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Abstract: Magnesium phosphate cement-based reactive powder concrete (MPC-RPC) is a cement-
based material with early strength, high strength and excellent durability. The slump flow and setting
time of steel fibers reinforced MPC-RPC are investigated. Meanwhile, the flexural strength, the
compressive strength, the ultrasonic velocity and the electrical resistivity of specimens cured for
3 h, 1 day, 3 days and 28 days are determined. Moreover, the corresponding corrosion resistance
reinforced MPC-RPC exposing to NaCl freeze-thaw (F-T) cycles and dry-wet (D-W) alternations is
researched. In this study, the steel fibers used are 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% by
the volume of MPC-RPC. The corrosion of the inner reinforcement is reflected using the mass loss,
electrical resistivity, ultrasonic velocity, and the AC impedance spectrum. Researching findings show
that the steel fibers lead to decreasing the slump flow and setting time. The flexural strength, the
compressive strength and ultrasonic velocity of MPC-RPC cured for 3 h are higher than 45% of the
MPC-RPC cured for 28 days. Moreover, when the MPC-RPC is cured for 7 days, the flexural strength,
the compressive strength and ultrasonic velocity of MPC-RPC are higher than 85% of the specimens
cured for 28 days. The electrical resistance decreases in a quadratic function as the volume ratio
of steel fibers increases. The corrosion resistance of the internal reinforcement can be improved
by adding steel fibers at appropriate dosages. The reinforcement inner MPC-RPC corrodes more
seriously under the NaCl D-W alternations than NaCl F-T cycles.

Keywords: magnesium phosphate; reactive powder concrete; NaCl freeze-thaw cycles; NaCl dry-wet
alternations; corrosion resistance

1. Introduction

Cement concrete is a type of material with high mechanical properties and good
durability, which has been used in civil engineering industry for many years [1,2]. Recently,
the frequent construction of large marine concrete structures provides a platform for the
development and application of cement concrete [3]. The sea crossing bridge is the hub
of coastal cities, which usually encounters complex application environment similar to
scouring, dry-wet (D-W) alternations and freeze-thaw (F-T) cycles of seawater [4–6]. The
expansion joint anchorage zone of sea crossing bridge encounters the action of complex
loads. Due to the erosion by sea water and the complex loads, the cement concrete of the
anchorage zone of bridge expansion joint materials is frequently damaged.

Sulphoaluminate cement matrix, the Portland cement matrix, the magnesium phos-
phate cement matrix and compound cement matrix are usually applied in the rapid repair-
ing of cement concrete constructions [7–11]. Sulphoaluminate cement-based materials have
been proved to possess quite high mechanical strength at early curing age (less than 1 d) [3].
However, the mechanical strength at later curing age is lower than that of Portland cement
concrete. Meanwhile, the durability of magnesium phosphate cement matrix in marine
environment is inferior [12]. Portland cement-based materials with early strength agent and
the compound cement matrix show better later mechanical strength and durability than
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the cement concrete with only sulphoaluminate cement. This kind of concrete is unable to
open to traffic until the curing age reaches 3 days.

Magnesium phosphate cement matrix is generally manufactured by combining the
magnesium oxide and potassium dihydrogen phosphate [13,14]. This kind of cement
matrix is simple to prepare and has good mechanical properties and durability [15–18].
Moreover, the magnesium phosphate cement matrix shows excellent bonding performance
and impermeability. Du’s research pointed out that the addition of MgCl2 can be used
for delaying the setting of magnesium phosphate cement and reducing the corresponding
early cracks and the drying shrinkage rate [11]. Zhang et al. [19] found that the magnesium
phosphate cement shows good resistance to NaCl F-T cycles and acid and alkali resistance.
However, plain concrete is rarely used in real engineering.

When cement concrete is used in practical engineering, a certain amount of steel
bars needs to be prepared. The steel bars’ inner cement concrete is prone to corrosion
during service, due to the fact that the iron loses electrons to form iron compounds, and
the corrosion occurs [20–22]. When the steel bars reinforced cement concrete is applied
in the marine environment, the inner steel bars usually corrode seriously [23–27]. This is
because chloride ions corrode the passive film of the steel bars, resulting in the increased
corrosion [28,29]. The expansion joint is widely used mechanical connecting device with
complex external load. The magnesium phosphate cement-based materials are often
applied in the replacement of concrete in anchorage zone of bridge expansion joint. A
certain amount of reinforcement is usually prepared in the anchorage zone of bridge
expansion joint. Therefore, when the magnesium phosphate cement matrix is used for
replacing the anchorage zone, the corrosion of the inner steel bars should be considered.
However, little research about this has been reported.

As an ultra-dense material, reactive powder concrete (RPC) has been developed in
1990s. RPC usually consists of a large amount of mineral admixtures, which is applied to
improve the activity of the cementitious material thus increasing the mechanical strength.
Due to this reason, the blast furnace slag powder and fly ash serve as the mineral admixtures.
Additionally, the steel fibers can effectively the crack resistance of RPC, leading eventually
to improving the mechanical strength and durability [30]. Therefore, the steel fibers are
used in the RPC.

Magnesium phosphate cement RPC (MPC-RPC) may possess the advantages of fast
hardening, early strength, excellent later mechanical strength and corrosion resistance [31,32].
This kind of material may act as a perfect cement-based material applied in replacing
the cement concrete of anchorage zone of bridge expansion joint. The anchorage zone of
bridge composed by MPC-RPC may be corroded when exposed to the chloride corrosion
environment. Ultrasonic testing and electrical parameter methods are the nondestructive
testing methods, which may be well used for reflecting the corrosion resistance of reinforced
MPC-RPC. However, little attention about the corrosion resistance of reinforced MPC-RPC
under the chloride corrosion environment has been reported.

In this paper, the working performance, the flexural strength, the compressive strengths
and the electrical resistance of magnesium phosphate cement RPC are investigated. More-
over, the corresponding corrosion resistance of inner steel bars are researched. F-T cycles
and D-W alternations with 3% NaCl are provided as the erosive environment. This study
will develop new rapid hardening repair concrete, which may be well-applied in the marine
and civil engineering environment.

2. Experimental
2.1. Raw Materials

The potassium dihydrogen phosphate manufactured by Shandong jinyida Chemi-
cal Co., Ltd., Jinan, China is used for making the magnesium phosphate cement (MPC).
The purity and density of potassium dihydrogen phosphate are 98.5% and 2.238 g/cm3,
respectively. Another power material, pyrophoric magnesium oxide with the density of
3.58 g/cm3 and purity of 99.1% (Xi’an Haotian Bioengineering Co., Ltd., Xi’an, China) is
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added. Blast furnace slag powder (BFS) and fly ash (FA) are provided by Huixin min-
ing processing plant, Shijiazhuang, China. BFS shows the density of 2.9 g/cm3 and the
specific surface area of 436 m2/g, and the thermogravimetric loss rate of 1.7%. The SiO2
content of quartz sand is 99%, which is composed of three particle sizes (0.71 mm~1 mm,
0.35 mm~0.59 mm and 0.15 mm~0.297 mm), and the proportions of the three particle sizes
are 1:1.5:0.8, respectively. The water reducer used is polycarboxylic acid high-performance
water reducer (SP) produced by Henan Pingdingshan admixture Co., Ltd., Pingdingshan,
China. The water reduction rate can reach 40%. The dosage of water reducer is unified
as 1.33% of the total mass of cementitious materials (the sum of the mass of potassium
dihydrogen phosphate, magnesium oxide, BFS and FA), and the water binder ratio of MPC-
RPC is 0.15. Tables 1 and 2 show the cumulative passing rate and chemical composition of
raw materials, respectively. The particle passing percentage of raw materials is obtained by
screening experiment. The measuring process is carried out by the manufactory. Copper
plated steel fibers show the density of 7.85 g/cm3, the tensile strength of 3125 MPa, the
diameters of 0.10 mm~0.25 mm and the length of 10 mm~20 mm showing the average
diameter and length of 0.21 mm and 15 mm, respectively.

Table 1. Particle passing percentage of raw materials (%).

Materials 0.3 µm 0.6 µm 1 µm 4 µm 8 µm 64 µm 360 µm

BFS 0.03 0.1 3.5 19.6 35.0 97.9 100.0
Quartz sand 0.0 0.0 0.0 0.0 0.03 20.0 100.0

FA 12.3 41.7 66.2 100.0 100.0 100.0 100.0

Table 2. The chemical composition of cement (%).

Materials SiO2 Al2O3 FexOy MgO CaO SO3 K2O Na2O Ti2O Loss on Ignition

BFS 34.10 14.70 0.20 9.70 35.90 0.20 2.90 — — 2.30
Quartz sand 99.60 — 0.40 — — — — — — —

FA 55.00 20.00 6.00 10.20 4.50 0.11 1.26 2.13 0.06 0.74

2.2. Sample Preparation

Table 3 is the mix proportion of MPC-RPC per unit volume, which is used for making
the MPC-RPC. The percentages of admixtures are obtained from prior studies [9,17,19],
which are based on the maximum density theory. In addition, it is also convenient for
comparison with previous studies. The specimens are manufactured by the following steps.

Table 3. The mix of RPC per unit volume (kg/m3).

Samples Water MgO MgCl2 Borax K2HPO4 FA BFS Quartz Sand Steel Fibers

MPC-RPC-0 183.3 695.5 17.4 13.9 13.9 370.3 111.1 977.9 0
MPC-RPC-0.5 183.3 695.5 17.4 13.9 13.9 370.3 111.1 977.9 39.3
MPC-RPC-1.0 183.3 695.5 17.4 13.9 13.9 370.3 111.1 977.9 78.5
MPC-RPC-1.5 183.3 695.5 17.4 13.9 13.9 370.3 111.1 977.9 117.8
MPC-RPC-2.0 183.3 695.5 17.4 13.9 13.9 370.3 111.1 977.9 157.0
MPC-RPC-2.5 183.3 695.5 17.4 13.9 13.9 370.3 111.1 977.9 196.3
MPC-RPC-3.0 183.3 695.5 17.4 13.9 13.9 370.3 111.1 977.9 235.5

Firstly, the weighed dried raw materials (MgO, MgCl2, Borax, K2HPO4, FA and BFS)
are added to the Hobart A200C mixer and combined at the stirring speed of (107 ± 5) rpm
for 2 min. During the mixing, the steel fibers are scattered into the mixing pot in batches
and combined at the mixing speed of (198 ± 5) rpm for another 1 min, finally the mixed
liquids with water and water reducer are added to the mixing pot and 5 min stirring with
the mixing speed of (361 ± 5) rpm provided for stirring the MPC-RPC mixture. The fresh
MPC-RPC is used to measure the slump flow and setting time after the mixing is completed.
NLD-3 electric jumping table cement mortar fluidity tester is used for the measurement of
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slump flow. ZKS-100 mortar setting time tester is used for the measurement of the setting
of MPC-RPC. All measuring processes are referred in the published papers and the Chinese
standards GB/T2419-2005 and JGJ/T 70-2009 [33,34]. After the above testing, the fresh
MPC-RPC is poured into molds with sizes of 40 × 40 × 160 mm3 and 50 × 50 × 50 mm3 to
form specimens.

2.3. Measurement Methods
2.3.1. Mechanical Strengths

YAW-300E cement mortar compressive and flexural machine is used to measure the
flexural and compressive strengths of specimens with size of 40 × 40 × 160 mm3. After
the specimens are cured in the environment of 20 ◦C and relative humility of 99% for the
needed curing ages, the specimens are moved to the bending fixture with the flat and
smooth surface of test piece on the fixture. Then, load rate with 0.05 kN/s is provided for
the flexural strength. After the flexural specimen is broken, two fault blocks are moved to
the compressive fixture and the load with the loading rate of 2.4 kN/s is used [35]. The
measuring process of mechanical strengths is shown in Figure 1.
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2.3.2. Ultrasonic Velocity Test

Specimens with size of 50 × 50 × 50 mm3 are applied in the determination of ultra-
sonic velocity. The Jinghong CJ-10 intelligent nonmetal ultrasonic detector manufactured
by Cangzhou Jinghong Engineering Instrument Co., Ltd., Cangzhou, China is used for
the measurement of ultrasonic velocity. The vaseline is coupled with the surface of the
specimens before testing. Figure 2 shows the measurement of the ultrasonic velocity.
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2.3.3. AC Electrical Parameters Test

The electrical parameters of specimens are tested by TH2810D LCR digital electric
bridge (AC electrical resistance measurement) and PARSTAT 3000A electrochemical work-
station (Determination of AC impedance spectrum). The testing frequency, the voltage
and the sampling frequency of TH2810D are 104 Hz, 1 V and 10 Hz. The testing fre-
quency and voltage of PARSTAT 3000A electrochemical workstation are 105 Hz~1 Hz and
−10 mV~10 mV. Two pieces of 316 L stainless steel mesh with aperture’s diameter of 4 mm
serve as two electrodes. The distance between two electrodes is 40 mm. The measurement
of the electrical parameters are shown in Figure 3. The experimental details are described
in Wang’s paper [36,37].
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2.3.4. Corrosion of Steel Bars Inner MPC-RPC under NaCl Eroded Environment

The steel bars are embedded the center position of the MPC-RPC. The specimens are
under the NaCl F-T cycles’ environment with the NaCl concentration of 3%. Fully auto-
matic control concrete rapid freezing and thawing test box with the temperature range of
−25 ◦C~50 ◦C and unit operating power of 5.5 kW is used for the freeze-thaw experiment.
24 days’ standard curing condition is provided for the specimens. After this, some specimens
are immersed in the solution containing 3% NaCl for 4 days and are moved to the rapid
freezing and thawing test box with the working temperature of −15 ◦C~8 ◦C. Some other
specimens are used for the experiment of D-W alternations of NaCl solution. Firstly, the
specimens are immersed in the NaCl solution for 10 h, then the specimens are dried in the
DHG series vertical 300 ◦C blast drying oven with the temperature of 60 ◦C for 36 h. Finally,
the specimens are moved from the drying oven and cooled in the temperature of 20 ◦C and
relative humility of 40% for 2 h, until the next D-W cycle. The mass loss rate, the ultrasonic
velocity, the electrical resistance and the AC impedance spectrum of specimens during the
corrosion process are obtained. The measuring methods are the same as RPC specimens
without steel fibers. A 316 L stainless steel mesh serves as an electrode, meanwhile, the
embedded steel bar is used as another electrode. The experimental measurements of corrosion
of steel bars inner RPC are exhibited in Figures 4 and 5. In this study, 3 specimens are used for
the measurement of mechanical strength, and 6 specimens are applied in the test of electrical
parameters and ultrasonic velocity.
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3. Results and Discussions
3.1. The Workability of MPC-RPC

The slump flow and setting time of the MPC-RPC are shown in Figure 6. Figure 6
shows that when the ratio of steel fibers increases, the slump flow and the setting time
decrease. This is mainly because the steel fibers’ networks can prevent the flow of fresh
MPC-RPC paste [38]. Therefore, the slump flow of fresh MPC-RPC slurry will be decreased
due to the addition of steel fibers. Moreover, as depicted in Figure 6, the setting time of MPC-
RPC decreases with an increase in steel fibers ratio as the steel fibers may absorb some free
water, leading to decreasing the setting time of MPC-RPC. Moreover, the addition of steel
fiber will affect the physical state of MPC-RPC, thus decreasing the setting time of MPC-
RPC [39]. The values of error bars are lower than 0.096, which ensures the experiment’s
accuracy. The setting time of MPC-RPC ranges from 33.2 min to 56.1 min, which provides
sufficient operation time for construction. Meanwhile, the slump flow of fresh MPC-RPC is
121.4 mm~181.3 mm, which ensures the sufficient fluidity during pouring.
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3.2. The Mechanical Strengths of MPC-RPC 
As reported in References [3,9], the curing ages of 3 h, 1 day, 3 days and 28 days are 

usually used for reflecting the mechanical strength of magnesium phosphate cement-
based material. In order to facilitate comparison with previous studies, the curing ages of 
3 h, 1 day, 3 days and 28 days are selected. The flexural and compressive strengths of 
MPC-RPC are depicted in Figure 7. It can be observed in Figure 7, the flexural and com-
pressive strengths increase with the increasing steel fibers ratio and the curing age. The 
flexural strength of MPC-RPC cured for 3 h increases by 156.9%, when the steel fibers ratio 
varies from 0% to 3%. While, when the curing ages are 1 day, 3 days and 28 days, the 
increasing rates are 119.4%, 61.4% and 50%, respectively. Moreover, the increasing rates 
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3.2. The Mechanical Strengths of MPC-RPC

As reported in References [3,9], the curing ages of 3 h, 1 day, 3 days and 28 days are
usually used for reflecting the mechanical strength of magnesium phosphate cement-based
material. In order to facilitate comparison with previous studies, the curing ages of 3 h,
1 day, 3 days and 28 days are selected. The flexural and compressive strengths of MPC-RPC
are depicted in Figure 7. It can be observed in Figure 7, the flexural and compressive
strengths increase with the increasing steel fibers ratio and the curing age. The flexural
strength of MPC-RPC cured for 3 h increases by 156.9%, when the steel fibers ratio varies
from 0% to 3%. While, when the curing ages are 1 day, 3 days and 28 days, the increasing
rates are 119.4%, 61.4% and 50%, respectively. Moreover, the increasing rates of compressive
strength by steel fibers of specimens cured for 3 h, 1 day, 3 days and 28 days are 0~30.4%,
0~32.7%, 0~64.8% and 0~50%, respectively. When the curing age ranges from 3 h to 1 d,
the increasing rate of flexural strength of MPC-RPC is 3.8~21.5%. Meanwhile, when the
curing age ranges from 3 h to 28 days, the increasing rate of flexural strength of MPC-RPC
is 28.2~119.6%. Additionally, the maximum increasing rate of compressive strength by
curing age is 102.1%. Meanwhile, the maximum increasing rate of compressive strength
by the steel fibers ratio is 49.4%. This is attributed to the reason that the magnesium oxide
will react with potassium dihydrogen phosphate to form hydrated magnesium phosphate
rapidly [40–42], besides the mechanical strengths of MPC-RPC at low curing age is enough
high. The addition of steel fibers can bridge cracks inner MPC-RPC, thus improving
the mechanical strengths, especially the flexural strength. The values of error bars are
lower than 0.073, indicating the accuracy of experimental results. Compared with the RPC
prepared with sulphoaluminate cement, the flexural strength of MPC-RPC is reduced by
13.2~25.4%, and the compressive strength is increased by 10.6~31.3% [43]. The flexural
strength and compressive strength of MPC-RPC before 28 days are 25% higher than those of
RPC prepared with ordinary Portland cement. Meanwhile, when the curing age is 28 days,
the mechanical strengths of MPC-RPC are lower than that of RPC with Ordinary Portland
cement [44].
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3.3. The Ultrasonic Velocity of MPC-RPC

The ultrasonic velocity (v) of MPC-RPC after curing for 3 h, 1 day, 3 days and 28 days,
is shown in Figure 8. It can be noticed in Figure 8, as the curing age increases and steel
fibers are added, the ultrasonic velocity also increases. This is explained by the fact that
when the curing age increases, the amount of hydrated magnesium phosphate increases
and MPC-RPC become more compact, which increases the ultrasonic velocity [43]. More-
over, the increased dosages of steel fibers can improve the compactness of steel fibers’
networks, which results in increasing the ultrasonic velocity. In comparison to 80% of the
specimens that are cured for 28 days, the ultrasonic velocity of specimens cured for 3 h
is higher. Additionally, the ultrasonic velocity of blank specimens is higher than 81.7%
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of the specimens with 3.0% steel fibers. The flexural strength, the compressive strength
and ultrasonic velocity of RPC cured for 3 h are higher than 45% of the MPC-RPC cured
for 28 days. The flexural strength, the compressive strength and ultrasonic velocity of
MPC-RPC cured for 7 days are higher than 85% of the specimens cured for 28 days. The
values of error bars are all lower than 0.085, ensuring the precision of researching results.
The ultrasonic velocity of MPC-RPC is 5.4~11.3% lower than that of RPC with Ordinary
Portland cement [44,45]. The detailed data of Figures 6–8 have been provided by the graphs
be presented in the form of tables at the end of the article (Appendix A).
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3.4. Electrical Resistivity of MPC-RPC

The electrical resistivity (ρ) of MPC-RPC is shown in Figure 9. As illustrated in Figure 9,
the electrical resistivity of MPC-RPC decreases in the form of quadratic function. The fitting
results of the relationship between ρ and V are listed in Table 4, and it can be seen that the
fitting degree is higher than 0.99, which verifies the rationality of the fitted equation. When
the volume ratio (V) of steel fibers increases from 0% to 1.5%, the electrical resistivity of
MPC-RPC drops obviously. This is ascribed to the fact that the conductive fiber networks
come into being, therefore, the electrical resistivity is very sensitive to the increase of steel
fibers’ content [46]. While, when the steel fibers’ volume ratio is higher than 1.5%, the
electrical resistivity of MPC-RPC tends to be stable, due to the complete conductive fibers’
network. Hence, the increasing steel fibers’ ratio has little influence on the conductive
performance of MPC-RPC.
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Figure 9. Electrical resistivity of MPC-RPC.
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Table 4. The fitting results of the relationship between ρ and V.

Equation Curing Age a b c R2

ρ = aV2 + bV + c

3 h 182.56 −992.64 1403.84 0.99
1 day 589.15 −2863.59 3506.89 0.99
3 days 832.44 −4457.68 6240.32 0.99
28 days 998.57 −5745.31 8735.05 1.00

3.5. Corrosion Resistance of Steel Bars Inner MPC-RPC

The mass loss rate (∆m/m) of reinforced MPC-RPC during NaCl F-T cycles(N) is
illustrated in Figure 10. The fitting results of the relationship between (∆m/m) and the N
are shown in Table 5. Figure 10 shows that as the number of NaCl F-T cycles (N) increases,
so does the mass loss rate of reinforced MPC-RPC. This is explained by the fact that
frozen-heave stress can make the surface on the cement concrete spall [47]. Moreover, the
chloridion can corrode the steel bars and steel fibers inner MPC-RPC thus causing cracking
of MPC-RPC and reducing the mass of MPC-RPC. When the steel fibers’ ratio varies from
0% to 2.0%, the mass loss increases up as the dosage of steel fibers is increased, due to
the fact that the steel fibers enhance the loss of electronic capability. When the dosage of
steel fibers is 2.0%~3.0%, the mass loss rate of reinforced MPC-RPC decreases with the
increasing steel fibers’ ratio. This is explained by the ability of the steel fibers to bridge
internal cracks in MPC-RPC, which decreases the mass loss of MPC-RPC [48].
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Figure 10. The mass loss rate of reinforced MPC-RPC during NaCl F-T cycles.

Table 5. The fitting results of the relationship between (∆m/m) and the N.

Equation Steel Fibers’ Ratio a b c R2

∆m
m = aN2 + bN + c

0% 3.90 × 10−5 3.56 × 10−3 −0.29 0.97
0.5% 3.63 × 10−5 4.69 × 10−3 −0.11 0.99
1.0% 3.35 × 10−5 6.26 × 10−3 −0.077 0.99
1.5% 3.13 × 10−5 6.95 × 10−3 −0.049 0.99
2.0% 2.86 × 10−5 8.22 × 10−3 −0.055 0.99
2.5% 2.67 × 10−5 4.19 × 10−3 −0.042 0.99
3.0% 2.78 × 10−5 2.05 × 10−3 −0.00595 1.00

The variation rate of ultrasonic velocity of MPC-RPC is illustrated in Figure 11. The
ultrasonic velocity decreases with the increasing number of NaCl F-T cycles, as shown in
Figure 11. This is explained by the fact that the NaCl F-T cycles can accelerate the MPC-RPC’s
crack propagation which blocks the propagation process of ultrasound [49,50]. Additionally,
the chloride ions will penetrate into MPC-RPC through the cracks developed by NaCl F-T
cycles thereby corroding the passive film of reinforcement and steel fibers thus accelerating
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the following corrosion [28,29]. Consequently, the cracks increase and the ultrasonic velocity
decreases. Moreover, as observed in Figure 11, in some conditions, the addition of steel
fibers lead to decreasing the ultrasonic velocity, due to the increasing dosages of steel fibers
can improve the electrical conduction of MPC-RPC, which accelerates the electrochemical
corrosion of the inner reinforcement. On the other hand, the increasing dosage of steel
fibers can limit the cracking of cracks, which increases the ultrasonic velocity [51]. The
values of error bars are lower than 0.1, which exhibits accurate experimental results.
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Figure 12 presents the electrical resistivity of MPC-RPC. It is apparent from Figure 12
that the electrical resistivity increases with the increasing NaCl F-T cycles(N). The relation-
ship between electrical resistivity and the number of F-T cycles is deduced as quadratic
function. The fitting results are exhibited in Table 6. As shown in Table 6, the fitting degrees
are higher than 0.99, thus proving the accuracy of the fitting equations. This is mainly
because the NaCl F-T cycles can increase the F-T cracks which blocks the migration of
conductive particles and increases the electrical resistivity of MPC-RPC [49,50]. Moreover,
the NaCl F-T cycles can accelerate the corrosion of reinforcement and steel fibers. The rust
inner MPC-RPC can prevent the electron transferring though reinforcement and steel fibers.
Moreover, the rust can block the channel of pore solution, thus increasing the electrical
resistivity [52,53]. Furthermore, the electrical resistivity of MPC-RPC is decreased by the
increase in the dosage of steel fibers due to the improved steel fibers’ network.
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Table 6. The fitting results of the relationship between ρ and the N.

Equation Steel Fibers’ Ratio a b c R2

ρ = aN2 + bN + c

0% 0.22 80.2 5670 1.00
0.5% 0.17 161 6190 0.99
1.0% 0.18 93.7 2000 1.00
1.5% 0.25 66.7 672 1.00
2.0% 0.23 34.1 703 1.00
2.5% 0.34 −18.6 896 0.99
3.0% 0.34 −43.4 1210 0.99

The mass loss rate of reinforced MPC-RPC during NaCl D-W alternations (n) is
exhibited in Figure 13. As can be seen in Figure 13, the mass loss rates of all curves increase
as a quadratic function with the NaCl D-W alternations. The fitting results are shown
in Table 7. It can be found in Table 7, the fitting degrees are higher than 0.99, therefore,
the fitting equation is reasonable. This is due to the fact that the NaCl D-W alternations
can increase crystallization stress’ effect thus increasing the spalling of MPC-RPC and
decreasing the following mass. Moreover, the NaCl D-W alternations lead to accelerating
the corrosion of reinforcement and steel fibers, the rust by corrosion can induce the spalling
on the surface of MPC-RPC, which decreases the mass [54,55].
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Figure 13. Mass loss rate of steel bars reinforced MPC-RPC during NaCl D-W alternations.

Table 7. The fitting results of the relationship between (∆m/m) and n.

Equation Steel Fibers’ Ratio a b c R2

∆m
m = an2 + bn + c

0% 1.50 × 10−3 9.79 × 10−2 4.85 × 10−2 1.00
0.5% 1.80 × 10−3 5.29 × 10−2 3.90 × 10−2 0.99
1.0% 1.00 × 10−3 5.88 × 10−2 8.00 × 10−3 1.00
1.5% 1.20 × 10−3 4.72 × 10−2 2.20 × 10−2 1.00
2.0% 9.00 × 10−3 4.50 × 10−2 2.50 × 10−2 1.00
2.5% 8.30 × 10−4 3.56 × 10−2 3.05 × 10−2 0.99
3.0% 6.50 × 10−4 3.07 × 10−2 2.70 × 10−2 0.99

Figure 14 demonstrates the ultrasonic velocity of MPC-RPC during NaCl D-W alterna-
tions. It can be noticed from Figure 14 that the ultrasonic velocity of MPC-RPC decreases
with the increasing NaCl D-W alternations due to the increased inner cracks by NaCl D-W
alternations. Moreover, the increased steel fibers’ dosages can form dense networks inner
MPC-RPC, which increases the ultrasonic velocity of MPC-RPC.
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Figure 14. The ultrasonic velocity of MPC-RPC during NaCl D-W alternations.

Figure 15 shows the electrical resistivity of MPC-RPC during NaCl D-W alternations.
As depicted in Figure 15, the electrical resistivity of MPC-RPC increases with the increasing
number of NaCl D-W alternations. This is due to the fact that the NaCl D-W cracks
induced by NaCl D-W alternations can reduce the transmission speed of conductive
particles, therefore, the electrical resistivity of MPC-RPC is increased by the NaCl D-
W alternations [55]. Table 8 illustrates the fitting results. As illustrated in Figure 15 and
Table 8, the relationship between electrical resistivity of MPC-RPC and the number of
NaCl D-W alternations fits well with quadratic function. Moreover, the corrosion degree
of steel fibers and steel bars are increased by NaCl D-W alternations, resulting in a higher
electrical resistivity of MPC-RPC [56,57]. Furthermore, the electrical resistivity of MPC-RPC
is decreased with the increase in the increasing amount of steel fibers, due to the improved
conductive networks by steel fibers.
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Figure 15. The electrical resistivity of MPC-RPC during NaCl D-W alternations.

Figure 16 depicts the AC impedance spectrum curves of reinforced MPC-RPC. The
AC impedance spectrum curves consist of real part and imaginary part. The real part
represents the electrical resistance. Meanwhile, the imaginary part refers to the electrical
reactance. The imaginary parts of all curves firstly decrease and then increase with the
increasing real part. As illustrated in Figure 16, the values of extreme point move from
right to the left when the amount of steel fibers is increased, indicating enhanced electrical
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conduction. Moreover, it can be found in Figure 16, the NaCl F-T cycles and NaCl D-W
alternations lead to increasing the real parts’ values of the extreme point. This is due to the
increased electrical resistance by NaCl F-T cycles and NaCl D-W alternations, reflecting
that the corrosion degree of reinforcement has been accelerated [55]. Furthermore, the
increasing rate the values of extreme point by NaCl D-W alternations are higher than that
by NaCl F-T cycles.

Table 8. The fitting results of the relationship between ρ and the n.

Equation Steel Fibers’ Ratio a b c R2

ρ = an2 + bn + c

0% 4.15 1050 8450 1.00
0.5% 6.01 1050 5850 1.00
1.0% 0.186 147 4210 0.99
1.5% 7.19 228 2340 1.00
2.0% 0.277 190 1380 1.00
2.5% 0.505 0.811 654 1.00
3.0% 0.215 −0.14 434 1.00
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Figure 16. AC impedance spectrum curves of reinforced MPC-RPC. (a) Before corrosion. (b) After
300 NaCl F-T cycles. (c) After 30 NaCl D-W alternations.

Figure 17 shows the equivalent circuit diagram of reinforced MPC-RPC. The electric
circuit of reinforced MPC-RPC is consisted of three parallel electrical components (the
parallel electrical resistance and reactance of passive film, steel fibers and pore solution),
as detailed in Figure 17. The corresponding Chi-squared is lower than 0.01, indicating the
rationality of equivalent circuit diagram.
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Figure 17. AC impedance spectrum curves.

Figure 18 shows the electrical resistivity calculated by the equivalent circuit diagram of
Figure 17. As can be seen in observed from Figure 18, the electrical resistivity of passive film
increases when the addition of steel fibers increases from 0% to 0.5%, the electrical resistance
increases with amount of steel fibers used, due to the increased electrochemical corrosion
of inner steel bars [55]. However, when the dosages of steel fibers increase from 0.5% to
3.0%, the electrical resistivity of passive film decreases with the increasing steel fibers. This
is attributed to the improving effect of steel fibers on the corrosion resistance of steel bars.
Finally, it can be found that the electrical resistivity of the passive film of the specimens
after 30 NaCl D-W alternations is higher than that after 300 NaCl F-T cycles. Therefore, the
steel bars inner MPC-RPC corrode more seriously after 30 NaCl D-W alternations than that
after 300 NaCl F-T cycles.
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4. Conclusions

This paper aims to develop the rapid repairing cement-based material named MPC-
RPC. The corrosion resistance of reinforced MPC-RPC exposed to the environment of NaCl
F-T cycles and D-W alternations is systematically studied. The working performance and
mechanical properties of MPC-RPC are investigated. The corresponding corrosion resis-
tance of reinforced MPC-RPC exposed to the environment of is obtained. The conclusions
are derived as follows.

The slump flow and the setting time of fresh MPC-RPC are decreased by an increase in
the dose of steel fibers. The lowest slump flow and the setting time are 33.2 min and 121.4 mm.

The addition of steel fibers demonstrates positive effect on the flexural and compres-
sive strengths of hardened MPC-RPC. The flexural strength, the compressive strength and
ultrasonic velocity of RPC cured for 3 h are higher than 45% of the MPC-RPC cured for
28 d. The flexural strength, the compressive strength and ultrasonic velocity of MPC-RPC
cured for 7 d are higher than 85% of the specimens cured for 28 d. The increasing rate of
flexural strength by steel fibers of MPC-RPC cured for 3 h is 0%~156.9%, meanwhile, when
the curing ages are 1 d, 3 d and 28 d, the increasing rates are 0%~119.4%, 0%~61.4% and
0%~50%, respectively. Additionally, the increasing rates of compressive strength by steel
fibers of specimens cured for 3 h, 1 d, 3 d and 28 d are 0%~30.4%, 0%~32.7%, 0%~64.8%
and 0%~50%, respectively. The maximum increasing rate by steel fibers is 18.3%.

When the reinforced MPC-RPC is exposed to the NaCl F-T cycles and NaCl D-W
alternations, the mass loss rate and the electrical resistivity increase in the form with the
numbers of NaCl F-T cycles and NaCl D-W alternations. The electrical mechanism can
be explained by an equivalent circuit, which is tandem parallel electrical resistance and
reactance of pore solution, steel fibers and passive film. As obtained from the results of the
ultrasonic velocity, the mass loss rate, and the AC impedance spectrum, the steel fibers can
improve the corrosion resistance of reinforced MPC-RPC, except 0.5% steel fibers. Moreover,
the reinforced MPC-RPC corrodes more seriously exposed to NaCl D-W alternations than
NaCl F-T cycles.
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Appendix A

Table A1. The working performance of MPC-RPC.

Steel Fibers’
Ratio (%)

Slump Flow
(mm)

Error Bars’ Values
of Slump Flow

Setting Time
(min)

Error Bars’ Values of
Setting Time

Decreasing Rate of
Slump Flow (%)

Decreasing Rate of
Setting Time (%)

0.00 181.30 6.40 56.10 3.20 0.00 0.00
0.50 175.10 5.10 48.30 2.80 3.42 13.90
1.00 170.20 3.80 46.70 4.10 6.12 16.76
1.50 160.30 4.20 41.20 3.20 11.58 26.56
2.00 151.80 3.70 38.60 1.80 16.27 31.19
2.50 143.20 5.50 36.50 2.10 21.01 34.94
3.00 121.40 4.30 33.20 2.50 33.04 40.82

Table A2. The flexural strength strengths of MPC-RPC (MPa).

Steel Fibers’
Ratio (%) 3 h Error Bars of

3 h 1 Day Error Bars of
1 Day 3 Days Error Bars of

3 Days 28 Days Error Bars of
28 Days

0 5.1 0.36 6.2 0.48 10.1 0.57 11.2 0.88
0.5 5.8 0.41 6.5 0.53 10.9 0.65 12.4 0.94
1 7.1 0.55 7.6 0.59 11.3 0.86 13.2 1.05

1.5 10.1 0.79 10.8 0.86 13.2 0.91 14.2 1.03
2 11.8 0.98 12.7 0.98 14.1 0.84 15.3 0.92

2.5 12.4 1.01 13.1 1.01 15.6 1.21 16.1 0.89
3 13.1 0.86 13.6 0.95 16.3 1.33 16.8 1.06

Table A3. The compressive strength of MPC-RPC (MPa).

Steel Fibers’
Ratio (%) 3 h Error Bars of

3 h 1 Day Error Bars of
1 Day 3 Days Error Bars of

3 Days 28 Days Error Bars of
28 Days

0 35.8 1.44 37.9 1.92 53.1 2.28 62.3 3.52
0.5 38.1 1.64 39.6 2.12 61.3 2.6 71.5 3.76
1 40.3 2.2 42.1 2.36 71.6 3.44 76.8 4.2

1.5 43.1 3.16 44.6 3.44 80.3 3.64 87.1 4.12
2 45.2 3.92 47.1 3.92 86.1 3.36 91.3 3.68

2.5 46.1 4.04 48.9 4.04 87.3 4.84 92.6 3.56
3 46.7 3.44 50.3 3.8 87.5 5.32 93.1 4.24

Table A4. The ultrasonic velocity of MPC-RPC (m/s).

Steel Fibers’
Ratio (%) 3 h Error Bars of

3 h 1 Day Error Bars of
1 Day 3 Days Error Bars of

3 Days 28 Days Error Bars of
28 Days

0 3.8 0.36 4.12 0.32 4.201 0.26 4.38 0.32
0.5 3.85 0.32 4.23 0.34 4.35 0.31 4.41 0.27
1 3.96 0.35 4.28 0.26 4.41 0.28 4.48 0.21

1.5 4.01 0.28 4.31 0.22 4.45 0.35 4.52 0.35
2 4.12 0.36 4.42 0.31 4.48 0.33 4.58 0.28

2.5 4.23 0.31 4.51 0.27 4.54 0.39 4.63 0.31
3 4.31 0.29 4.53 0.26 4.58 0.25 4.65 0.33
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