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Abstract: Cracks are inevitable during the service life of asphalt pavement and the water at the
fracture surfaces tends to cause the grouting materials to fail. Studies have shown that the catechol
groups in adhesion proteins secreted by mussels can produce strong adhesion performance in the
water. In this paper, the mussel-like adhesive L-Dopa Methacrylic anhydride (L-DMA) was prepared
based on the concept of bionic design and used to improve the properties of asphalt. By using Fourier-
transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA), the thermal stability
and structural composition of L-DMA were investigated. Then, the rheological and low-temperature
properties of L-DMA-modified asphalt were investigated using the dynamic shear rheological (DSR)
test and bending beam rheological (BBR) test. Moreover, the modification mechanism was explored
by FTIR. It was found that L-DMA can be effectively synthesized and has good thermal stability.
The incorporation of L-DMA increases the composite modulus, viscosity, creep recovery rate and
rutting factor of asphalt binder, resulting in an enhancement of its high-temperature performance.
At a high L-DMA content of 10%, the low-temperature performance of the modified asphalt was
enhanced. The modification of L-DMA to asphalt is mainly a physical process. Hydrogen bonds and
conjugated systems generated by the introduction of catechol groups enhance the adhesion properties
of asphalt. In general, L-DMA improves the properties of asphalt and theoretically can improve the
water resistance of asphalt, which will be explored in future research.

Keywords: L-DMA; mussel bionic materials; modified asphalt; modification mechanism;
rheological properties

1. Introduction

The road network in China has significantly improved in recent years. According
to the latest statistical bulletin of the Ministry of Transport of China, the total mileage of
roadways in China has occupied first place globally, reaching 5.198 million kilometers.
Asphalt pavement provides outstanding performance and ride comfort, accounting for
more than 90% of the highways [1,2]. Nevertheless, as the mileage of asphalt pavements
that must be maintained grows, the disease and disposal issues of asphalt pavement have
drawn people’s attention. During the service life, the pavement will be impacted by loading,
temperature, water, and other factors [3], causing the asphalt to undergo physical and
chemical changes such as volatilization, oxidation, decomposition, and polymerization [4].
The performance of asphalt will deteriorate as a result of these consequences, the stress
relaxation capability of the asphalt pavement declines as stiffness rises, and the asphalt
pavement is susceptible to shrinkage fractures at low temperatures. The pavement quality
will worsen if the cracks are not fixed or treated promptly, resulting in mesh cracks, cracks,
rutting, and other more significant pavement diseases [5]. When the load interval or
temperature rises, some microcracks will mend spontaneously (self-healing performance
of asphalt), but other cracks that cannot be healed will spread due to vehicle load and
form larger cracks. Water in the road environment, such as rainwater, will seep into the
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cracks and then gradually infiltrate into the bottom of the road under vehicle load, which
will increase the water content of the road base and even the subgrade and diminish
the strength.

There are several treatments for different kinds of cracks [6], such as slurry seal, micro-
surfacing, overlay, joint grouting, seam sticking, etc. Among these treatment approaches,
joint grouting is the most extensively utilized due to its easy operation and high cost effi-
ciency. At present, the asphalt pavement crack repair materials utilized in China generally
comprise thermal asphalt, cold asphalt, and organic chemical specialist materials [7–9].
Polymer-modified asphalt, polymer-modified emulsified asphalt, and resin are widely em-
ployed as joint grouting materials in practical engineering applications [10]. However, from
the standpoint of practical use, they have the faults of weak adhesion between grouting
materials and fracture interface under water circumstances. To tackle this issue, a novel
class of asphalt-based bionic material with good water resistance and strong adhesion was
developed in this research.

Bionic design is an effective technique to emulate certain life traits and accomplish
the intelligent design of materials. Mussels are a form of a marine creature with excellent
adhesive capacity. The exceptional waterproof adhesion and universal adhesive qualities of
mussels are particularly appealing. It is observed that mussels secrete various proteins via
the Byssus, which are engaged in the adhesion process and are connected to the adhesion
capacity and are solidified quickly after contact with saltwater to create an adhesive plate
and securely bond to the substrate. The research discovered that the primary component
of mucus is mussel adhesion protein (MAP) [11,12]. One of its most distinctive structural
properties is the amino acid containing DOPA (dihydroxyphenylalanine). The catechol
group (also known as catechol) in DOPA possesses chemical adaptability, versatility, and
affinity diversity, which is the key to the super-strong adhesion property of mussels [13,14].

Due to the chemical versatility and affinity diversity of catechol functional groups,
DOPA exhibits unique chemical properties. Thus, DOPA can boost the adhesion and
cohesion of mussel adhesive proteins [15–17]. Through its chemical versatility, DOPA
can undergo different reactions to achieve bonding and cross-link curing [18,19]. As
shown in Figure 1, DOPA can be oxidized to Dopaquinone under certain conditions.
After that, Dopaquinone can be rearranged and dehydrogenated to form Dehydro DOPA,
which results in further cross-linking; DOPA quinone can also undergo Michael addition
and Schiff base formation with amino and thiol groups; it can also form Carboxylated
dihydroxyindole through intramolecular cyclization, and finally form cross-links. At the
same time, Dopaquinone and DOPA can also be disproportionated to form free radicals,
and finally coupled to tannins (Quinone tanning).

The magical adhesion properties of mussel adhesive proteins make them have unlim-
ited potential applications in biomedical, national defense, marine engineering, and other
fields. However, the ultra-low preparation quantity and expensive price limit the applica-
tion of this excellent adhesive material. In order to obtain the adhesion ability equivalent to
that of mussel adhesion protein in a wet state, people began to develop adhesion materials
based on mussel adhesion protein. The study of adhesion materials using mussel adhesion
protein was a gradual transition from natural mussel extraction to artificial synthesis. The
first made use of the traditional protein extraction method and recombinant gene cloning
method to prepare mussel adhesive materials. In the late 1980s, BioPolymers. Ltc success-
fully prepared mussel adhesive protein from mussel byssus glands by traditional extraction
methods and developed a ‘Cell-Tak’ superadhesive [20,21]. ‘Cell-Tak’ has also been suc-
cessfully used to enhance the adhesion of biomedical slides, plastics, or metal surfaces to
cellular tissue samples. Subsequently, Hwang et al. recombined, expressed and purified
the genes of Mgfp-5 and Mgfp-3A mussel adhesion proteins by recombination technology
to obtain a superadhesive like ‘Cell-Tak’ [22,23]. The recombinant proteins with adhesion
properties similar to those of ‘Cell-Tak’ were obtained. However, the cost of recombinant
gene technology is also surprising due to the fact that the regulatory mechanism is still
unclear. Lv et al. also tried to perform some work on the extraction of natural protein
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and genetic engineering preparation of mussel adhesive materials [24]. Although mussel
adhesion protein can be obtained by direct extraction or gene recombination, the separation
and purification of mussel adhesion protein from mussels is an extremely complex process
with a meager yield. This makes it very challenging to directly apply this adhesive to
commercial applications, however, it also further highlights the urgency of developing
synthetic mussel bionic adhesives with strong waterproof bonding properties. According
to the intrinsic adhesion mechanism of mussel adhesive protein (DOPA, the key factor of
adhesion performance), this paper aims to prepare polymeric adhesives to mimic the effect
of natural mussel adhesion proteins.

Figure 1. Possible cross-linking pathways of DOPA.

Although biomimetic materials have been used in asphalt materials, this work marks
the first time the bionic mussel adhesion protein has been applied to asphalt materials. By
analyzing its impact on the overall performance of asphalt, this study aims to investigate
the viability of using bionic mussel adhesion protein in asphalt. L-Dopa Methacrylic
anhydride (L-DMA) was synthesized based on the features of bionic mussel adhesion
protein in this study and used to modify 70# base asphalt with varied quantities to prepare
L-DMA-modified asphalt (L-DMA-A). The thermal stability and structural composition
of L-DMA were investigated. In addition, the high-temperature rutting resistance and
low-temperature cracking resistance of L-DMA-modified asphalt were examined by DSR
and BBR. Finally, the modification mechanism of L-DMA-modified asphalt was analyzed
by FTIR. The flowchart of the experiment design is shown in Figure 2.
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Figure 2. Flowchart of the experiment design.

2. Materials and Experiments
2.1. Raw Materials

In this study, the chemicals used to prepare L-DMA included sodium tetraborate
(Na2B4O7•10H2O), sodium bicarbonate (NaHCO3), Levodopa (L-DOPA), methacrylic
anhydride (MAA), magnesium sulfate (MgSO4), ethyl acetate (EAc), tetrahydrofuran (THF),
and cyclohexane. The first four chemicals were purchased from Aladdin Ltd. (Shanghai
Aladdin Biochemical Technology Co. Ltd., Shanghai, China) and the latter three were
purchased from Sinopharm Chemical Reagent Co. Ltd., Shanghai, China. All chemicals
were chemically pure and used without further purification. The asphalt used, 70# base
asphalt, was from Hubei Guochuang Hi-tech Materials Co. Ltd., of China (Wuhan), and
the basic properties are shown in Table 1.

Table 1. Properties of the 70# base asphalt.

Properties Test Value Requirements

Penetration (25 ◦C, 0.1 mm) 68.9 60–80
Ductility (15 ◦C, cm) 184 ≥100
Softening point (◦C) 48.4 ≥46

Density (g/cm3) 1.034 -

2.2. Synthesis of L-DMA

The mechanism of the synthesis process of L-DMA [25] is shown in Figure 3. An
amount of 24 g of Na2B4O7•10H2O and 10 g of NaHCO3 were accurately weighed and
dissolved in 200 mL deionized water and aerated with Ar for 20 min, then 10.4 g of L-DOPA
(52.8 mmol) was added and continued to be bubbled with Ar. After 5 min, 9.5 g of MAA
(58.1 mmol) was dissolved in 50 mL of THF and slowly dropped to the above solution.
During the dropwise addition, 1 mol/L NaOH solution was used to keep the pH of the
solution above 8. The reaction mixture continued to be stirred for 18 h at room temperature
and protected from light.

The reaction mixture was filtered by extraction to remove the precipitate from the
bottom of the flask, and then the pH was adjusted to less than 2 with 4 mol/L HCl solution,
followed by extraction with 100 mL EAc. The organic phase was collected after three
extractions with 100 mL of EAc, and the aqueous phase was removed. An amount of 4 g
of anhydrous magnesium sulfate was added to the organic phase, stirred for 12 h, and
filtered to remove the residual water. Finally, the organic phase was concentrated by a
rotary evaporator to 50 mL.

Finally, the concentrated ethyl acetate solution was slowly dropped into 400 mL of cy-
clohexane with high-speed stirring (at 2000 rpm). After the dropwise addition, the solution
was stirred for 30 min, and then placed at 4 ◦C for 18 h to allow complete recrystallization.
Finally, the solid was filtered out and dried in a vacuum oven. The synthesis process is
shown in Figure 4.
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Figure 3. Mechanism of the synthesis of L-DMA.

Figure 4. Preparation procedure of L-DMA.

2.3. Chemical Structure and Thermal Stability Characterizations of L-DMA

FTIR spectra of MAA, L-DOPA, and L-DMA were recorded on a Thermo Nicolet
6700 Fourier-transform spectrophotometer (Waltham, MA, USA). In all cases, 16 scans were
collected at a resolution of 2 cm−1 for the spectrum in the range of 4000–400 cm−1.

TGA was used to determine the thermal stability of L-DMA, which was carried out
using the synchronous thermal analyzer (TA TGA55, New Castle, DE, USA) The L-DMA
was protected in an N2 atmosphere at a flow rate of 20 mL/min, in the temperature range
from room temperature to 800 ◦C at a heating rate of 10 ◦C/min.

2.4. Preparation of L-DMA-Modified Asphalt

We added a certain mass ratio of L-DMA into the heated 70# base asphalt and mixed
manually for ten minutes. To guarantee a good dispersion of L-DMA, a shear apparatus
was used to disperse L-DMA at a rate of 4000 r/min for 40 min at a temperature of 170 ◦C.
The dosage of L-DMA was 1%, 2.5%, 5%, 7.5%, and 10% of asphalt, respectively.

2.5. Property Characterizations of L-DMA-Modified Asphalt
2.5.1. DSR Test

DSR (MCR-101, Anton Paar, Graz, Austria) examined the rheological properties of
L-DMA-A. Asphalt’s viscoelasticity is significantly impacted by exposure temperature
changes as a typical viscoelastic material [26,27]. Specific test parameter settings for the
temperature sweep are shown in the Table 2.
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Table 2. Test parameters of temperature sweep.

Temperature Plate Diameter Plate Gap Shear Frequency Heating Rate

−10–30 ◦C 25 mm 1 mm
10 rad/s 2 ◦C/min30–80 ◦C 8 mm 2 mm

Asphalt pavement will be affected by vehicle load during the service process. Loading
with different frequencies will cause different deformations of asphalt pavement, and
the deformation size determines the high-temperature performance of asphalt pavement.
Viscosity is an essential parameter of asphalt and the addition of L-DMA will affect the
viscosity of asphalt binder. Therefore, it is necessary to study the variation trend of the
viscosity of 70# asphalt and L-DMA-modified asphalt under different load frequencies. The
specimens were subjected to a frequency sweep in the range of 0.01–10 Hz. In order to
meet the practical application of pavement, the temperature was set to 58 ◦C.

Additionally, L-DMA-modified asphalt with different L-DMA contents were tested by
loading–unloading mode in the Multiple Stress Creep and Recovery (MSCR) test, which
can be used to characterize the high-temperature performance of asphalt [28]. In this
paper, the MSCR tests under stresses of 0.1 kPa and 3.2 kPa were carried out at 58 ◦C. The
whole test contained 20 cycles of creep and recovery. Specifically, the first 10 cycles were
conducted under the stress of 0.1 kPa, and the following 10-cycle test under the constant
stress of 3.2 kPa was further conducted to finish the whole test. Figure 5 shows the creep
and recovery (loading–unloading) curves of asphalt in one cycle.

Figure 5. Change of strain with time during one creep—recovery cycle.

According to AASHTO M 332 Standard [29], the two evaluation indexes obtained by
the MSCR test are the creep recovery rate R (%) and nonrecoverable creep compliance Jnr,
which are used to evaluate the viscoelastic characteristics of asphalt under high-temperature
conditions. The nonrecoverable creep compliance Jnr is the ratio of ultimate unrecoverable
strain and applied stress in each loading cycle, which describes the contribution of asphalt
to high-temperature deformation of asphalt mixtures. The creep recovery rate R (%) is
the percentage of recoverable strain and total creep strain in the loading cycle, which
characterizes the high-temperature elastic recovery performance of asphalt and reflects the
influence of delayed elastic deformation of asphalt to a certain extent. According to the
Equations (1)–(3) below, R (%) and Jnr under different stresses can be calculated.

Jnr100

(
1

kPa

)
= 1

10

{
∑10

1
non-recoverable strain

0.1

}
(1)
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Jnr3200

(
1

kPa

)
=

1
10

{
10

∑
1

non-recoverable strain
3.2

}
(2)

R(%) =
1

10

{
10

∑
1

recoverable strain
peakstrain

× 100%

}
(3)

2.5.2. BBR Test

Low-temperature cracks are inevitable in the use of asphalt pavement. Improving the
low-temperature performance of asphalt pavement is the top priority of road workers. In
general, BBR is most commonly used for the low-temperature performance evaluation of
asphalt. According to the specification AASHTO T313-12 [30], 70# asphalt and L-DMA-
modified asphalt beams were prepared, respectively, then held 1 Dh at the test temperature
and were subjected to a 4 min loading test to measure the creep stiffness modulus S and
creep rate m. S and m were selected at 60 s, if S ≤ 300 MPa and m ≥ 0.3 at this condition,
then the asphalt is applicable at this temperature condition.

2.5.3. FTIR Spectroscopy Analysis

To study the chemical structure changes of L-DMA after modified asphalt and the
modification mechanism, the FTIR Spectroscopy test was carried out. The sample was
dissolved in carbon disulfide and then dropped onto a clear KBr lens. After drying for a
moment, the sample was prepared and put into the instrument for testing.

3. Results and Discussion
3.1. Structural Analysis and Thermal Stability Analysis of L-DMA

The infrared spectra of L-DMA are shown in Figure 6. The absorption peak at
3370 cm−1 was the vibration peak of catechol phenolic hydroxyl, and the formation of
hydrogen bonds widened the peak area. The N-H stretching vibration peak appeared at
3202 cm−1. The C=O stretching vibration peak at 1730 cm−1 originated from the amide
group, and the hydrogen bond made the electron shift outward and the bond force weaken.
The bending vibration and deformation vibration of sec-amide appeared at 1655 cm−1 and
1520 cm−1, respectively. However, the stretching vibration of C=C overlapped with the
bending vibration of N-H, so the absorption peak appeared at 1655 cm−1. At the same
time, the absorption peaks at 1605 cm−1 and 1450 cm−1 were also observed, which were
the stretching vibration of the L-DOPA aromatic ring. The single peak at 1260 cm−1 is the
C-N stretching vibration.

Compared with the spectra of the reaction monomers MAA and DOPA, in the FTIR
spectra of L-DMA, the absorption peaks of methacrylic anhydride in MAA at 1787 and
1725 cm−1 had obviously disappeared and changed into a single peak of C=O at 1730 cm−1,
and two amino peaks at 3210 and 3075 cm−1 at L-DOPA became one, indicating that the
primary amine in L-DOPA reacted to form the secondary amide. From the above analysis,
MAA and L-DOPA reacted successfully to form L-DMA.

Figure 7 shows the thermal weight loss curve of the L-DMA monomer powder, the
initial thermal decomposition temperature of L-DMA is 221.5 ◦C with a mass loss of
5%, which is mainly due to the volatilization of bound water. There was a sharp mass
loss between 224 ◦C and 478.8 ◦C, which corresponded to the decomposition of the C-N
bond and methacrylate. Subsequently, the slow mass loss of the sample from 480 ◦C to
800 ◦C was the decomposition of the L-DMA main structure. The maximum temperature
during asphalt mixing and paving is about 180 ◦C. Therefore, L-DMA can be used for
asphalt modification.
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Figure 6. FT-IR spectra results of MAA, L-DOPA, and L-DMA.

Figure 7. The TG curve of L-DMA.

3.2. Modification Mechanism of L-DMA

The modification mechanism of L-DMA-modified asphalt was analyzed by FTIR.
Figure 8 compared the infrared spectra of L-DMA, 70# asphalt, and L-DMA-modified
asphalt. It can be found that the characteristic absorption peaks of 70# base asphalt show
asymmetric and symmetric stretching vibration of methylene at 2925 and 2854 cm−1.
C=C and C=O stretching vibrations appear at 1600 cm−1; the absorption peaks of the
benzene ring stretching vibration are 866 and 809 cm−1. Combined with the analysis of the
infrared spectrum of L-DMA in Figure 6, it can be inferred that the modification process
of L-DMA on asphalt is mainly a physical modification process. With the addition of
L-DMA, the conjugated effect between catechol and the aromatic benzene ring in asphalt
resulted in the redshift of the vibration absorption peak of the benzene ring. The peak area
widened at about 3370 cm−1, suggesting that L-DMA can generate many hydrogen bonds
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with free hydroxyl and amino groups in asphalt through catechol groups, thus forming
a strong hydrogen bond and promoting its combination with asphalt. The number of
hydrogen bonds increased significantly with an increase in L-DMA content. The hydroxyl
characteristic peak area of modified asphalt with 10% L-DMA content was larger than
that of other contents. Moreover, due to the existence of the benzene ring, L-DMA can
interact with the aromatic ring in asphalt through the Π-Π accumulation [31–33]. These can
improve the adhesion performance of modified asphalt. At the same time, dense hydrogen
bonds can also enhance the self-healing performance of asphalt [34–37]. Infrared spectra
also show that L-DMA does not decompose and exists stably in asphalt.

Figure 8. FT-IR spectra results of L-DMA, 70# base asphalt, and L-DMA-A.

3.3. Rheological Properties of L-DMA-Modified Asphalt

When L-DMA is added to asphalt as a modifier, physical and chemical modifications
will inevitably occur, thus affecting the original structure and the viscoelastic properties
of asphalt. In general, the composite shear modulus G* is the measurement of the total
resistance of the material during repeated shear deformation [38,39]; the phase angle δ is
the relative index of the number of recoverable and irreversible deformations.

The composite modulus and phase angle curves of L-DMA-modified asphalts with
different contents of L-DMA in the temperature range of 30–80 ◦C are shown in Figure 9. It
is clear that with an increase in L-DMA content, the composite modulus G* of modified
asphalt increases and the phase angle δ decreases, indicating that the addition of L-DMA
improves the shear deformation resistance of asphalt, and the elasticity of asphalt is
obviously enhanced. The modified asphalt with 10% content has the most excellent high-
temperature performance, which is mainly caused by the good adhesion role of L-DMA
in asphalt. The catechol group in L-DMA generated a large number of hydrogen bonds
with the free hydroxyl and amino groups in asphalt, thus forming a strong hydrogen bond
and promoting the integration with asphalt [40,41]. Moreover, catechol and the asphalt
aromatic ring accumulated to produce cohesion [42,43], increasing the proportion of elastic
components in the modified asphalt and improving the shear deformation resistance
of asphalt.

The evaluation index of anti-rutting performance of asphalt is quantified by the
rutting factor, which is expressed as G*/sinδ. In general, the asphalt binder with a larger
rutting factor shows stronger anti-rutting ability [44]. According to Superpave specification,
AASHTO: MP1, at the highest pavement design temperature, the G*/sinδ value of matrix
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asphalt should be at least 1.0 kPa [45]. Figure 10 shows the rutting factors of base and
different modified asphalts at the temperature range of 30–80 ◦C. The results show that
the rutting factors of modified asphalts rise with an increase in L-DMA content. The
modified asphalt with 10% content has the largest rutting factor because the incorporation
of L-DMA will introduce phenolic hydroxyl groups, which will form hydrogen bonds
with the aromatic components in the light component of the asphalt, thereby increasing
the adhesion of the material. At high temperatures, the catechol group in L-DMA will be
oxidized into semiquinone and quinone structures, which improves the overall cohesive
energy [46,47]. In addition, the benzene ring can also produce Π-Π conjugate with the
aromatic ring in asphalt, which increases the cohesive energy. These effects increase the
cohesion and adhesion of modified asphalt. These enhanced bonding structures will hinder
the free flow of modified asphalt, enhance the elastic recovery ability, and improve the
rutting resistance.

Figure 9. The result of the temperature sweep test (30–80 ◦C).

1 
 

 Figure 10. Rutting factor and temperature curves of different asphalts.
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The low-temperature rheological property of asphalt binder is one of the important
factors for its cracking resistance. The SHRP standard defines G*sinδ as the evaluation
index of fatigue cracking. The smaller the value of G*sinδ, the better the ability to resist
fatigue damage [48–50]. In this paper, the low-temperature rheological properties of 70#
base asphalt and modified asphalt with different contents of L-DMA were tested in the
temperature range of −10–30 ◦C and the test results are shown in Figure 11. The composite
modulus of modified asphalt decreases with an increase in temperature, while the phase
angle increases. When the content of L-DMA is 1%, the modified asphalt has the highest
composite modulus. Then, with an increase in L-DMA content, the composite modulus
of modified asphalt shows a downward trend. When the content of L-DMA is 10%, the
composite modulus of modified asphalt is the lowest and is lower than that of 70# asphalt.
The reason is the change of L-DMA’s effect, and when the content is low, it mainly plays
a role of filling in asphalt, which makes the low-temperature performance of modified
asphalt worse. However, with an increase in L-DMA content, unsaturated rings such as
benzene, quinone, and pyridine in aromatic components of asphalt will conjugate with the
benzene ring in L-DMA, and the rings overlap with each other to form a layered structure,
which reduces the composite modulus G* of modified asphalt.

Figure 11. The result of the temperature sweep test (−10–30 ◦C).

Figure 12 shows the changing trend of the fatigue factors of 70# asphalt and modified
asphalts with different contents of L-DMA at different temperatures. The results show that
the fatigue factor of modified asphalt increases first and then decreases with an increase in
L-DMA content. At a high content of 10%, the addition of L-DMA decreases the fatigue
factor and enhances the fatigue resistance of asphalt due to the conjugation between the
unsaturated rings of L-DMA and asphalt.
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Figure 12. Fatigue factor and temperature curves of different asphalts.

The viscosities of 70# asphalt and L-DMA-modified asphalts mixed with different
contents of L-DMA are shown in the Figure 13. It can be seen from the figure that with an
increase in loading frequency, the viscosity of asphalt at 58 ◦C shows a downward trend.
The viscosity of 70# asphalt is the lowest, while 10% L-DMA-modified asphalt has the
highest viscosity. The viscosity can reflect the deformation resistance of the material to
a certain extent, and the viscosity of 10% L-DMA-modified asphalt can still maintain a
high level at 58 ◦C, which indicates that the addition of L-DMA contributes greatly to the
improvement of the high-temperature performance of asphalt.

Figure 13. Frequency—Viscosity Curve at 58 ◦C.

The strain changes of 70# base asphalt and L-DMA-modified asphalt under different
stress levels at 58 ◦C are shown in Figure 14. The result shows that the 70# base asphalt
has the largest cumulative strain. With an increase in L-DMA content, the cumulative
strain of the modified asphalt gradually decreases. This is because the cohesion between
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L-DMA and asphalt improves the elasticity of asphalt materials, significantly improving
the recoverable deformation ability of asphalt and thus improving the high-temperature
performance of asphalt.

Figure 14. Strain during the MSCR test at 58 ◦C.

Table 3 shows the experimental results of creep recovery rate R (%) and unrecoverable
creep compliance (Jnr) of base asphalt and modified asphalts at different stress levels. The
results show that under the action of 100 Pa and 3200 Pa, the creep recovery rate R (%) of
L-DMA-modified asphalt increases with an increase in L-DMA content, indicating that the
addition of L-DMA enhances the recovery deformation ability of asphalt. The unrecoverable
creep compliance (Jnr) decreases with an increase in L-DMA content, indicating that the
incorporation of L-DMA improves the permanent deformation resistance of asphalt, which
is consistent with the results of the rutting factor test. Comparing the unrecoverable creep
compliance (Jnr) of asphalt and L-DMA-modified asphalts under different stress levels, it
can be found that the unrecoverable creep compliance (Jnr) of 70# base asphalt changes
greatly under 100 Pa and 3200 Pa, while the unrecoverable creep compliance (Jnr) of
L-DMA-modified asphalts does not change significantly under different stress levels. It
indicates that the addition of L-DMA reduces the dependence of asphalt on shear stress
and enhances the shear deformation resistance of asphalt. The hydrogen bonds generated
by the addition of L-DMA have certain reversibility, so the creep recovery rate R (%) of
L-DMA-modified asphalt has greatly improved.

Table 3. The MSCR parameters for asphalt samples.

Samples R-100 R-3200 Jnr-100 Jnr-3200

70# Base asphalt 4.05 2.55 2.66 3.56
1% L-DMA 5.67 2.95 2.62 2.75

2.5% L-DMA 6.29 3.58 2.48 2.43
5% L-DMA 6.32 3.62 2.18 2.23

7.5% L-DMA 6.49 3.91 2.14 2.17
10% L-DMA 7.32 4.11 1.78 1.83

3.4. Low-Temperature Crack Resistance of L-DMA Modified Asphalt

It can be seen from Figure 15 that with a decrease in temperature, the S modulus
increases but the m value decreases, indicating that the lower the temperature, the worse
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the low-temperature performance of asphalt. When the temperature is lower than −12 ◦C,
the m of 70# asphalt and L-DMA-modified asphalt will be far less than 0.3, and the S is
much higher than 300 MPa, indicating that when the temperature is lower than −12 ◦C, the
low-temperature performance of 70# asphalt and L-DMA-modified asphalt cannot meet
the standard. At −12 ◦C, the S and m of 70# asphalt basically meet the requirements of
the specification. It can be seen that with an increase in L-DMA content, the S modulus
increases first and then decreases gradually, indicating that less L-DMA content will affect
the deformation capacity of asphalt. However, with an increase in L-DMA content, the
deformation capacity of modified asphalt at low temperatures is becoming better and better,
and the deformation capacity of modified asphalt is the best when the content of L-DMA
is 10%, meeting the standard. The m decreases first and then increases, suggesting that
with the incorporation of L-DMA, the stress relaxation ability of asphalt to external load
decreases first and then increases. When the content of L-DMA is 10%, the m is the largest,
and the modified asphalt has the best stress relaxation ability to deal with external loads.

Combined with the low-temperature rheological test results of DSR, it is found that
the low content of L-DMA has an adverse effect on the low-temperature performance of
asphalt, but with an increase in L-DMA content, it has a significant improvement on the
low-temperature performance of asphalt. This is mainly because the low content of L-DMA
plays a filling role in asphalt, increasing the composite modulus G* and creep stiffness
modulus S of L-DMA-modified asphalt, reducing the creep rate m, and worsening the
low-temperature performance of modified asphalt. However, with an increase in L-DMA
content, the unsaturated rings such as benzene, quinone, and pyridine in the aromatic
components of asphalt will conjugate with the benzene ring in L-DMA, and the rings
overlap with each other to form a layered structure. The interlayer friction is small, which
reduces the G* value of modified asphalt, decreases the S value, and increases the m value,
thereby improving the low-temperature performance of asphalt. This is consistent with the
results of the low-temperature sweep test in DSR.

Figure 15. The result of BBR.

4. Conclusions

In this study, the mussel adhesion protein material L-DMA was synthesized and
used to modify asphalt. The deformation and cracking resistances of L-DMA-modified
asphalt were studied by DSR temperature sweep, frequency sweep, multi-stress creep
tests, and BBR tests. In addition, the modification mechanism of L-DMA-modified asphalt
was analyzed by FTIR test. According to the test results, the following conclusions can
be drawn.
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• Comparing with MAA and L-DOPA, the infrared spectrum of L-DMA has new charac-
teristic peaks at 3370 cm−1, 3202 cm−1, 1730 cm−1, 1655 cm−1, 1520 cm−1, 1605 cm−1,
1450 cm−1, and 1260 cm−1, which proves that L-DMA was synthesized successfully.
Moreover, L-DMA has good thermal stability and can be used in asphalt materials.

• The modification of L-DMA to asphalt is mainly a physical process. Hydrogen bond
and aromatic ring conjugation introduced by catechol can improve the adhesion
of asphalt.

• L-DMA has a noticeable improvement impact on the high-temperature performance
of asphalt due to the strong hydrogen bonding, conjugation of benzene rings, and
transformation of quinone and semiquinone by catechol at high temperatures. Com-
pared with 70# asphalt, L-DMA-modified asphalt has a higher composite modulus,
rutting factor, viscosity, and creep recovery rate.

• The impact of LDMA on the low-temperature fracture resistance of asphalt is compli-
cated. With the rise of L-DMA content, the low-temperature performance of modified
asphalt drops initially and later increases. When the L-DMA content reaches 10%, the
low-temperature fracture resistance of L-DMA modified asphalt will be higher than
that of 70# asphalt due to the layered structure formed by aromatic ring conjugation.

Overall, the addition of L-DMA has a positive impact on the high-temperature rut-
ting resistance and a high content of L-DMA will have some improvement on the low-
temperature cracking resistance of asphalt. The usage of L-DMA as a kind of mussel
adhesion protein material improves the performance index of asphalt, and, theoretically,
there is a possibility to improve water resistance and self-healing properties of asphalt,
which will be explored in future research. Furthermore, due to the high cost and complex
preparation process of L-DMA, further research is needed to decrease the cost and increase
the preparation efficiency.
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