γ = 1) and SVR
(C = 10,000, PUK).

The results obtained with the MLR model are worse than those obtained with the
neural model and the Redlich and Kister type model. The standard deviation is 0.099, and
the correlation coefficient is 0.898 for the MLR model. Its advantage over those of Redlich
and Kister type polynomials is that a single equation is obtained that correlates the viscosity
deviation with temperature, composition, and refractive index.
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