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Abstract: Reactive material (RM) is a special kind of energetic material that can react and release
chemical energy under highly dynamic loads. However, its energy release behavior is limited by its
own strength, showing unique unsustainable characteristics, which lack a theoretical description.
In this paper, an impact-initiated chemical reaction model is proposed to describe the ignition and
energy release behavior of Al/PTFE RM. The hotspot formation mechanism of pore collapse was
first introduced to describe the decomposition process of PTFE. Material fragmentation and PTFE
decomposition were used as ignition criteria. Then the reaction rate of the decomposition product
with aluminum was calculated according to the gas-solid chemical reaction model. Finally, the
reaction states of RM calculated by the model are compared and qualitatively consistent with the
experimental results. The model provides insight into the thermal-mechanical-chemical responses
and references for the numerical simulation of impact ignition and energy release behavior of RM.

Keywords: reactive material; impact initiated chemical reaction; theoretical model

1. Introduction

Reactive material, fabricated by pressing/sintering polymer matrix (typically polyte-
trafluoroethylene) and active metal powders, has metal-like strength and explosive-like
reaction capability [1]. Due to its unique impact energy release characteristics, RM has been
widely studied and has developed novel military applications over the past decades [2,3].

Significantly different from that of traditional energetic materials such as explosives
and propellants, the energy release behavior of RM is closely related to its strength [4].
Under highly dynamic loads, RM is fragmented and scattered, and a local deflagrate
reaction occurs. However, the chemical reaction cannot spread in the dense material [5],
eventually causing the chemical reaction to be extinguished in the material. Therefore,
the existing models for explosives and propellants are not suitable for characterizing the
impact ignition and unsustainable chemical reaction process of RMs, and a new theoretical
model is urgently needed.

Due to the complex impact ignition and the chemical reaction process of RM, experi-
mental studies are widely used. For the impact ignition mechanism, Ames [6] suggested
that material fragmentation is a prerequisite for chemical ignition, and the energy release
behavior of RMs is determined by loading conditions, which is proved through vented
chamber experiments. Mock [7,8] proposed a stress-delay time mechanism as an ignition
criterion based on the Taylor impact test in a vacuum environment according to the first
flare time under different loading conditions. On this basis, Ge C [9,10] further found
that the impact ignition behavior of RM is related to the stress and strain rate of dynamic
loading conditions. Recently, Tang Le [11] proposed that the shock ignition of RM starts
from the local hotspot region based on the explosive loading test, and Jiang [12] calcu-
lated the relationship between impact ignition and porosity of RM based on the thermal
behavior of plastic work generated by pore collapse. To describe the chemical reaction
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of RM, the Arrhenius equation based on the combustion rate measured by differential
scanning calorimetry (DSC) is widely used to phenomenologically characterize the reaction
process [13–16]. However, although this increasing understanding can be used for reference,
the evolution that considers both the dynamic response and the energy release behavior of
RM still lacks description using a theoretical model.

In this paper, the dynamic response and energy release process of RM is divided
into two stages: impact ignition and chemical reaction. In the impact ignition stage,
the local temperature rise of the material was calculated based on the hotspot theory of
pore collapse, and the thermal decomposition rate of PTFE was calculated based on the
hotspot temperature. Complete failure and fragmentation of the material were taken as the
ignition criteria for reaction calculation. In the chemical reaction stage, the reaction rates of
PTFE decomposition products and aluminum were calculated using the gas-solid chemical
reaction model. According to the above analysis, a mechanical-thermal-chemical coupling
model was developed to describe the impact-initiated chemical reaction of RM. Based on
the data of inert numerical simulation, the reactive states of the RM rod were calculated
using the model and compared with the experimental results. This research can provide a
reference for further studies of numerical simulation on impact ignition and energy release
characteristics of fluoropolymer-based RM.

2. Evolution from Impact Ignition to Chemical Reaction

The impact ignition and energy release behavior of RM is a complicated process of
dynamic responses and chemical reactions. As experiments have revealed, the stable prop-
agation of chemical reactions can only take place in a powder RM with a low density (less
than 0.5 theoretical density) [5]. On the other hand, explosives [11] and lasers [17] cannot
cause a sustainable chemical reaction in condensed RM, and only high-speed impact and
fragmented materials lead to a wide range of reactions [18–21]. These results indicate that
material fragmentation is a prerequisite for large-scale and sustainable chemical reactions.
Therefore, in this paper, RM impact fragmentation was used as the criteria for reaction
initiation, and the impact-initiated chemical reaction of RM was divided into two stages:
impact ignition and chemical reaction, and the concept of the decomposition extent of PTFE
was used in both stages.

In the impact ignition stage, the temperature rise induced by uniform plastic defor-
mation of the material, could not heat the entire RM rod to a fire temperature or ignite
the chemical reaction. Ames [6] proposed that some additional energy related to the crack
propagation properties and the associated void collapse of RM is the key point to the
ignition process. Cai [22] analyzed the pore compression and temperature rise of porous
aluminum-rich PTFE/Al energetic materials under dynamic loads. They thought that
during the compression process, the temperature rise of the RMs near the pores is mainly
affected by the hole’s inner diameter and loading pressure. Since the RM is a void-rich
compressive sintering composite, it is a reasonable ignition mechanism that the chemical
reaction is initiated from local hotspots.

In the chemical reaction stage, considering that the chemical reaction cannot directly
take place between solid PTFE and Al, it is assumed that the chemical reaction occurs
between the gaseous decomposition products of PTFE and the solid Al granules. It should
be noted that the thermal decomposition process of PTFE has a variety of channels, among
which the main channel is to generate CF2 gas in the absence of oxygen [23]. Therefore, it is
assumed that all the thermal decomposition product of PTFE is CF2 gas, and the chemical
reaction can be simplified to the combustion reaction between gas and solid reactants.

Overall, a schematic of the typical impact-initiated chemical reaction process of RMs
is shown in Figure 1. In the impact ignition stage, there are some pores inside the initial
RM. Then, under highly dynamic loads, the material around the pores generates a local
hot region (Figure 1a) due to the work of plastic deformation and collapse shear. The
PTFE around the hotspot decomposes (Figure 1b) to produce oxidizing gas reactant CF2
after exceeding the threshold decomposition temperature. Subsequently, the material is
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fractured (Figure 1c) and the CF2 gas is released while exposing the aluminum particles to
the gaseous reactant atmosphere and taking on a chemical reaction. In the chemical reaction
stage, there is a reaction boundary layer on the surface of the solid aluminum particle. The
decomposition product CF2 is transferred through the boundary layer to the surface of
the aluminum reaction core as a reactant (Figure 1d). The Al reaction core is consumed
at a consumption rate ν (Figure 1e), and the reaction product AlF3 flows out through
the boundary layer. Then, the energy released by the chemical reaction will push up the
temperature of the surrounding PTFE. If the temperature could exceed the decomposition
temperature of PTFE (approximately 750 K from Ref. [15]), more CF2 gas would be released,
thus providing enough gaseous reactants for further chemical reactions in the reaction
region, and finally, all materials could react completely. Otherwise, the chemical reaction
stops when all the CF2 gas is consumed. Next, we will establish theoretical models for the
impact ignition stage and the chemical reaction stage of RM, respectively.
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Figure 1. Typical impact ignition and chemical reaction process of RM.

3. Impact Ignition Behavior of RM
3.1. Hotspot Formation Caused Temperature Rise

To characterize the impact ignition behavior described above, the elastic-viscoplastic
single spherical shell collapse model was adopted to describe the hotspots formation
inside the RM during the dynamic loads. In the study of the explosive impact ignition
problem, Kim [24,25] proposed that the temperature rise of materials around the hotspots is
caused by mechanical deformation, heat conduction, and chemical reaction energy release.
For fluoropolymer-based RMs, according to the SEM of PTFE/Al (73.5/26.5) RM [26]
(shown in Figure 2a), the pores which will collapse under impact compression and form
hotspots mainly appear inside the PTFE matrix. Meanwhile, in condensed RM without
fragmentation, only extremely high temperatures (over 900 K [27]) can lead to direct
reactions between PTFE and Al. Therefore, in the impact ignition stage, the calculation of
the hotspots effect is assumed to exclude the energy released by chemical reactions and the
mechanical deformation and heat transfer are counted for the temperature rise of the RM.
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Figure 2. Image and schematic of pores inside the Al/PTFE microstructure: (a) SEM of Al/PTFE
microstructures from Ref. [26] and (b) schematic of one-dimensional elastic-viscoplastic cavity
collapse model.

Figure 2b shows the schematic of the one-dimensional elastic-viscoplastic pore com-
pression model where P is the periodic boundary condition, ri is the inner radius of the
pore, ro is the outer radius of the spherical shell, and r is the current radius of a random
position. At the beginning, the initial porosity of a cell is,

α =
ρt − ρ

ρt
=

ri
3

ro3 (1)

where ρt is the theoretical density which is determined by the mass ratios of the components,
and ρ is the actual density of the RM. According to Geng [28], the actual density of the
RM prepared under the cold press-sintering process is related to the molding pressure and
sintering temperature, and under ideal preparation conditions, the porosity of PTFE/AL
(73.5/26.5) is about 5%. The collapse velocity of the spherical shell under uniform external
pressure loading can be calculated as follows:

ν =

 P− Pg

4G
(

r−3
o − r−3

i

)
r2
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H(t)− 2

√
3 ln

ro
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where v is the motion velocity of the localized material, Pg is the initial gas pressure in
the pores, t is time, δ(t) is a delta function at t = 0, H(t) is a step function, τ is the
shear yield strength and τ = σ0/

√
3. G is the shear modulus, and G = 0.0233 Mbar.

γ is the adiabatic exponent, γ = γ1σ0, σ0 corresponds to the static yield strength and
γ1 is constant. The motion velocity v can be used to calculate the compression state of
pores. When the pores are completely closed, plastic compression can be continued as
homogeneous materials, but hotspot-caused temperature rise is no longer calculated. On
the other hand, when the material is fractured, the pore structure is destroyed and the
calculation of hotspot-caused temperature rise stops. The temperature rise caused by
mechanical deformation of spherical shell collapse is:

(
dT∗

dt

)
M.D.

=

(
9

4ρPTFECp

)(P− Pg − 2
√

3τ ln r0
ri

)2

(
r−3

0 − r−3
i

)2
r6

· γ

τ
(3)

where T∗ is the temperature of each position inside the spherical shell. The subscript M.D.
represents the mechanical deformation, ρPTFE and Cp is the density and specific heat of
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PTFE, respectively. After mechanical deformation, there is a heat conduction process inside
the material, so the total temperature change can be obtained as follows:

dT∗

dt
=

(
dT∗

dt

)
M.D.

+
1

ρPTFECp

1
r2

∂

∂r

(
r2k∗

∂T∗

∂r

)
(4)

where k∗ is the heat transfer efficiency of PTFE. The first term is the temperature rise caused
by mechanical deformation and the second term is the temperature change caused by heat
conduction. Then, the total temperature change in the spherical shell can be calculated by
the following equation:

T∗n+1(r, t) = T∗n (r, t) +
∫ tn+1

tn

dT∗

dt
(r, t)dt (5)

3.2. PTFE Decomposition Rate

Under highly dynamic loads, the PTFE around the pores is heated to the decomposition
temperature and begins to depolymerize. According to the experimental measurement
of He [29], the pyrolysis rate of spherical PTFE powders with average radii of 10 µm and
70 µm in the temperature range of 1400~3300 K is:

W(T) = 2.23× 103 exp(−77.0/RT)s−1 (6)

where R is the molar gas constant, and its value is 8.314 J/mol·K. Finally, the decomposi-
tion extent of PTFE in the hot spot stage can be calculated according to the temperature-
time history:

Λn+1 = Λn +
1
M

∫ ro

ri

∫ tn+1

tn
2πrρ(r)W(T)dtdr (7)

where M is the total mass of the material in the spherical shell, r is the spherical coordinate
radius, and ρ(r) is the density of each position in the shell.

Figure 3 shows the typical temperature rise of pore collapse and the decomposition
extent of PTFE at 20 kbar constant pressure loads. The results show that with the increase
of time, the pores are compressed and their radius is continuously reduced. The high-
temperature region inside the PTFE keeps expanding while the extent of fully decomposed
PTFE keeps increasing. The decomposition extent of PTFE in the spherical shell was
obtained by weighing the decomposition extent at all positions along the diameter direction.
Assuming that all hotspots formed in RM under highly dynamic loads are similar, the
characteristics of all hotspots in RM can be represented by studying the formation process
of the single spherical shell collapse model described above. Therefore, the geometric
parameters of the single spherical shell collapse model can be determined according to the
physical parameters of the RM itself, the particle size, and density/porosity.

3.3. Ignition Criteria

According to the above analytical process, the decomposition extent of PTFE caused by
hotspot temperature rise under highly dynamic loads is obtained. However, the decompo-
sition products of PTFE around the hotspots cannot effectively contact the active aluminum
particles, thus, material fragmentation is required to provide sufficient contact opportu-
nities for reactants. In addition, some studies [30] have shown that the material crack tip
also provides high temperature and further promotes the chemical reaction. Therefore, the
ignition criteria of RMs can be summarized as follows:

1. PTFE depolymerizes to release gaseous reactant.
2. The material is fragmented.

The first criterion for the hotspot effect has been fully discussed in the two sections
above. The second criterion concerns the dynamic response behavior of the RM, which has
been studied extensively [10,31,32]. The Johnson-Cook strength model, which describes



Materials 2022, 15, 5356 6 of 18

the strength behavior of materials subjected to large strains, high strain rates, and high
temperatures, is employed for the RM in this paper. The model defines the yield stress as

σ =
(

A + BεN
p

)(
1 + C ln

.
ε
∗
p

)
(1− Tm

H ) (8)

where εp is the effective plastic strain,
.
ε
∗
p is the normalized effective plastic strain rate,

TH is the homologous temperature, TH = (T − Troom)/(Tmelt − Troom), A, B, C, N, and m
are five material constants. Raftenberg [31] determined the parameters for the 74 wt.%
PTFE/26 wt.% Al RM experimentally.
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After high-speed impact, the RM may suffer large deformation or even failure. The
concept of failure means that the material can no longer withstand tensile loads and is often
used to simulate the ejection behavior of fractured debris. The Johnson-Cook failure model
is often used to model ductile failure of materials experiencing large pressures, strain rates,
and temperatures. It consists of three independent terms that define the dynamic fracture
strain as a function of pressure, strain rate, and temperature.

ε f =
(

D1 + D2eD3σ∗
)(

1 + D4 ln
.
ε
∗)

(1 + D5TH), D = ∑
∆ε

ε f (9)

where ∆ε is the increment of effective plastic strain, ε f is the failure strain, σ* is the mean
stress normalized by the effective stress, and D1, D2, D3, D4, and D5 are constants. The
failure accumulation factor D is incremented and stored as the ratio of the effective fracture
strain. When D < 1, the material is assumed to be intact. Once D = 1, the failure occurs
and the material is assumed to be fractured, then the calculation can turn into the chemical
reaction stage.

4. Impact-Initiated Chemical Reaction of RMs
4.1. Transfer Efficiency of Gaseous Reactants

The hotspots formed when the pores inside the material were subjected to impact
compression and shearing, which led to a sharp increase of internal energy in the PTFE
matrix around the pores, and soon the matrix temperature heats up to the decomposition
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temperature of PTFE. The PTFE matrix depolymerizes and produces CF2, CF3, and other
gas products [23]. When the material is fragmented after impact loading, the gaseous
decomposition products contact with Al particles and undergo a chemical reaction. Under
oxygen-free conditions, the overall reaction process between PTFE and Al is as follows [33]:

C2F4 ⇒ 2CF2(g)

2CF2 ⇒ CF(g) + CF3(g)

3C2F4 + 4Al(s)⇒ 4AlF3(g) + 6C(s)

We assume the solid aluminum particles are surrounded by gaseous decomposition
products of PTFE when calculating the combustion reaction process. Therefore, the overall
combustion reaction of RM can be regarded as a gas-solid two-phase flow reacting around
several spherical Al particles.

As shown in Figure 4, there is a chemical reaction boundary layer between the two
reactants, and only when the gaseous decomposition products of PTFE cross the boundary
layer and reach the surface of Al particles can they undergo a chemical reaction. Hence
the mass transfer process of gaseous reactant through the boundary layer needs to be
calculated first. Considering that the gas environment and the gas flow around aluminum
particles are relatively limited, the boundary layer mass transfer can be regarded as the
diffusion process of gas molecules from high concentration to low concentration. Then the
dimensionless relation of gas boundary layer mass transfer theory is used to describe the
mass transfer process between a single particle and gas [34]:

Sh = 2.0 + 0.6Re
1
2 Sc

1
3 , Re = 0 ∼ 200 (10)

Sh ≡
2hDrparticle

DT

Re ≡
2ρgug

µ
(11)

Sc ≡ µ

ρgDT

where Sh is the Sherwood constant, Re is the Reynold constant, Sc is the Schmidt constant,
hD is the mass transfer efficiency, ρg is the gas density, and ug is the airflow velocity. Both
Sh and Sc need to be calculated using diffusion coefficient DT , which can be estimated
using Chapman-Enskog empirical formula:

DT = 0.001858T
3
2

( 1
MCF2

+ 1
MAlF3

)
1
2

Poutσ2
ABΩAB

(12)

where T is the gas Kelvin temperature surrounding the Al particle, MCF2 and MAlF3 are the
relative molar masses of gaseous reactants and gaseous products, respectively. Pout is the
pressure of the principal part of the gas phase (Bar), σAB is the average collision radius,
and ΩAB is the collision integral (0.417 from ref. [34]). The mass transfer efficiency can be
expressed by combining the Equations (10)–(12),

hD =
DT

rparticle
·
1 + a( rcore

rparticle
)0.5

rcore
rparticle

(13)

where rcore is the current Al core radius, rparticle is the original Al core radius, and
a = 0.3Sc

1/3Re
1/2. In this model, the decomposed gas environment is relatively closed,
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and the airflow velocity can be approximated to ug = 0, then Re = 0 and a = 0. Thus,
the mass transfer efficiency hD can be converted into:

hD = 0.001858T
3
2

( 1
MCF2

+ 1
MAlF3

)
1
2

Poutσ2
ABΩABrcore

(14)
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4.2. Aluminum Core Consumption Rate

When the PTFE decomposition products were transferred to the surface of aluminum
particles, the gas-solid chemical reaction began to take place. According to the quasi-steady
state hypothesis, the reaction rate in this chemical reaction depends only on the substance
concentration on the particle surface. The consumption rate of the incoming material is
much faster than the gaseous reactants transfer efficiency, which means that the gaseous
reactants transferred into the reaction zone will be consumed in time, so as to achieve a
steady-state:

kCCF2core = hD(CCF2out − CCF2core) (15)

where k is the reaction rate constant, and according to the Arrhenius equation, k = Ae−
Ea
RT .

CCF2 represents the concentration of gaseous reactants, and the subscripts out and core
represent the principal part of the gas phase outside the boundary layer and the surface of
the Al reaction core, respectively. The CF2 concentration outside the boundary layer can be
calculated as follows:

CCF2out =
2ΛPTFEmωPTFE MCF2

VF + mωPTFE(F−ΛPTFE)/ρPTFE
(16)

Here m is the unit mass, ωPTFE is the mass fraction of PTFE, V is the unit volume and
F is the reaction content. During the reaction process, the size of the Al core continuously
shrinks, so the reaction rate can be characterized by the linear velocity of the Al core
interface (the consumption velocity of the Al core along the diameter direction):

−
ρparticle

4
· drcore

dt
= kCCF2core (17)

Here, ρparticle is the aluminum particle density. Combining the Equations (15) and (16),

− drcore

dt
=

4CCF2out/ρparticle

1/hD + 1/k
(18)
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The total combustion reaction rate is defined as follows,

R =
dF
dt

=
dF

drcore

drcore

dt
(19)

where R is the reaction rate and there is a relationship between F and rcore:

F = 1− (
rcore

rparticle
)

3
(20)

dF
drcore

= − 3
rparticle

(
rcore

rparticle
)

2
= − 3

rparticle
(1− F)

2
3

Substituting Equations (18) and (20) into Equation (19), it can be obtained:

R =
12CCF2out

rparticleρparticle
· (1− F)

2
3 · (

rparticlePoutσ
2
ABΩAB

0.001858T1.5( 1
MCF2

+ 1
MAlF3

)
1
2
·

3
√

1− F

1 + a(1− F)
1
6
+

1
A

e
Ea
RT )

−1

(21)

where Ea is the activation energy and its value is 50.836 kJ ·mol−1 [11]. Finally, Equation (21)
is the reaction rate of the combustion reaction between PTFE decomposition products and
Al under highly dynamic loads.

5. Validation of Impact-Initiated Chemical Reaction Model for RMs
5.1. Calculation Process

The impact-initiated chemical reaction model for RMs was calculated based on the
simulation results of the inert collision behavior of the RM rod. Mock [7,8] performed
experiments to investigate the impact ignition of the RM rods impacted by steel anvils
in a vacuum. To simulate the inert dynamic response of RM to mechanical shock, the
Smooth Particle Hydrodynamics (SPH) method was adopted to develop the finite element
models. As shown in Figure 5, the finite element model consists of a RM rod (ϕ 7.6 mm ×
50.8 mm) and a steel anvil (ϕ 50 mm × 25.4 mm), and a quarter symmetric model was used
to shorten the computation duration. The RM rod was constructed using 0.38 mm diameter
SPH particles, and the 1 mm × 1 mm Lagrange cell was adopted for the steel anvil.
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In this paper, the shock equation of state (EOS) is used to describe the behavior of RM
and steel. In the Autodyn program, the shock EOS is established from the Mie–Gruneisen
form of EOS based on shock Hugoniot,

P = PH + Γρ(E− EH) (22)
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where it is assumed that Γρ = Γ0ρ0 = constant and

PH =
ρ0c0u(1 + u)

[1− (s− 1)u]2
(23)

EH =
1
2

PH
ρ0

(
u

1 + u

)
(24)

here, Γ0 is the Gruneisen coefficient, u = (ρ/ρ0)− 1, ρ is the current density, ρ0 is the
initial density, s is a linear Hugoniot slope coefficient, and c0 is the bulk sound speed.
The Johnson–Cook strength and failure model, which is the form in Equations (8) and (9),
is used to represent the strength and failure behavior of RM. The main material model
parameters with the basic units of cm, g, and µs for RM used in the simulation are listed in
Tables 1 and 2. The parameters of RM are from reference [10,11,31] and the parameters of
steel 4340 are from the Autodyn material libraries.

Table 1. Material model parameters for RMs.

Hotspot Stage Chemical Reaction Stage

σ0(Mbar) 1.95 × 10−6 Rg(J/mol·K) 8.314

γ1 13 σAB(Å) 4.35

ρPTFE(g/cm3) 2.23 ΩAB 0.417

k∗(cm/µs·g) 2.40 × 10−14 Cp(cm2/µs2·K) 1.20 × 10−5

Table 2. Strength and failure model parameters for RMs.

A (Mbar) B (Mbar) N C m

8.044 × 10−5 2.506 × 10−3 1.8 0.4 1

D1 D2 D3 D4 D5

0.02 0.807 −1.873 −0.0392 −0.488

After calculation based on the simulation model, the pressure-time history data of
RM for each selected time were obtained from the Autodyn program using the print
function [35]. These data were input into Equations (3)–(5) as loading conditions to calculate
the hotspot formation induced temperature rise. Then the PTFE decomposition extent was
calculated through Equation (7). It should be noted that at the same time as calculating
the decomposition extent, Equation (2) is used to calculate the pore compression velocity.
When the pore is closed, the calculation of the hotspot stage stops even if the material does
not reach a failure state. Temperature, pressure, volume, and mass of RM particles at the
failure time (failure factor D reaches 1) are obtained through numerical simulation as input
variables in the calculation of the chemical reaction process.

For the chemical reaction calculation, the decomposition extent ΛPTFE can be used to
obtain the concentration of the decomposition product CCF2out according to Equation (16).
By substituting these variables into Equation (21), the reaction content of RM with time
can be calculated iteratively. It should be noted that the temperature used in calculating
the chemical reaction rate R is the average temperature of the material particle. This is
because the chemical reaction occurs on the surface of Al particles, while the heat transfer
efficiency of Al particles is much higher than that of PTFE, leading to the result that the
temperature can be evenly distributed to the whole Al particle instantaneously. Therefore,
the average temperature of the whole particle is used as the reference temperature in the
chemical reaction stage, and it is assumed that the energy released by the chemical reaction
is converted to temperature only based on the initial specific heat of the RM.
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5.2. Calculation Results for Impact Ignition Behavior

A typical simulation result of a RM rod at 30 µs and impact velocity of 775 m/s is
shown in Figure 6. After being impacted by the target plate, the top area of the RM rod
is deformed and thickened to a “mushroom” shape. Radial cracking occurs at the edge
of the mushroom part of the RM rod. The outer materials completely fail (D = 1), and are
extruded from the mushroom and dispersed outward, forming debris clouds. At the same
time, the radially expanding mushroom involves circumferential shear bands inside the
RM rod, which will result in the subsequent failure of nearby materials.
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Figure 6. Simulation result of RM rod with impact velocity of 775 m/s at 30 µs.

Based on the results of the numerical simulation, the pressure-time history, failure time,
and other parameters of each particle can be obtained. These parameters were substituted
into the impact-initiated chemical reaction model, and the chemical reaction process of each
particle was calculated. The profiles of typical completely reacted and partially reacted
particles are shown in Figure 7. It can be seen from the results that the two particles
accumulated a certain PTFE decomposition extent due to the hotspot effect before particle
failure. After the complete failure of the material, the chemical reaction of the two particles
occurred and pushed up the average temperature of the particles.
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Figure 7. Reaction content profiles of two typical kinds of reacting particles: (a) partially reacted
particle, and (b) completely reacted particle. Note: tFailure, ΛFailure, TFailure represent failure time,
PTFE decomposition extent, and particle average temperature at the failure time, respectively.

However, the partially reacted particle (Figure 7a) accumulated a lower PTFE decom-
position extent as well as the average temperature (temperature rise induced by plastic
work from the compression of the uniform particles from the simulation) at the failure time.
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After the failure of the material, the average temperature of the particle (a) can only increase
to approximately 660 K due to the energy released from the chemical reaction. Because
the temperature cannot maintain the further decomposition of PTFE, the chemical reaction
stops. The decomposition extent of PTFE and the average temperature accumulated by a
particle (Figure 7b) at the hotspot stage were higher because the particle failed later and the
energy released by the initial chemical reaction pushed up the particle average temperature
to above the PTFE decomposition temperature. Thus, the chemical reaction was sustained,
and finally, all the material reacted completely.

The chemical reaction content of all particles in the RM rod was calculated, and the
images of the RM rod from different perspectives at 30 µs and impact velocity of 775 m/s
are shown in Figure 8. In the figure, the particles are painted gray, blue, and red, which
represent the materials that were unreacted, partially reacted, and completely reacted,
respectively. To show the reaction states more clearly, different rotation angles are used to
present the images.
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(c) top view.

As can be seen from Figure 8a, the hotspot reaction mainly occurred on the contact
surface between the RM rod and the steel anvil. With the radial diffusion of the RM,
a large amount of partially and completely reacted particles appeared at the contact surface.
However, from Figure 8b,c, radial cracking occurs at the surface of the RM rod, resulting in
petal-shaped cracks on the surface material. Meanwhile, compared with the materials on
the contact surface of the steel anvil, partially/completely reacted particles on the surface of
the RM rod are greatly reduced. This is because the surface material of the RM rod suffered
from low loading intensity and only a few particles failed, so almost no reaction occurs.

The reaction morphologies of the RM rods at different times are shown in Figure 9. As
can be seen from the figures, with the continuous compression of the steel anvil, the top area
of the RM rod gradually thickened to a mushroom shape. Then the radial cracking spread
in the mushroom-shaped rod, and internal material fragmented and extruded, forming
the radial debris clouds. The chemical reaction mainly takes place where the material
has broken up and is flying outward. At 20 µs, completely reacted particles occur, and
as time goes on, the number of partially reacted materials keeps increasing as well as the
completely reacted ones. After 40 µs, although the material rod is further fragmented, the
number of reactive particles changes little and becomes more dispersed. This is because
some materials cannot completely fail and react, so the number of particles that can ignite a
chemical reaction is limited.
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Figure 9. Reaction morphologies (cross-section view with a rotation angle of 30◦) of RM rods with
the impact velocity of 775 m/s at different times.

In general, the chemical reaction began at the contact surface between the RM rod and
the steel anvil. The material from the outer ring of the mushroom-shaped part of the RM
rod extruded and a hotspot reaction first appeared. Then, fully reacted particles began
to appear in the radial expansion part. As time goes on, chemical reactions took place at
various locations on the contact surface between the RM rod and the anvil.

To further analyze the failure and chemical reaction process of the RM rod under
highly dynamic loads, the particles with different failure times and corresponding reaction
states at an impact velocity of 775 m/s were plotted. As shown in Figure 10, the particles
with different failure times are all compared with the corresponding reaction states of 60 µs.
This is because the chemical reaction falls behind the failure of the material in time, and
the duration of the complete chemical reaction is approximately 30 µs according to the
result of Figure 7b. At the same time, only the front third part of the RM rod was cut for
morphology to highlight the failure and reaction characteristics since the materials of other
parts of the RM rod have not failed at 30 µs.

As shown in Figure 10a, the material that failed was first located in the shear band of
the RM rod. During the impact loading process, these particles (wathet blue) first reach
their tensile rupture strain. Then the green particles on both sides of the shear band were
further compressed, reaching a failure state. At the same time, the RM rod was compressed
into a mushroom shape, and the material on the outer surface also showed radial cracking,
but failed particles only appeared at the cracks of the outer surface. Subsequently, the
yellow particles continued to be compressed until they were extruded by the subsequent
material and reached the failure state.

In terms of the chemical reaction, the material in the shear band failed the earliest,
but the loading duration was short, so only partially reacted particles occurred, but no
completely reacted particles were observed. For the subsequently failed material, only part
of the hotspot reaction occurred near the outer surface of the rod, and completely failed
particles appeared near the core of the rod. Finally, the failed core material accumulated the
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most PTFE decomposition extent at the hotspot stage, and produced the most completely
reacted particles after failure because of the long duration and highly dynamic loads. This
indicates that the particles which can partially and completely react need to meet sufficient
loading intensity and duration to achieve a higher reaction content.
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5.3. Comparison with Experiment

To validate the impact-initiated chemical reaction model, the calculation results are
compared with the vacuum collision test of Mock [8]. As shown in Figure 11, at the impact
velocity of 775 m/s and 30 µs, the RM rod fractured under the impact loads, creating
a scattering cloud of debris. In the experimental result of the same loading conditions
in Figure 4a of Ref. [8], the part near the RM rod in the debris cloud showed obvious
reaction light, and the impact light gradually weakened from the rod to the periphery. In
the calculation results, the hotspot reactions occurred in a large number of the extruded
material in the mushroom-shaped region of the RM rod. Many completely reacted particles
appeared in the annular region close to the rod (yellow area in Figure 11), while only a few
particles completely reacted in the outer ring.

This is because the material in the top area of the RM rod was the first to be crushed
under dynamic loads. Although the load strength was high, the loading duration was
short, and material failure occurred before the hotspot reaction temperature accumulation,
so the complete reaction could not be achieved. For the materials subsequently loaded,
the loading strength and duration are enough to ignite hotspot reactions and achieve a
more adequate chemical reaction. Overall, for the macroscopic phenomenon, the chemical
reaction fire gradually diminishes from the rod to the periphery, which is very consistent
with the experimental results.
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velocity and 30 µs (corresponding to the experimental result of the same loading conditions in
Figure 4a of Ref. [8]).

Figure 12 shows the reaction morphologies of the RM rod at the time of the first light
of different impact velocities in the experiments. In the case of higher velocity, the first
light appeared earlier, and the mushroom-shaped part of the RM rod was smaller in size.
The partially reacted particles were mainly concentrated in the outer region of the debris
cloud, and the completely reacted particles appeared at the contact surface of the steel
anvil and near the core of the rod. With the decrease in impact velocity (Figure 12a–c), the
length of the compression part of the RM rod increased when the first light was observed,
and the distribution of partially reacted materials in the debris cloud became more diffuse.
This is because lower impact velocity corresponds to lower loading strength, while fewer
materials will be ignited at the same time. When the fire light is observed, the material
has accumulated a certain reaction content. Therefore, the lower the impact velocity is, the
longer the loading time (until the time for the first light) will be, and the more completely
reacted particles appear in the reaction morphology. However, when the impact velocity
is further reduced (Figure 12d), the loading intensity will be insufficient, leading to no
completely reacted particles in the material.

The relationship between the reaction content and time of all particles in the RM rod
at different impact velocities was statistically weighted according to mass, and the results
are shown in Figure 13. The results suggest that with the increase of impact velocity, the
time of the beginning of reaction content accumulation in materials is slightly earlier, and
the reaction content increases successively. This is because, under different dynamic loads,
RM particles will completely fail and ignite hotspot reaction, so the reaction content of
the material accumulates to a certain degree. However, these reactions are too weak to be
observed through macroscopic phenomena. When the total reaction content of the RM rod
continues to accumulate to a certain extent, fully reacted particles begin to appear, leading
to a higher probability of macroscopically visible firelight.

Assume that the overall reaction content of the RM rod with macroscopically visible
flame is 0.4%, as shown in Figure 13. The red marks represent the time for the first
light from the experiments. The result indicates that the higher the impact velocity is,
the earlier the material accumulates to the threshold chemical reaction content, and the
higher the probability of observing firelight in the macroscopic phenomena will be. This
is qualitatively consistent with the experimental results. However, it should be pointed
out that the calculation in this paper is based on inert collision simulation and does not
consider that debris clouds will be more dispersed after the chemical reaction occurred.
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At the same time, the chemical reaction transfer between adjacent material particles is not
considered, so the overall reaction content calculated is low.
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6. Conclusions

In this paper, an impact-initiated chemical reaction model for Al/PTFE reactive ma-
terial is proposed. Different from the phenomenological numerical model, the model can
well characterize the impact of the unsustainable reaction behavior of RMs and can provide
a reference for a numerical simulation of the impact ignition and energy release behavior
of fluoropolymer-based RM. The main conclusions are as follows:

(a) Based on the evolution from impact ignition to chemical reaction, the PTFE decom-
position and material fragmentation were chosen as the impact ignition criteria. The
hotspot formation mechanism of pore collapse was introduced to describe the temper-
ature rise as well as the decomposition process of PTFE. The reaction rate equation
was established based on the gas-solid chemical reaction model.

(b) The decomposition products accumulated before the material fragmentation contact
with Al particles and ignite the chemical reaction. The energy released by the initial
chemical reaction pushes up the material temperature. When the material temperature
exceeds the PTFE decomposition temperature, PTFE continues to decompose and
react until the material is completely consumed. Otherwise, the chemical reaction
stops, causing the RM to show unsustainable chemical reaction characteristics.

(c) The material which can completely react needs to meet sufficient loading intensity
and duration. The material in the shear band of the RM rod failed earliest, but the
loading duration was short, hence only partially reacted particles occurred. The failed
core material accumulated the most PTFE decomposition extent at the hotspot stage
and produced the most completely reacted particles after the material fragmentation
because of the long loading duration.

(d) Based on the numerical simulation of the inert dynamic response of RM, the chemical
reaction process of the Taylor rod is calculated using the model in this paper. The
results are compared and qualitatively consistent with the experimental ones.
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