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Abstract: The multiscale model based on micro-mechanics failure theory is modified to consider
complex internal structures, including a fiber random arrangement pattern and interface with the
clustering method. Then, a feed-forward-neural-network (FFNN)-based damage evolution method
is developed to evaluate the macroscale property degradation. The progressive damage analysis of
open-hole laminates under compression is conducted to validate the modified multiscale method.
The predicted results reveal that the interface results in the premature initiation of damage, and
the fiber random arrangement pattern contributes to the decrease in the predicted compression
responses. The developed FFNN-based method aimed at degradation results in an increase in the
predicted compression strength. For the fiber random distribution pattern, the increase in percentage
of predicted compressive strength is 6.0%, which is much larger than the value for the fiber diamond
distribution pattern.

Keywords: micro-mechanics failure theory; open-hole laminates; interface; clustering method;
feed-forward neural network

1. Introduction

Composites have been widely used in aerospace engineering, automotive engineer-
ing, civil engineering and so on. Inevitably, holes in the laminates would be drilled for
connection. Thus, the prediction of strength values and revelation of failure mechanisms
for the open-hole laminates become critical steps for the strength verification of large
composite structures.

The experimental methods have been used for revealing the failure mechanisms [1,2].
However, due to the limitation of the experimental technique, the damage process at the
macroscale and microscale cannot be obtained simultaneously. Different kinds of numerical
methods have been developed for the progressive damage analysis of laminates considering
the hole. Two critical parts should be included in the analysis: one is the failure criteria for
the damage initiation judgment and another one is the damage evolution method. The Tsai–
Wu criterion and Hoffman criterion were compared by Zhou et al. [3] to evaluate the effects
of failure criteria on the predicted compressive behaviors of open-hole laminates. The
Hashin failure criteria were adopted by Shimizu et al. [4] for the damage initiation judgment
of laminates in the longitudinal and transverse direction. Zhang et al. [5] modified the
failure criteria with considering fiber kinking and shear non-linearity. After one certain
failure mode is activated, the damage evolution method needs to be adopted to degrade
the elastic parameters of laminates. The damage evolution models can be divided into
two groups, including sudden degradation models and gradual degradation models [6].
For the sudden degradation models, the material properties are reduced instantaneously
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to some fraction of the original properties once a failure mode is activated [7,8]. For the
gradual degradation models, the damage parameters for a failure mode increase from zero
to one gradually based on empirical functions or a physical failure model [9–11]. However,
with these damage initiation and evolution models, only the progressive damage process
can be obtained, but that at the microscale cannot be revealed.

The micro-mechanics-failure-theory (MMF)-based multiscale method has also been
widely used for the progressive damage analysis of open-hole laminates [12–16]. Within this
multiscale framework, the elastic analysis of the microscale representative volume element
(RVE) is conducted first to obtain the amplification factors for the critical points of the RVE.
Then, the amplification factors are extracted and used to calculate the stress/strain values at
the microscale through the macroscale stress/strain values. With these stress/strain values
at the microscale, the damage initiation in the constituents can be judged. The calculation
process based on the amplification factors is named as the localization process, with the
information transferred from the macroscale model to the microscale model [17]. At last,
damage evolution models are used to degrade the elastic parameters of macroscale models,
and this calculation process is named as the homogenization process [17].

For the localization process, in the original MMF-based multiscale framework, only
fiber regular distribution microscale models were considered, and some regular refer-
ence points from the microscale RVE were chosen for the extraction of amplification fac-
tors [12,14]. To have the fiber random distribution patterns considered, the clustering
method was adopted to modify the extraction process of amplification factors so that the
effects of the fiber random distribution patterns on the damage initiation at the microscale
can be revealed [18]. The effects of the interface debonding between the fiber and matrix on
the behavior of the composites are also important. It was considered by Lou et al. [16] based
on the fiber diamond distribution model in the original multiscale framework. However,
the fiber random distribution model and interface debonding have not been considered
simultaneously in the multiscale framework.

For the homogenization process, different methods were adopted. Li et al. [14],
Liu et al. [15] and Lou et al. [16] adopted the sudden degradation model, which means that,
once a certain damage mode is activated, the macroscale properties are degraded with a
certain percentage suddenly. Lou et al. [16] believed that, once the interface debonding
occurs, the matrix damage or fiber breakage is detected and a certain damage value is set
for the macroscale element. To consider more microscale information, in Xu et al. [13],
instead of degrading the macroscale elastic parameters directly, the elastic parameters of
the constituents are degraded based on the damage states. Then, the analytical model
for elastic parameter prediction of unidirectional laminates is used for the prediction of
the elastic parameters of macroscale models. However, in this homogenization method,
an assumption is made that the equivalent damage value of a matrix can be obtained
through the volume average method. To exclude the assumption, the neural-network-
based degradation method will be developed in this study to obtain the equivalent elastic
parameters precisely.

In this study, the MMF-based multiscale method is modified with the clustering
method so that the fiber random distribution model considering the interface can be
considered at the microscale. Besides, based on the microscale RVE discretized with
clusters, a new degradation rule is developed with the feed-forward neural network. In
the first section of this study, the finite element models for the open-hole laminates to be
analyzed are introduced. In the second section, details for the modified multiscale method
are shown systematically. In the last section, the predicted results are illustrated and
compared with the experimental results. The effects of interface debonding, degradation
rules and fiber distribution patterns are also revealed.
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2. Multiscale Finite Element Modeling
2.1. Macro Model

The model analyzed in Refs. [14,16] is adopted in this study to validate the effi-
ciency and accuracy of the multiscale method to be modified. The open-hole laminate
[45/0/−45/90]2s shown in Figure 1 was analyzed under compressive loading. In Figure 1,
four different colors refer to different plies. The orientation of first four plies with respect to
the loading direction is shown in Figure 2. The 1-axis refers to the fiber direction. According
to the orientation between the fiber direction and loading direction, the first ply is set to be
45◦ ply, the second ply is set to be 0◦, the third ply is set to be −45◦ and the fourth ply is set
to be 90◦. The size of the open-hole laminates is 118 × 38.1 × 1.6 mm3 and the diameter of
the hole is 6.35 mm. More details about the macroscale model can be referred to in Ref. [14].
The model is discretized with C3D8R elements in ABAQUS and the mesh around the hole
is refined to describe the stress concentration (Figure 1). One element is used through the
ply thickness to represent each layer, and this assumption is widely used [17].
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2.2. Micro Model Considering Interfaces

In Ref. [14], the fiber arrangement is assumed to be regular and only the fiber and
matrix are considered at the microscale. The diameter of the carbon fiber is around 7 µm.
The fiber volume fraction is 56%. To evaluate the effects of the interface, the microscale RVE
considering interface is established according to Ref. [16] in Figure 3. The ratio between the
thickness of interface and the radius of the fiber is 1/35, so the thickness of the interface is
set to 0.5 µm. There are some studies revealing that the interfaces are heterogeneous and the
modulus of the interface close to the fiber is larger than that close to the matrix [19,20]. In
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this study, the interface is assumed to be homogeneous, and the assumption was adopted in
Ref. [16] to reveal the effects of interface debonding on the failure analysis of the open-hole
laminates under compressive loading. The equivalent elastic modulus of the interface is
also referred to from Ref. [16]. The finite element model is also shown in Figure 3. For the
fiber and matrix, the C3D6 elements in ABAQUS are adopted to discretize the RVE, and,
for the interface, the C3D8R elements are adopted.
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Actually, the fiber arrangement pattern at the microscale is random, and it has been
proved that the elastic and inelastic parameters predicted from the fiber random dis-
tribution models are closer to the experimental results [21,22]. Thus, the fiber random
distribution model is considered in this study to reveal the coupling effects of interface and
fiber arrangement patterns on the compressive strength of the open-hole laminates. The
generation method for the fiber random distribution models in Ref. [23] is adopted in this
study, which is modified from the random perturbation method. Through combining the
fiber perturbation and global crisscrossing method, the fiber random distribution model
can be established efficiently.

In the first step, according to the desired fiber volume fraction (56%), the model with
fiber square distribution is established [24]. Then, in one iteration, global crisscrossing of
the position of each fiber is conducted to improve the efficiency of the generation of fiber
random distribution model [25]. After the global crisscrossing, the limit of movement in
the x and y direction of each fiber is determined and the random perturbation of each fiber
position is conducted. Then, a new position for each fiber can be obtained randomly under
the conditions that there is non-overlapping between each two fibers. After 100 iterations
adopted in this study, the model with fiber random distribution can be obtained. The fiber
random distribution RVE model considering interface is shown in Figure 4.
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3. Multiscale Model Considering Interface
3.1. Calculation of Amplification Factors

To calculate the stress values in the microscale RVE based on the stress/strain values
in one macroscale element, the amplification factors are adopted [12,13] as shown in the
Equation 1. To obtain the amplification factors, the periodical boundary conditions should
be applied to the microscale RVE first. Then, six different loading cases are considered for
the microscale elastic analyses. For one loading condition, the strain value εi (i = 1, 2, 3
. . . or 6) is set to be one and the other strain values are set to be zero. Thereafter, the six
equivalent stress values derived from the RVE under one loading case are the i-th column
elements in the amplification matrix. At last, the amplification factors for the one microscale
element can be obtained. There are different kinds of amplification factors [18], and the
strain–stress amplification factors [17] (Equation (1)) are adopted to transfer the macroscale
information to the microscale model in this study.

σ1
σ2
σ3
σ4
σ5
σ6


=



A11 A12 A13 A14 A15 A16
A21 A22 A23 A24 A25 A26
A31 A32 A33 A34 A35 A36
A41 A42 A43 A44 A45 A46
A51 A52 A53 A54 A55 A56
A61 A62 A63 A64 A65 A66





ε1
ε2
ε3
ε4
ε5
ε6


(1)

As the microscale elastic analyses are conducted at the global coordinates, the cal-
culated stress values can be used to obtain amplification factors of the fiber and matrix
directly. However, for the interface, instead of using the stress components in the global
coordinates, the tractions in the local coordinates are usually used to judge the interface
debonding, including the normal traction (tn), longitudinal shear traction (tx) and tangen-
tial shear traction (ts) [19]. As the traction forces are used for the judgment of interface
debonding, the strain–stress amplification factors for the interface should be replaced with
the strain–traction amplification factors. It is realized with Equation (2) [26]. The process
for deriving the equation can be found in Appendix A.

tn
tx
ts

 =

0 A12 A13 0 0 A16
0 0 0 A24 A25 0
0 A32 A33 0 0 A36




ε1
ε2
ε3
ε4
ε5
ε6

 (2)

3.2. Extraction of Strain–Stress Amplification Factors with Clustering Analysis

To save the computational capability and reserve the geometrical characteristics of
the microscale RVE during the multiscale analysis, the clustering method is adopted
to discretize the RVE, and the elements in one cluster are believed to have almost the
same mechanical behaviors under external loadings [27–29]. For the fiber and matrix, the
clustering analysis is conducted based on the amplification factors obtained from the elastic
analysis. The clustering analysis procedure is the same as that adopted in Ref. [18]. The
flowchart for deriving the clustering distribution patterns of the microscale RVE is shown
in Figure 5. First, the matrix in Equation (3) [18] is assembled with the amplification factors.

...
Ai

11, · · · Ai
16, Ai

21, · · · Ai
26, · · · Ai

66
...

 (3)



Materials 2022, 15, 5105 6 of 27

Materials 2022, 15, x FOR PEER REVIEW 6 of 27 
 

 

A row of the matrix is expressed as a vector B = [𝐴 ,…𝐴 , 𝐴 ,… , 𝐴 ,…𝐴 ] , 
which presents the stress/strain values in the element i under the six mechanical loading 
conditions. Then, according to the cluster number, k elements are chosen randomly for 
each cluster as its center. Thereafter, each B finds out the center that it is closest to with 
Equation (4) (Ref. [27]). Next, the new centroid of the elements related with the previous 
center should be found. This process needs to be repeated until the distance (Dis) is the 
minimum (Equation (5) from Ref. [27]), which groups each element into one cluster. 

{ } { }2 2
B B B B ,i N i M M M N− < − ∀ ≠  (4)

where M and N represent the cluster number. 
2

1
arg min J

k i J
J i S

Dis B B
= ∈

= −   (5)

where SJ represents the J-th cluster, i is the element number and J is the cluster number. 

Initiation, randomly choosing 
k elements as cluster center

Amplification vectors of 
microscale elements

Calculating the distance 
between the cluster center 

and each element

Group each element to the 
nearest cluster 

Claculate the new cluster 
center

Cluster distribution patterns

The distance is the minimum

No

Yes

 
Figure 5. Flowchart for deriving cluster distribution patterns. 

More details about the clustering process can be referred to in Refs. [27–29]. The am-
plification factors of the clusters are believed to be representative of the amplification fac-
tors of all elements in the RVE [18] and would be used to transfer the macroscale infor-
mation to the microscale. For the interface, the clustering analysis is conducted based on 
the strain–traction amplification factors, so the interface elements in one cluster would 
have almost the same traction values under external loading conditions. 

3.3. Failure Criteria of the Constituents 
After the stress values in the constituents at the microscale are obtained, the damage 

initiation can be judged based on the failure criteria. For the fibers, the maximum stress 
criteria are adopted, which indicates that, once the stress along the longitudinal direction 
exceeds the strength value, the fiber elements are failed. As the tensile (Tf) and compres-
sive (Cf) strength values of the fibers are different, the failure criteria for the fibers are 
composed of two parts (Equation (6)) [16]. 

Figure 5. Flowchart for deriving cluster distribution patterns.

A row of the matrix is expressed as a vector Bi =
[
Ai

11, . . . Ai
16, Ai

21, . . . , Ai
26, . . . Ai

66
]
,

which presents the stress/strain values in the element i under the six mechanical loading
conditions. Then, according to the cluster number, k elements are chosen randomly for
each cluster as its center. Thereafter, each B finds out the center that it is closest to with
Equation (4) (Ref. [27]). Next, the new centroid of the elements related with the previous
center should be found. This process needs to be repeated until the distance (Dis) is the
minimum (Equation (5) from Ref. [27]), which groups each element into one cluster.∥∥∥{Bi

}
− BN

∥∥∥2
<
∥∥∥{Bi

}
− BM

∥∥∥2
∀M, M 6= N (4)

where M and N represent the cluster number.

Dis = argmin∑k
J=1 ∑i∈SJ

∥∥∥Bi − BJ
∥∥∥2

(5)

where SJ represents the J-th cluster, i is the element number and J is the cluster number.
More details about the clustering process can be referred to in Refs. [27–29]. The

amplification factors of the clusters are believed to be representative of the amplification
factors of all elements in the RVE [18] and would be used to transfer the macroscale
information to the microscale. For the interface, the clustering analysis is conducted based
on the strain–traction amplification factors, so the interface elements in one cluster would
have almost the same traction values under external loading conditions.

3.3. Failure Criteria of the Constituents

After the stress values in the constituents at the microscale are obtained, the damage
initiation can be judged based on the failure criteria. For the fibers, the maximum stress
criteria are adopted, which indicates that, once the stress along the longitudinal direction
exceeds the strength value, the fiber elements are failed. As the tensile (Tf) and compressive
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(Cf) strength values of the fibers are different, the failure criteria for the fibers are composed
of two parts (Equation (6)) [16].

σT
11

Tf
≥ 1

− σC
11

C f
≥ 1

(6)

Due to the differences in the tensile and compressive strength of the matrix, the failure
criteria for the matrix are also composed of two parts (Equation (7)) [16]. If the matrix
is under the tensile loading condition, the damage initiation is judged by comparing the
first stress invariant with the tensile strength of the matrix. If the matrix is under the
compressive loading condition, the damage is activated by comparing the equivalent stress
with the compressive strength.

Im
1

Tm
≥ 1

σm
vm

Cm
≥ 1

(7)

where Im
1 = σ11 + σ22 + σ33 and

σm
vm =

√
0.5
[
(σ11 − σ22)

2 + (σ11 − σ33)
2 + (σ22 − σ33)

2 + 6
(
τ2

12 + τ2
23 + τ2

13
)]

.

To judge the initiation of interface debonding, the failure criteria shown in Equation (8) [16]
are adopted. {(

〈tn〉
N

)2
+

(
tx

S

)2
+

(
ts

S

)2
}
≥ 1 (8)

where tn and tx(s) are interfacial normal traction and interfacial shear traction, respectively,
which are highly important for the determination of whether interface debonding will
initiate. < > is Macaulay bracket, N is the normal strength and S is the shear strength of
the interface.

In this study, the elastic and strength values for the fiber, matrix and interface are
referred to in Refs. [14,16] and shown in Tables 1 and 2.

Table 1. Elastic parameters for the composites and constituents [14,16].

Material
Parameters E11 (Gpa) E22 = E33

(GPa)
G12 = G13

(GPa) G23 (GPa) v12 = v13 v23 Vf

Ply 136 10 4.7 3.2 0.35 0.56 0.56
Fiber 240 42 23 12 0.33 0.71

Interface 15.9 15.9 5.76 5.76 0.38 0.38
Matrix 3 3 1.087 1.087 0.38 0.38

Table 2. Strength parameters for the constituents [14,16].

Strength Parameters
(MPa) Tf Cf Tm Cm N S

Values 3710 3430 155 207 18 11.4

3.4. Damage Model Derivation

Once interface debonding, matrix damage or fiber breakage is activated, certain
damage values are calculated and the flexibility matrix is degraded according to Refs. [16,26]
(Equation (9)). It can be found that the damage of the matrix and interface contributes
to the degradation of the transverse elastic modulus. The damage of the fiber results in
the degradation of the longitudinal elastic modulus. The degraded stiffness values of the
macroscale element induced by its institutes’ failure are shown in Equation (10) (Ref. [16]).
In Ref. [16], the sudden degradation model is adopted. It means that, if the interface
debonding at any critical point is activated and the matrix is intact, the damage parameter
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dm,i equals 0.11 and, if both interface debonding and matrix damage initiate, the dm,i is set
to 0.99. If the fibers are invalid, the damage parameter df is set to 0.99.

[S]ijkl =



1
E1(1−d f )

− v12
E1

− v13
E1

1
E2(1−dm,i)

− v23
E2

1
E3(1−dm,i)

1
G12(1−d f )(1−dm,i)

1
G13(1−d f )(1−dm,i)

1
G23(1−d f )(1−dm,i)


(9)

C11 = E1

(
1− d f

)[
1− (1− dm,i)

2v2
23

]
/A

C22 = E2(1− dm,i)
[
1− (1− dm,i)

(
1− d f

)
v13v31

]
/A

C33 = E2(1− dm,i)
[
1− (1− dm,i)

(
1− d f

)
v12v21

]
/A

C12 = E2(1− dm,i)
(

1− d f

)
[(1− dm,i)v13v23 + v12]/A

C13 = E2(1− dm,i)
(

1− d f

)
[(1− dm,i)v12v23 + v13]/A

C23 = E2(1− dm,i)
2
[(

1− d f

)
v12v31 + v23

]
/A

C44 = G12(1− dm,i)
(

1− d f

)
C55 = G13(1− dm,i)

(
1− d f

)
C66 = G23(1− dm,i)

(
1− d f

)
A = 1− (1− dm,i)

(
1− d f

)
v12v21 − (1− dm,i)

2v23v32−

(1− dm,i)
(

1− d f

)
v13v31 − 2(1− dm,i)

2
(

1− d f

)
v12v31v23

(10)

For the fiber breakage, it had been demonstrated that, once the fiber breakage is
initiated, the bearing capability of the macroscale element along the longitudinal direction
is lost suddenly [13,17]. Thus, in this study, the sudden degradation rule is adopted
along the longitudinal direction. However, instead of using the sudden degradation
model to describe the failure of interface and matrix, a feed-forward-neural-network-based
degradation rule is developed in this study. With this method, the effects of arbitrary failure
patterns of matrix and interface on the dm,i can be evaluated quantitatively rather than
empirically with a critical value.

The feed-forward neural network (FFNN) is composed of a layer of input neurons,
a layer of output neurons and one or more layers of hidden neurons [30]. Each hidden
layer has different numbers of neural elements. Information flows from one layer to the
other layers in a feed-forward manner. Neurons in each layer are fully interconnected to
preceding and subsequent layer neurons, with each interconnection having an associated
connection weight. The network function is determined largely by the connections between
the elements. The nonlinear activation function is used in the hidden and output layers’
neurons, which is used to ensure that the computer simulations are non-linear. To have
a neuron network perform a particular function, the values of the connections (weights)
between the elements should be trained and adjusted correctly.

The schematic description of the FFNN is shown in Figure 6. Hidden layers can
contain one or several layers for the practical application. The relationship between the
input vector X = [x1, x2, . . . , xd]T and output vector a of one neural element can be described
in Equation (11) [30] and schematically drawn in Figure 5.

a = f
(

WTX + B
)

(11)
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where W = [w1, w2, . . . , wd] is the weights of the preceding layer neurons and B = [b1, b2,
. . . ,bd] is the bias vector for inputs. The f is the non-linear active function. Commonly used
activation functions are Tanh, ReLU, Sigmoid, Softplus and Linear, etc. [30].
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After the network is established, it has to be trained to adapt to the given problem
using a large dataset that was generated a priori. The training or learning process involves
adjusting the weights and bias of the network to approximate closely the outputs of the
training dataset. The error back propagation algorithm is adopted to obtain the optimal
weight and bias values for the neurons, with a least sum squared optimality criterion of
errors between the predicted and desired values. More details about the FFNN and its
training algorithm can be referred to in Refs. [31,32].

In this study, to establish the connection between the interface and matrix clusters’
failure patterns and the equivalent transverse elastic modulus, the first step is to establish
the dataset. To obtain the equivalent elastic modulus of the RVE with arbitrary matrix and
interface clusters failed, the elastic prediction method presented in Ref. [18] is adopted. If
one cluster is set to be failed, the elastic modulus is assumed to be a very small value. Six
independent loading cases are applied on the RVE and the equivalent elastic parameters
can be obtained. If the matrix and interface regions are discretized with n clusters and m
clusters, respectively, there are 2(n+m) kinds of failure patterns. The input vector for the
network has n + m elements and each one has two equally possible values, 0 or 1, which
indicate the integrity and failure of the cluster, respectively. The output of the FFNN is the
equivalent elastic modulus value. Through comparing the equivalent elastic parameters
with the intact elastic parameters, the equivalent damage value induced by the failure of
matrix and interface can be investigated [33] (Equation (12)).

dm,i = 1−
Edamage

Eintact
(12)
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In Refs. [34,35], it has been demonstrated that every bounded continuous function
can be approximated with arbitrarily small error by network with one hidden layer. The
Sigmoid activation function is adopted in this study. Thus, to establish the FFNN model for
elastic modulus prediction, the only problem is to determine the number of neurons in the
hidden layer. There are some empirical functions that were developed to obtain the number
based on trial-and-error calculations, and they are shown in Equation (13) [36]. To evaluate
the performance of the trained FFNN, the evaluation equations are shown as the root mean
square error (RMSE) and the coefficient of determination (R2) [36]. The RMSE is used to
evaluate the errors (Equation (14) from Ref. [36]), which means that, if the RMSE is closer to
zero, the model error is smaller. The R2 is also used to evaluate the accuracy of the model
(Equation (15) from Ref. [36]), and, if the R2 is closer to one, the model is more accurate.

H =
√

I + O + N
H =

√
I ×O

H = log2 O
(13)

where I is the number of the input vector elements, O is the number of the output vector
elements and N is the number between 1 and 10.

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (14)

R2 = 1−

m
∑

i=1
(yi − ŷi)

2

m
∑

i=1
(yi − yi)

2
(15)

where yi is the actual value, ŷi is the value predicted based on FFNN, yi is the mean value
of the actual values and m is the number of cases for the train.

3.5. Modified Multiscale Numerical Implementation

The open-hole laminates are analyzed based on the modified multiscale method to
reveal the effects of the complex internal structures and the developed degradation rules on
the predicted compressive behaviors (Figure 7). First, the elastic analysis and the clustering
analysis are conducted for the microscale RVEs so that the amplification factors for the fiber,
matrix and interface are obtained. Then, with the discretized RVE, the relation between the
failure patterns of the RVE and the equivalent transverse elastic modulus is established
based on the FFNN. At last, the online analysis for the open-hole laminates is conducted.

For the online analysis, the strain values in the macroscale element are calculated first.
Then, they are used to obtain the stress values for the fiber and matrix clusters and obtain
the traction values for the interface clusters. Thereafter, a damage initiation judgment
should be conducted. If the failure criteria of the fibers are satisfied, the damage value df
for the fiber is set to be 0.99. For the matrix and interface, if the failure criteria for each
constituent are reached, the equivalent transverse modulus is derived and compared with
the intact value to obtain the damage value dm,i in the transverse direction. At last, with the
two damage values, the stiffness matrix of the macroscale element is degraded and used
for the next analysis step.
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4. Results and Discussion
4.1. Offline Analysis

As the analysis results from Refs. [14,16] are used to validate the modified multiscale
model, the geometrical parameters of the model from Refs. [14,16] are adopted here for
comparison. Thus, the RVE with a fiber diamond distribution pattern is analyzed under
six independent strain loading conditions. The longitudinal tensile, transverse tensile,
longitudinal shear and transverse shear stress values are shown in Figure 8. It can be found
that the stress concentrates around the fibers and, due to the symmetry of the RVE, the
stress distribution patterns are also symmetric. With the same FEM model and boundary
conditions, the stress distribution patterns under the unit stress loading are shown in
Figure 9. The stress distribution patterns are similar with those (Figure 10) in Ref. [37]. The
consistency between them verifies the accuracy of the elastic analysis method and results
in this study. It should be noted that the maximum stress value predicted in this study is
smaller than that from Ref. [37], which should be attributed to the consideration of interface
in this study.

For the fiber diamond distribution patterns, the cluster distribution patterns for the
fiber, matrix and interface are shown in Figure 11. The chosen cluster numbers of the fiber
and matrix are 14 and 16, respectively, which have been demonstrated in Ref. [18]. For
the cluster number of interfaces, the chosen value is 30, which is larger than the number
of reference points in the Ref. [16]. It can be found that the cluster distribution patterns
for the matrix and fiber regions are almost symmetrical, which should be attributed to the
symmetry of the RVE. For the interface region, the interface elements in one cluster have
almost the same orientation angle.

Based on the RVE discretized with clusters, certain interface and matrix clusters are
randomly chosen and are set to be failed. An illustration for one failure pattern is shown in
Figure 12. Then, the equivalent transverse elastic modulus is derived through the elastic
analyses of the degraded RVEs. Further, 200 cases are analyzed and used to establish
the connection between the failure patterns and the equivalent elastic modulus. Among
them, 140 cases are used to train the network (training), 30 cases are used to validate the
network (validation) and 30 cases are used to test the trained network (testing). Through
the trial-and-error calculations based on the FFNN, the number of neurons in the hidden
layer is set to be 7, and the performance of the trained network is shown in Table 3. It can
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be found that the RMSE values are smaller compared with the intact transverse elastic
modulus (10 GPa). For the R2, they are all very close to one. The regression line comparing
the values from the FEM and the values from the FFNN is shown in Figure 13, and it can
be found that the slope of the regression line is very close to one. Based on the conclusions
derived above, the accuracy of the chosen neuron number and the effectiveness of the
FFNN are demonstrated.
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The stress distribution patterns for the fiber random distribution model are shown in
Figure 14. It can be found that smaller inter-fiber distance contributes to much larger stress
concentration in the fiber random distribution model compared with the fiber diamond
distribution model. The clustering analysis for the fiber random distribution models is also
conducted, and the obtained cluster distribution patterns are shown in Figure 15. It can be
found that the stress concentration regions are almost in one cluster. Then, based on the
discretized fiber random model, the relation between one certain failure pattern and the
transverse elastic modulus is established and 200 cases are analyzed. The FFNN is trained,
validated and tested with the 200 cases. The number for the training, validation and testing
is the same with that used for the fiber diamond distribution model. The performance
of the trained FFNN is shown in Table 4, which demonstrates the effectiveness of the
trained network.
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Table 3. Performance of the trained FFNN for fiber diamond distribution model.

Samples RMSE (MPa) R2

Training 131.9 0.999
Validation 623.9 0.977

Testing 808.5 0.964
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Table 4. Performance of the trained FFNN for fiber random distribution model.

Samples RMSE (MPa) R2

Training 304.7 0.996
Validation 979.1 0.967

Testing 718.8 0.978

4.2. Online Analysis
4.2.1. Model Validation

To validate the multiscale analysis procedure, the macroscale models are analyzed con-
sidering the fiber diamond distribution pattern, and the obtained results will be compared
with the experimental and simulated results from Ref. [16]. With the amplification factors
for the constituents, the compressive behaviors of the open-hole laminates are predicted
and compared with the experimental results in Refs. [14,16] (Figure 16). All strength values
in Figure 16 are listed in Table 5. It can be found that the strength values predicted in
this study are close with the experimental results, which demonstrates the effectiveness
of the multiscale analysis method. Besides, the effects of the sudden degradation rule
or FFNN-based degradation rule are also compared in Figure 16. It can be found that
the reaction force value at displacement 0.6 mm based on the FFNN degradation method
(13.2 KN) is smaller than that obtained from the model based on the sudden degradation
method (13.6 KN). However, the compressive strength predicted from the model based
on the FFNN method (18.5 KN) is larger than that predicted from the model based on the
sudden degradation method (18.0 KN), and the percentage increase is 2.8%.
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Figure 16. Predicted compressive responses of the open-hole laminates.

Table 5. The comparison of the predicted strength values.

Model Average
Experimental Value In Ref. [16] In Ref. [14] With Sudden

Degradation Model
With FFNN

Model

Strength (KN) 18.6 17.1 18.4 18.0 18.5
Difference

percentage (%) — −8.065 −1.075 −3.226 −0.538

The constituents’ failure modes, including fiber–matrix interface debonding, matrix
damage and fiber breakage, are identified from the damage initiation to final failure with
the modified MMF-based multiscale method. The interface debonding initiation regions
based on the sudden degradation model are located at the hole edge in the transverse
direction of the 45◦ and −45◦ plies (Figure 17), which is the same with that obtained from
Ref. [16]. The critical displacement loading value for the interface debonding is 0.06 mm.
Compared with the model without considering the interface [14], it can be found that the
damage initiates much earlier due to the interface debonding.
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Before the initiation of interfacial debonding, the intralaminar shear stress (τ12) distri-
bution pattern in the 45◦ ply is shown in Figure 18. The stress distribution pattern is similar
with that obtained in Ref. [16], in which it is regarded as the primary reason for the interfa-
cial debonding. However, it is difficult to determine the damage initiation and propagation
processes at the microscale with the stress distribution patterns at the macroscale.
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Figure 18. Intralaminar shear stress distribution pattern.

In the analyses conducted in Refs. [3–11], only the damage propagation processes at
the macroscale were obtained and analyzed. With the modified MMF multiscale method
developed in this study, besides the obtained macroscale results, the microscale information
can also be obtained. With the amplification factors, the failure indices and stress states
of the constituents are obtained and mapped into the microscale RVE, which would be
helpful for revealing the failure mechanisms more clearly.

For the macroscale element where the interface debonding initiates first in the 45◦ ply,
the failure indices and the traction distribution patterns in the corresponding interface
regions are shown in Figure 19. It can be found that, in the normal direction, the compressive
traction is subjected. Based on the interface debonding criteria, it can be concluded that
the interfacial debonding at the location shown in Figure 17 is independent on the normal
traction value. Comparing the longitudinal shear traction with tangential shear traction
distribution patterns, it can be found that it is the longitudinal shear traction that makes the
most contribution to the interface failure. From the distribution pattern of failure indices,
it can be found that the interface debonding initiates uniformly due to the interaction of
the fibers. Besides the damage initiation position, the damage propagation process at the
microscale can also be obtained. With the increase in displacement loading, the interface
debonding regions increase quickly at the microscale (Figure 20).

Materials 2022, 15, x FOR PEER REVIEW 18 of 27 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 19. Failure indices and traction force states for the interface. (a) failure indices; (b) normal 
traction; (c) longitudinal shear traction; (d) tangential shear traction. 

 
Figure 20. Damage propagation in the interface of fiber diamond distribution model. 

With the increase in the external loading, the matrix damage also initiates at the hole 
edge in transverse direction of the 45° and −45° plies (Figure 21), and the critical displace-
ment loading for the matrix damage initiation is 0.64 mm. With the modified MMF mul-
tiscale method, for the macroscale element where the matrix damage initiates first in the 
45° ply, the failure indices and stress distribution patterns at the microscale are shown in 
Figure 22. It can be found that the matrix is under compressive states, so it is proved that 
matrix damage is induced by the von Mises values. The von Mises values of the matrix 
concentrate between the fibers. The matrix damage regions concentrate on where the von-
Mises concentrates. With the increase in the loading, the matrix damage also propagates 
at the microscale (Figure 23a), and the microscale crack is formed at the displacement 
loading 0.7 mm, as shown in Figure 23b. 

(a) 45° (b) 0° (c) −45° (d) 90°  

Figure 19. Failure indices and traction force states for the interface. (a) failure indices; (b) normal
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Figure 20. Damage propagation in the interface of fiber diamond distribution model.

With the increase in the external loading, the matrix damage also initiates at the
hole edge in transverse direction of the 45◦ and −45◦ plies (Figure 21), and the critical
displacement loading for the matrix damage initiation is 0.64 mm. With the modified
MMF multiscale method, for the macroscale element where the matrix damage initiates
first in the 45◦ ply, the failure indices and stress distribution patterns at the microscale are
shown in Figure 22. It can be found that the matrix is under compressive states, so it is
proved that matrix damage is induced by the von Mises values. The von Mises values
of the matrix concentrate between the fibers. The matrix damage regions concentrate on
where the von-Mises concentrates. With the increase in the loading, the matrix damage
also propagates at the microscale (Figure 23a), and the microscale crack is formed at the
displacement loading 0.7 mm, as shown in Figure 23b.
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Figure 23. Matrix damage propagation in the matrix for fiber diamond distribution model. (a) at
displacement loading 0.66mm; (b) at displacement loading 0.7 mm.

The fiber breakages initiate around the hole in the 0◦ ply (Figure 24), and the critical
displacement loading for the matrix damage initiation is 0.62 mm. It can also be found
that the fiber breaks earlier than the matrix failure, which is consistent with the conclusion
obtained from Ref. [16]. For the macroscale element where the fiber breakage initiates first,
the microscale failure indices and the stress in the fibers are shown in Figure 25. It can be
found that the stress in the fibers along the longitudinal direction are in the compressive
stress states. Besides, the stress values in the RVE are almost the same, which contributes
to almost the same failure indices in the RVE. It means that all the fiber clusters fail at
almost the same time, which demonstrates the validity of adopting the sudden degradation
method for fiber breakage (df).
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Figure 25. Failure indices and stress states in the fiber for fiber diamond distribution model. (a) failure
indices; (b) compressive stress in the fiber direction.

The failure patterns of the model are shown below. Once the fiber breakage initiates
at 0◦ ply, a large area of matrix cracking and fiber breakage instantaneously takes place
along the transverse direction of laminates (Figure 26a,b). Compared with the experimental
failure patterns of the open-hole laminates (Figure 26c in Ref. [16]), the similarity between
them demonstrates the effectiveness of the modified multiscale method once again.
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4.2.2. Effects of Degradation Models

The interface debonding, matrix damage and fiber breakage initiation patterns of
the macroscale model predicted based on the FFNN method are shown in Figures 27–29.
It can be found that the initiation region is the same with that predicted based on the
sudden degradation method. However, under the same external loading condition, the
transverse damage value (dm,i) in Figure 27 predicted based on the FFNN method induced
by the interface debonding is larger than 0.11 used in the sudden degradation model. The
difference between the damage values should be attributed to the calculation method of the
transverse damage value. For the FFNN model, the damage value increases based on the
progressive damage processes of the interface, which means that, with the increased failure
area of the interface (Figure 20), the transverse damage value becomes larger and larger.
However, for the sudden degradation model, the damage vale is set to be 0.11 suddenly
once the interface debonding initiates. Thus, under the same displacement loading, a lower
macroscale reaction force is obtained for the model based on the FFNN method.
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Figure 29. The initiations regions for fiber breakage based on FFNN method.

The matrix damage (Figure 28) also initiates at the displacement 0.64 mm. However,
when the matrix damage initiates, the transverse damage value is 0.57, which is much
smaller than 0.99 set in the sudden degradation method. It means that there is still bearing
capability along the transverse direction when the matrix damage initiates. The difference
between them should also be attributed to the calculation method of the transverse damage
value based on the progressive damage process. With the increase in external loading, the
matrix damage area increases at the microscale, as shown in Figure 22, and the transverse
damage value increases gradually based on the FFNN model. Thus, it can be concluded that
considering the effects of the damage evolution process at the microscale on the transverse
damage value based on the FFNN model results in larger predicted compressive strength.

4.2.3. Effects of Fiber Distribution Patterns

Compared with other studies analyzing compressive behaviors of open-hole lami-
nates [3–11], besides the macroscale responses and damage progress, the coupling effects
of the interface and fiber random distribution patterns on the predicted results are also
revealed in this study. This is because the fiber random distribution pattern and interface
can be considered in the modified MMF-based multiscale method. When the fiber random
distribution pattern and interface are considered at the microscale, the predicted com-
pressive responses of the open-hole laminates are shown in Figure 30 based on different
degradation rules. It can be found that the fiber random distribution pattern decreases the
compressive strength dramatically based on the sudden degradation rule (7.2%). Besides,
the result predicted based on the FFNN method (17.7 KN) is also larger than that obtained
based on the sudden degradation method (16.7 KN), and the increase in percentage is
6.0%. The increase in percentage is larger than that obtained from the fiber diamond
distribution model.
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The critical displacement loading values of the model with sudden degradation rule
are shown in Table 6, and the values represent when each damage mode initiates. It can be
found that the interface debonding, matrix damage and fiber breakage initiate much earlier
in the model considering the fiber random distribution pattern, especially for the interface
debonding and matrix damage. The damage initiation regions at the macroscale are the
same as those predicted from the model considering the fiber diamond distribution pattern.

Table 6. Critical displacement values for the initiation of different failure modes.

Models Interface Debonding Matrix Damage Fiber Breakage

Fiber diamond
distribution 0.06 mm 0.64 mm 0.62 mm

Fiber random
distribution 0.04 mm 0.34 mm 0.58 mm

The microscale failure indices and stress distribution patterns of the macroscale el-
ements where each damage model initiates are shown below. For the interface region
(Figure 31), the damage and stress concentrate between the fibers with smaller inter-fiber
distance. It can be found that the interface debonding also results from the longitudi-
nal shear traction. Due to the much smaller inter-fiber distance, the stress concentration
contributes to the much earlier initiation of interface debonding. Compared with the
experimental results from Ref. [16] (Figure 32), it can be found that the interface initiates
locally due to the fiber random distribution pattern rather than uniformly between the
fibers, as shown in Figure 19. This proves the importance of considering the fiber random
distribution pattern at the microscale. With the increase in the loading, the damage also
propagates to the other interface regions from the initiation region quickly (Figure 33).
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Figure 33. Damage propagation in the interface of fiber random distribution model.

For the matrix, the smaller inter-fiber distance also contributes to the earlier matrix
damage initiation (Figure 34) at displacement loading 0.34 mm, which results in the decrease
in the predicted compressive strength compared with the result from the model considering
the fiber diamond distribution pattern. With the increase in the loading, the area of matrix
damage in the RVE increases starting from the matrix regions with less inter-fiber distance
(Figure 35a). At last, the microscale crack is formed in the microscale RVE at displacement
loading 0.54 mm (Figure 35b). It can be found that the progressive damage process is
more complicated and needs larger displacement loading increments for the fiber random
distribution model than for the fiber diamond distribution model. Thus, it can be deduced
that the larger strength increase percentage for models considering the fiber random
distribution pattern should be attributed to the complicated damage process.
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Figure 35. Matrix damage propagation in the matrix of fiber random distribution model. (a) at
displacement loading 0.4 mm; (b) at displacement loading 0.54 mm.

The failure indices and stress patterns for the fiber breakage initiation are shown in
Figure 36. It can be found that the damage is induced by the compressive stress and the
fibers fail at almost the same time, which is the same as the conclusion obtained in the
model considering the fiber diamond distribution pattern.
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5. Conclusions

The micro-mechanics-failure-theory-based multiscale method is modified with the
clustering method and the feed-forward neural network. With the clustering method,
complex microscale characteristics, including the fiber random distribution pattern and
interface, can be considered at the microscale and can be reserved during the multiscale
analysis, which is helpful for revealing the failure mechanisms. With the feed-forward
neural network, a new degradation method is developed based on the RVE discretized with
the clusters. The progressive damage analyses of the open-hole laminates are conducted
and the effects of the complex microstructures and the degradation rules are compared in
this study. The following conclusions can be drawn below.

1. the predicted results are compared with the published experimental and numerical
results first and the agreements between them demonstrate the effectiveness of the
modified multiscale method.

2. through comparing the results obtained with and without considering interface
debonding, it is found that considering interface results in the premature damage
initiation in the laminates.

3. from the results analyzed from the model considering both the fiber random distribu-
tion pattern and interface, it is found that, due to the smaller inter-fiber distance, the
interface debonding and matrix damage initiate much earlier, which contributes to
the decrease in the predicted compressive strength.

4. with the multiscale method developed in this study, both the macroscale and the
microscale damage process can be obtained. It is found that, at the microscale, the
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damage in the fiber random distribution model initiated at a local position rather than
uniformly in the fiber diamond distribution model. Besides, the displacement loading
increment for the formation of microscale crack in the fiber random distribution model
is larger than that in the fiber diamond distribution model.

5. as the progressive damage process of the microscale RVE is considered in the FFNN
degradation method for determining the transverse damage value, the predicted
strength values based on the FFNN are larger than those obtained based on the
sudden degradation method.

6. the difference induced by different degradation rules in the strength values from the
models considering the fiber random distribution pattern is much larger than that
from the models considering fiber diamond distribution pattern, which should be
attributed to the non-uniform damage distribution at the microscale.
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Appendix A

The transformation matrix between the global stress values and the traction values is
shown in Equation (A1). Then, the traction values in the local coordinates can be obtained
with the stress values of interface elements (Equation (A2)), which would be used to judge
interface debonding.

T =

0 cos2 θ sin2 θ 0 0 2 cos θ sin θ
0 0 0 cos θ sin θ 0
0 − cos θ sin θ sin θ cos θ 0 0 cos2 θ − sin2 θ

 (A1)

t =

tn
tx
ts

 = Tσ (A2)

where θ represents orientation angle between the global coordinates and the local coordinates.
As the traction forces are used for the judgment of interface debonding, the strain–

stress amplification factors for the interface are replaced with the strain–traction amplifica-
tion factors. It is realized with Equation (A3).

t = TAσε = Atε (A3)
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