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Abstract: In the present study, the extraction of rare earth elements (REEs) from waste neodymium
magnets using phosphorus ionic liquid Cyphos IL 104 was investigated. The objective was to
recover and separate the heavy REE (Dy) from light REEs (Nd and Pr). Therefore, the experimental
parameters of ionic liquid extraction, including contacting time, the initial pH value, extractant
concentration, and O/A ratio, have been optimized. The highest separation factor αDy/Nd of 45.18
and αDy/Pr of 47.93 has been achieved. Following the ionic liquid extraction, the comparison of
different stripping agents and the stripping parameters (the concentration of stripping agent and
A/O ratio) were also explored. In short terms, this research demonstrates the optimal parameters of
Cyphos IL 104 for selectively extracting high REE (Dy) and reveals its potential for recovering and
separating REEs in real waste.
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1. Introduction

In recent years, rare earth elements (REEs) have become essential ingredients for
modern technology as they are widely used in electric vehicle batteries, electronics, pow-
erful magnets of devices and wind turbines, phosphors of fluorescent lamps, catalysts of
petroleum refining industries, laser products, etc. [1,2]. That is why REEs are called the
vitamins of modern industry. However, due to the uneven distribution of REE reserves
as well as the environmental impact during their production [3,4], there are only a few
countries that have mine production of REEs. In 2020, as the world’s largest rare earth
producer by far, China accounted for a 57.6 percent share of the total global rare earth mine
production, according to the data from the U.S. Geological Survey [5].

Among the REE-containing products, the NdFeB permanent magnets, containing
neodymium, praseodymium, and dysprosium, are the most widely used in related indus-
tries, which account for at least a quarter of REE products [6,7]. The magnets perform
well in the industries because they have high magnetic fields and high resistance against
demagnetization, which allowed them to be widely applied in computer hard disk drives,
loudspeakers, headphones, and electric motors in vehicles or wind turbines [1,6,8,9]. Con-
sidering the wide application of neodymium (NdFeB) magnets and their growing demand
on the global market, rare earth elements like neodymium (Nd) and dysprosium (Dy) have
been listed as critical metals with high supply risks by Taiwan, Korea, Japan, America, and
the EU. In addition, with the advancement of technologies and reduction of product life
cycles, there is an increasing number of secondary resources like neodymium magnets that
could be recycled annually [10–13]. Therefore, it is economically and strategically necessary
to develop recovery technology for waste neodymium magnets.

In the present study, the solvent extraction process in hydrometallurgy was applied,
which is the most common method used to recover and separate REEs [14–19]. The
solvent extraction process applies two immiscible liquids representing the organic phase
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and aqueous phase. The two phases were shaken and mixed in the separatory funnel
when the target metal ions were extracted to the organic phase and separated from other
elements because of their different affinities [20,21]. Compared to traditional organic
extractants, the organic phase in this study is a phosphorus ionic liquid (IL), Cyphos IL
104 (trihexyl(tetradecyl) phosphonium bis(2,4,4-trimethylpentyl) phosphinate). There are
two main advantages of applying IL to the solvent extraction process [20–24]. On one hand,
the functional ionic group could be easily recomposed because users need to convert the
affinity and selectivity with metals, which is why it is called a designer solvent. On the
other hand, IL is considered a green solvent because of its low volatility and high thermal
stability, making it easy to be regenerated and reused in the process and also reducing the
wasted chemicals. This is the most attractive characteristic of ILs in view of the prevention
of secondary pollution and a reduction in the costs of chemicals used in the whole process.

There has already been some literature demonstrating the extraction of metals through
ionic liquids. The imidazolium ionic liquids ([Cnmim] where n = 2, 4, 6, 8, 10) were
first introduced into the metal extraction process [25–29]. For example, the separation
of Ce4+ from La3+ and Th4+ applying [C8mim][PF6] has been investigated before [30].
Synergistic extraction effects of [C4mim][NTf2] and [C2mim][NTf2] with four conventional
extractants to separate Pr3+, Gd3+, and Dy3+ were also studied by other authors [31]. The
phosphonium ionic liquids, [C101][SCN] and [C101][NO3], which were derived from
trihexyl(tetradecyl)phosphonium chloride (Cyphos IL 101), have been used to separate
Nd3+ and Dy3+ with and without the addition of Cyanex 923 [32]. Additionally, Cyphos
IL 104 has shown the ability to extract Nd3+ and separate trivalent lanthanides from each
other [33]. In addition, extraction involving Cyphos IL 104 has also been successfully
conducted on other metals [34–39]. These studies indicated that the properties of low vapor
pressure, high thermal stability, and the high extraction efficiency of Cyphos IL 104 could
overcome the shortcoming of conventional organic extractants. To realize the selectivity of
REEs through solvent extraction and IL extraction, the comparison of separation factors is
shown in Table 1.

Table 1. The comparison of separation factors of REEs by some extractant.

Reference Extractant Diluent αDy/Nd αDy/Pr αPr/Dy αPr/Gd αGd/Nd

[15] D2EHPA hexane 6.8 ± 0.6 7.6 ± 0.8

[14] TODGA Solvent 70 39.0 ± 1.1 51.7 ± 2.1

[17] Cyanex 572 kerosene 237

[17] P81R-Cy572 kerosene 86

[31] HTTA toluene 764 1.7

[31] A336 [C2mim][NTf2] 82 142

[32] [C101][SCN] Cyanex 923 3.43 ± 0.24

[33] [Cyphos 104] kerosene 20

[33] Cyanex 272 kerosene 4

In the present study, Cyphos IL 104 was applied on the recovery of real waste
neodymium magnets that have not yet been explored. The aim was to recover and selec-
tively extract the heavy REE (Dy) from light REEs (Nd and Pr). Thus, the experimental
parameters of ionic liquid extraction, including the contacting time, the initial pH value,
the extractant concentration, and the organic/aqueous volume ratio (O/A ratio), were
optimized in this study. Furthermore, the comparison of different stripping agents and the
stripping parameters (the concentration of stripping agent and the A/O ratio) were also
investigated after the extraction process.
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2. Materials and Methods
2.1. Reagents and Chemicals

Cyphos IL 104 from Sigma Aldrich (St. Louis, MO, USA) is a phosphonium-based
and hydrophobic ionic liquid (≥90%, water <1%) that was used as an extractant, and its
structure is shown in Figure 1 [33]. As the organic diluent of Cyphos IL 104, reagent grade
kerosene was supplied by CPC Corporation (Kaohsiung, Taiwan). Aqua regia used for
the complete leaching was prepared by mixing nitric acid (≥65%) and hydrochloric acid
(≥37%), both acquired from Sigma-Aldrich (St. Louis, MO, USA), in a 1:3 volume ratio.
Nitric acid (≥65%) and ammonia (30–33%) were acquired from Sigma-Aldrich (St. Louis,
MO, USA). They were used to adjust the pH value in the precipitation and extraction
process. In the stripping process, hydrochloric acid (≥37%), nitric acid (≥65%), sulfuric
acid (≥98%), ammonia (30–33%), and oxalic acid (≥98%) were all obtained from Sigma
Aldrich (St. Louis, MO, USA) to strip dysprosium back to the liquid phase. During the
analysis procedure, ICP standard solutions of all elements were acquired from High-Purity
Standards, Inc. (North Charleston, SC, USA). The nitric acid (≥65%) was purchased from
Sigma-Aldrich (St. Louis, MO, USA) and diluted to 2% to be the background value and
thinner for ICP analysis. All chemicals were analytical grade and used without further
purification. In addition, all chemicals and aqueous solutions were diluted by deionized
water (resistivity 18.0 MΩ·cm) to avoid impurities affecting the results.
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2.2. Apparatus

The demagnetization was conducted by a muffle furnace (LE 6/11, Naberthem, Lilien-
thal, Germany). The concentration of metal ions in solution was analyzed by inductively
coupled plasma optical emission spectrometry (ICP-OES; Varian, Vista-MPX, PerkinElmer,
Waltham, MA, USA). The pH value was measured by a pH meter (SP-2300; SUNTEX; New
Taipei City, Taiwan). The relative standard deviation (RSD) of ICP-OES and the pH meter
were below 3% and 1%, respectively. The solvent extraction process was accomplished
using a thermo mixer incubator (TMI-100H; ChromTech, Apple Valley, CA, USA) to mix
the organic phase and aqueous phase in a separatory funnel and maintain the temperature.

2.3. Pretreatment and Complete Dissolving

The NdFeB magnets from end-of-life motors of electric vehicles were provided by
a local recycling company. The demagnetization of waste magnets was conducted in
a muffle furnace by heating to 600 ◦C for 3 h at a heating rate of 10 ◦C/min. After the
demagnetization, the magnets were manually crushed and ground to particles. One gram
of the particles was then completely dissolved by 120 mL aqua regia at 80 ◦C for 24 h. After
filtration of the total dissolution (ADVANTEC cellulose acetate membrane filter with pore
size 0.45 µm), no residue was observed, and the filtrate was then diluted to 1 L for the
elemental analysis and following experiments.

2.4. Ionic Liquid Extraction

In this study, Cyphos IL 104 as an extractant was diluted into kerosene to extract rare
earth ions from the solution. To determine the affinity of Cyphos IL 104 with different
metal ions, distribution ratio (D) and extraction efficiency (E) were used in this research. D
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and E were correlated with the concentration ratio of one metal in the organic phase and
the aqueous phase at equilibrium and can be written as Equations (1) and (2), respectively:

DA =
[A]org

[A]aq
(1)

EA(%) =
[A]org

[A]aq + [A]org
× 100 (2)

where [A]org and [A]aq are the concentrations of one metal (A) in the organic and aqueous
phases at equilibrium.

The separation factor (α) was introduced to determine the selectivity of the extractant
on one metal (A) over another metal (B) and can be written as Equation (3):

αA/B =
DA

DB
(3)

After the extraction process, the stripping process was conducted to get rare earth ions
back to the liquid phase, and the stripping efficiency is represented as Equation (4):

SA(%) =
[A]aq

[A]aq + [A]org
× 100 (4)

3. Results and Discussion
3.1. Elemental Analysis

After being demagnetized and ground, the magnet powder was dissolved by aqua
regia and its composition was measured by ICP-OES. Table 2 shows the elemental analysis
results in weight percent. As the major component, iron accounts for 64.62%. As for the
target metals, the light rare earth elements Nd and Pr and the heavy rare earth element Dy
account for 20.73%, 5.08%, and 3.55%, respectively.

Table 2. The composition of waste neodymium magnets.

Element Fe Nd Pr Dy Co B Ni Cu

Wt(%) 64.62% 20.73% 5.08% 3.55% 3.25% 1.25% 0.65% 0.87%

To remove the iron from the solution, we added diluted ammonium hydroxide to
adjust the pH value to more than 3.5 and left it at room temperature for 18 h. After
separating the filtrate from the residue and element analysis, we found that iron completely
precipitated with less than 2% coprecipitation of rare earth elements, which means Nd, Pr,
and Dy became the major components of the solution, as shown in Table 3.

Table 3. The composition of the filtrate solution.

Element Fe Nd Pr Dy Co B Ni Cu

Wt(%) 0.62% 59.51% 14.47% 9.77% 8.96% 3.27% 2.01% 1.35%

3.2. Extraction
3.2.1. Effect of Contacting Time

Because the other minor components, such as Co, B, Ni, and Cu, were negligibly
extracted, only REEs were discussed in this research. In this section, the equilibrium
contacting time needed for the extraction process was investigated, which was controlled
by adjusting the separatory funnel shaking period from 1 to 30 min. Other initially fixed
parameters were pH 5, 3 mM [Cyphos IL 104], and an O/A ratio of 1. As shown in Figure 2,
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the reaction rate of Cyphos IL 104 extracting rare earth elements is rarely fast, which
reaches equilibrium in 1 min. The results are in accordance with previous studies applying
Cyphos IL 104 to the extraction of other metals [35,36]. To ensure the complete reaction, the
contacting time of 10 min was chosen as the optimal parameter.
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3.2.2. Effect of Initial pH Value

Since the extraction efficiency of Cyphos IL 104 is pH value-dependent, the reaction at
different pH environments was investigated by adjusting the initial pH values from 3 to 5.
The other fixed parameters were a contacting time of 10 min, 3 mM [Cyphos IL 104], and
an O/A ratio of 1. The results shown in Figure 3 indicate that the extraction efficiency of
rare earth elements slightly increased with increasing pH value. The priority of Cyphos
IL 104 to combine with hydrogen ions over the rare earth metals ions might be the reason.
The reaction mechanisms have been proposed [33,40] and shown in Equations (5) and (6),
where RE represents the rare earth elements. Therefore, the reaction between Cyphos IL
104 and RE metals ions was weaker in a lower pH value environment. Nevertheless, pH
value 3 was chosen as the optimal parameter for the following experiments because the
purpose of the present study was to separate the heavy REE from the light REE.

R4PAorg +H+
aq + Cl− aq → R4PClorg + HAorg (5)

RE3+
aq + 3Cl−aq + 3R4PAorg → 3R4PClorg + REA3org (6)
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3.2.3. Effect of Cyphos IL 104 Concentration

To investigate the effect of extractant concentration, the concentration of the Cyphos
IL 104 and kerosene system was changed from 1 to 5 mM with the fixed parameters:
a contacting time of 10 min, pH 3, and an O/A ratio of 1. Figure 4 shows that the extraction
efficiency increased along with increasing Cyphos IL 104 concentration as the equilibrium
of Equation (6) shifted to the right-hand side. However, 2 mM was chosen as an optimal
parameter because of the high extraction efficiency and selectivity where αDy/Nd and
αDy/Pr equaled 20.30 and 28.89, respectively.
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3.2.4. Effect of O/A Ratio

To study the maximum loading of the organic phase per unit volume, the organic to
aqueous phase volume ratio was adjusted from 0.2 to 1 (mL/mL) with fixed parameters:
a contacting time of 10 min, pH 3, and 2 mM [Cyphos IL 104] as prior results. Figure 5
reveals that the highest separation factor αDy/Nd of 45.18 and αDy/Pr of 47.93 was achieved
when the O/A ratio was 0.6, where EDy, ENd, and EPr were 54.30%, 10.44%, and 9.94%
respectively. As a result, the O/A ratio of 0.6 was chosen as the optimal parameter for the
extraction experiment, which can reduce the dosage of extractant and also increase the
element concentration in the organic phase.
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In brief summary, we derived the optimal parameters for extraction with a contacting
time of 10 min, pH 3, 2 mM [Cyphos IL 104], and an O/A ratio of 0.6. The separation factor
αDy/Nd of 45.18 and αDy/Pr of 47.93 was achieved, where EDy, ENd, and EPr were 54.30%,
10.44%, and 9.94% respectively. Additionally, four-stage extraction cycles can be conducted
to acquire more than 95% Dy from the aqueous phase.

3.3. Stripping
3.3.1. Stripping Agent

To compare the stripping efficiencies of different chemicals, the commonly applied
stripping agent including sulfuric acid, nitric acid, hydrochloric acid, oxalic acid, and
ammonium hydroxide were individually used in the stripping process. The fixed param-
eters were a concentration of 1 M, an A/O ratio of 1, and a contacting time of 10 min.
Table 4 demonstrates that oxalic acid and ammonium have lower and limited stripping
efficiencies, respectively, while the three strong inorganic acids, sulfuric acid, nitric acid,
and hydrochloric acid, showed the ability to strip back the RE ions from the organic phase.
Among them, nitric acid was the chemical with the highest selectivity of heavy REE over
the light REEs. Therefore, nitric acid was chosen as the stripping agent to optimize the
following parameters.

Table 4. Stripping efficiency with different chemicals. Fixed parameters: concentration of 1 M, A/O
ratio of 1, contacting time of 10 min.

S Nd Pr Dy

HCl 41.87% 40.19% 65.28%

HNO3 50.37% 45.63% 81.25%

H2SO4 48.02% 43.64% 76.42%

H2C2O4 35.01% 35.78% 61.21%

NH4OH 5.29% 11.05% 1.74%

3.3.2. Effect of Stripping Agent Concentration

The concentration of nitric acid was adjusted from 0.001 to 0.1 M with fixed parameters:
an A/O ratio of 1 and a contacting time of 10 min in this experiment. Figure 6 shows that
stripping efficiencies were limited when the concentration was lower than 0.01 M and poor
selectivity when [HNO3] was 0.05 M. As a result, we chose 0.1 M as the optimal parameter
in view of stripping efficiencies and selectivity.
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3.3.3. Effect of A/O Ratio

For the same reason mentioned above, the aqueous to organic phase volume ratio
(A/O ratio) was adjusted from 0.2 to 1 (mL/mL) with fixed parameters: 0.1 M [HNO3] and
a contacting time of 10 min. Figure 7 shows no apparent change for stripping efficiency
when the A/O ratio was higher than 0.4, where SDy, SNd, and SPr achieve 76%, 50%, and
42%, respectively. When the A/O ratio was 1, the best selectivity was achieved, where
SDy, SNd, and SPr were 80.45%, 50.71%, and 49.39%, respectively. Through the one-stage
extraction and stripping process, the component of Dy in the final solution accounts for
53.29% compared to the 3.55% of the initial component.
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4. Conclusions

The results of this study demonstrate that the phosphorus ionic liquid Cyhpos IL
liquid 104 could efficiently recover and separate the rare earth elements Nd, Pr, and Dy
from real waste neodymium magnets through the solvent extraction process. Under the
optimal experimental parameters (a contacting time of 10 min, an initial pH value of 3,
2 mM [Cyphos IL 104], and an O/A ratio of 0.6), the separation factor αDy/Nd of 45.18
and αDy/Pr of 47.93 was achieved, where EDy, ENd, EPr were 54.30%, 10.44%, and 9.94%
respectively. For the stripping process, nitric acid was selected for the stripping agent due
to the selectivity of Dy over Nd and Pr from our experimental results. A stripping efficiency
of 80.45% for Dy in the final solution could be reached with 0.1 M [HNO3], an A/O ratio
of 1, and a contacting time of 10 min. In the one-stage extraction and stripping process,
the components of Dy were increased from 3.55% to 53.29%. In summary, although the
multi-stage extraction and the regeneration of ionic liquid and metals from the solutions
after separation still need investigation, this research shows the potential of Cyphos IL 104
for the REEs recycling from secondary resources. For future studies, this system could be
completed and improved to increase its applied value and to promote the industrialization
of ionic liquid in the sustainable manufacturing field.
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