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Abstract: The main subject of this paper is an optimization of steel roof framing used as a load-bearing
structure in commercial pavilions. The authors wanted to draw attention to the necessity to take into
account the uncertainty in the description of design parameters during optimization. In the first step,
using geometrically nonlinear relationships, a static-strength analysis is performed. The decisive
form of loss of stability in this steel roof framing is the jump of the node (snap-through), and not the
buckling of the most stressed structure bars. Therefore, when creating the limit function, it was de-
cided to make a condition limiting the permissible displacement. Values of the implicit limit function
were calculated with Abaqus software based on the finite element method. Reliability analysis, and
robust and deterministic optimization were performed using Numpress Explore software. Numpress
Explore software communicates with the Abaqus software to perform analysis. The task ended with
the generation of information that contained the failure probability, reliability index and the values of
optimized areas of the bars’ cross-sections. The end result of the optimization is not a cost analysis,
but an assessment of the safety of the structure.

Keywords: steel roof framing; stability; reliability; deterministic optimization; robust optimization

1. Introduction

Steel roof frames and trusses are used as load-bearing structures in industrial halls,
commercial pavilions, station concourses, sports halls, etc. In other words, they are used
where a large clear space between columns is required [1].

The structures analyzed in this paper are often made of class 1 steel bars in which, after
checking the strength of the bar cross-section, its overall stability should be additionally
assessed. The overall stability of the members is assessed by verifying the resistance of
members that are simultaneously in compression and bending. The general instability
of a compression element, called buckling, can take one of three forms: bending (the
element is bent in the plane of the lowest stiffness); torsional (the element twists around its
longitudinal axis); and bending-torsion (the element is bent while twisting). The general
instability of the member under a bending moment, called torsional buckling, occurs when
the bending moment reaches a critical value. The buckling of the beam is initiated by the
buckling of the compressed flange from the bending plane and immediately transforms into
the beam torsion. The slenderness of a beam determines its loss of stability. With a suitably
small slenderness, the beam is stable. Its susceptibility to loss of overall stability increases
with increasing beam slenderness. The verification of the decisive forms of stability loss of
steel structures, both at the level of a single member and for the entire structure, is therefore
extremely important. In this paper, by using geometrically non-linear analysis, both the
equilibrium path and the location of the singular points of the solution are determined.

Construction failures resulting in the damage of load-bearing structures made of steel
members are one of the most severe, not only in terms of material loss, but also because
of potential life and health loss. According to PN-EN guidelines [N1-N4], reliability
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evaluation of structures should rely on an idealized concept of limit states and their
verification by the semi-probabilistic partial safety factor method. The role of partial safety
factors is to ensure the required level of structural reliability. Probabilistic approximation
(FORM [2–6], SORM [7–9]) or simulation (Monte Carlo, Importance Sampling [10–14])
are an extension of the semi-probabilistic limit state method. The probabilistic approach
allows a more accurate and more realistic description of materials, geometric parameters
and loads, acting on structures by specifying the type of probability distribution and its
parameters. The safety assessment of the structure concerns both the basic design situation
and exceptional situations, such as fires [15–19] or earthquakes [20–22]. However, engineers
are reluctant to use numerical probabilistic methods, despite their complexity actually being
hidden in computer programs. Additional effort is required from the program user to
characterize the data with two parameters (expected value and standard deviation), instead
of a single parameter as required in deterministic methods. It is thus necessary to provide
engineers with algorithms for structural analysis with random factors considered. Explicit
reliability methods lose their functionality with the increasing complexity of practical
design. In response to the above, this project proposes using the interface between reliability
analysis methods and numerical methods such as the finite element method for structural
calculations. This approach allows building a more realistic mathematical model and, for
this reason, it should be disseminated.

According to the prevailing design practice, a building structure should not only be
safe but also optimized. A design engineer decides whether the response of the structure is
satisfactory, and that response is dependent on the assumptions and requirements made.
Optimal designs are often very sensitive to a random scatter of model parameters and
external actions. Solutions that perform well for nominal values may prove unacceptable
once the parameter randomness is taken into account. It therefore seems natural to extend
the formulation of deterministic optimization with the random scatter of parameter values.
Such a formulation is offered by robust and reliability optimization methods [23–25].
However, effective use of such tools requires improvements in stochastic analysis methods
and development of appropriate engineering software. The following paper is an attempt
to fill this gap.

2. Materials and Methods

The proposal to optimize the steel roof frame, taking into account the random nature
of the design parameters, is the main goal of this paper. Structures of this type are character-
ized by a strongly non-linear response. In this situation, conducting a linear static-strength
analysis is insufficient. In this paper, a geometrically nonlinear analysis in an incremental
formulation is used for the calculations. After dimensioning the structure, the equilibrium
path was determined together with the location of the boundary point. Based on the coordi-
nates of the boundary point, the form of the limit state function was defined as a condition
of not exceeding the permissible displacement. The reliability index was calculated using
first-order reliability method. In the final phase, the roof framing was calculated using two
different formulations of the optimization problem along with a re-evaluation of the safety
level by calculating the reliability index. This paper adopts deterministic optimization as
a reference point. Next, by combining Abaqus [26] and Numpress software [27,28], the
robust design optimization was calculated. A comparative analysis of the results obtained
from deterministic and robust optimization approaches allows us to present the strengths
and weaknesses of both methods for optimal structural design.

2.1. Geometrically Nonlinear Static-Strength Analysis

The phenomena related to stability may be decisive in the design of steel roof framing.
Stability theory is distinguished in structural mechanics by the need to depart from the
stiffness principle, which means that nonlinear equations of at least the second order should
be used. Geometrically, nonlinear analysis (GNA) allows for a complete description of
the potential form of stability loss. This type of analysis can provide the equilibrium path
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and information about the post-critical behavior of the structure The mathematical model
of nonlinear discrete systems formulated on the basis of FEM corresponds to a system of
nonlinear algebraic equations. The set of equations can be formulated in a total or in an
incremental form. In the total form, equations have the form (1):

Ks(q)q = P (1)

where: Ks—secant stiffness matrix of the structure, q—vector of displacement, P—vector
of nodal load.

In the incremental form, equations have the form (2):

KT(q)∆q = ∆µP +R (2)

where: KT(q)—tangent stiffness matrix of the structure; µ− load multiplier, R = P-F—
vector of residual forces; F—vector of internal forces.

The matrix KT (3) of the structure is a result of the assembly of the tangent stiffness
matrices of the elements Ke

T:

KT = ∑e
i=1 Ke

T= ∑e
i=1(K

e
L +Ke

G +Ke
u1+Ke

u2) (3)

where: Ke
T is the tangent stiffness matrix of the element composed of linear stiffness matrix

Ke
L, geometric stiffness matrix Ke

G, and nonlinear stiffness matrices: Ke
u1 and Ke

u2.
Methods for solving nonlinear systems of equations are often based on the Newton–

Raphson algorithm, in which points lying on the equilibrium path are determined in
successive steps. In each step of the algorithm, a sequence of iterations is performed in
such a way that, at the end of the step, the solution is obtained with the accuracy of the
given error. Depending on the method, we can distinguish to control load, displacement or
arc length parameter. The basic problem in numerical analysis of nonlinear problems is
the occurrence of singular points on the equilibrium path (bifurcation points, limit points,
turning points). At these points, standard algorithms for solving systems of linear equations
fail. In this paper, we intend to use the current stiffness parameter method [29,30] and the
constant arc length method [31,32] to determine and evaluate equilibrium paths.

The current stiffness parameter (CSP) is the ratio between the scaled quadratic forms
of the incremental stiffness in initial and current steps (4), respectively.

CSP =
∆q0T ·K0

T · ∆q0

∆qiT ·Ki
T · ∆qi (4)

It is a measure of changes in stiffness matrix KT of the system during motion in N-
dimensional displacement space of solutions. The current stiffness parameter can have
many different applications:

- estimation of the system stiffness by a changing value,
- estimation of stability of the investigated segment of an equilibrium path by checking

the changing sign,
- selection of effective step length,
- control near limit points.

Figure 1 shows a typical snap-through problem (load parameters µ versus some norm
of displacement vector ||q||). The associated curve for CSP as a function of ||q|| is
traced in Figure 2. It is seen that at the extreme points of the load–displacement curve CSP
has the value zero. In this situation, the incremental stiffness matrix KT is singular. CSP is
positive for the stable branches of the load–displacement curve. The instable configurations
are characterized by negative values of CSP. The current stiffness parameter may actively
be used in the selection of effective step length. The basic idea is that the change in CSP
should be close to the same for all load steps. This implies that the incremental stiffness
should be allowed to change by a prescribed magnitude for each new step.
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The current stiffness parameter may actively be used in the controlling of iteration
around extreme points (Figure 4).
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2.2. First-Order Reliability Method

Traditionally, ensuring the security of an engineering system is realized by means of
safety factors. Structural reliability offers an alternative approach to assess the safety of an
engineering system. In structural reliability, uncertainties in loading, material properties
and geometry are taken into account, explicitly. In structural reliability, the failure event
F is defined in terms of a so-called limit function g(X), where X is the vector of random
variables of the problem. We can determine the probability of failure using the integral (5):

Pf =
∫

Ωf f(x)dx (5)

where f(x) = f(x1, x2, . . . , xn), the joint probability density function, Ωf—failure area
(g(X) ≤ 0).

In the general case, when the distribution of the vector of base variables X is not a
vector with a Gaussian distribution, the random variables are transformed to the standard
Gaussian space Z. Now, the problem of reliability analysis is formulated using the limit
function G(Z). After the transformation of the random variables X into the Gaussian
standard space Z, the linearization of the limit function is performed by expanding the
limit function into a Taylor series at a point lying on the limit surface, called the design
point (Z* in Figure 5). This point is the point closest to the origin of the coordinate system.
Due to the properties of the Gaussian standard space, the value of the joint probability
density function corresponding to the failure at this point is the largest. It is the most likely
point of failure of all points on that surface. If there is a failure, it is most likely at this point.
The value of the reliability index obviously depends on the correct determination of the
design point. This problem can be solved efficiently with the aid of gradient optimization
algorithms that minimize the distance of the design point on the curve from the center of
the coordinate system (Figure 5). In the FORM method the hyperplane is described by the
Equation (6):

Gl (Z) = −αT·Z + β (6)

whereα-unit vector is anti-gradient at the design point, theβ-reliability index of Hasofer–Lind.

2.3. Robust Optimization

The design of large and complex structures makes engineers solve issues, such as
building safety, execution cost minimization and weight reduction. Increasing emphasis is
thus put on material use optimization methods which have become an indispensable tool in
rational structural design. Software based on what is popular in structural engineering, the
finite element method usually has modules to perform optimization as standard, but only in
the deterministic range. In the traditional deterministic approach, the randomness of design
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variables and other parameters involved in the optimization formulation are accounted for
by partial safety factors. Partial safety factors defined by appropriate design standards are
calibrated so that they can be applied to the widest possible range of design tasks. However,
this approach often leads to overly conservative solutions. Partial safety factors are not
directly related to the random scatter of the design variable values, therefore, optimal
designs do not automatically provide the assumed level of reliability. When an adequately
high level of safety is one of the most important requirements for the designed structure,
formulating the problem as a reliability-based design optimization (RBDO) problem is
worth considering [33–35]. In the RBDO framework, design constraints are formulated
using failure probabilities. The failure probabilities are understood as the probability of
exceeding certain allowable ultimate or serviceability states defined by appropriate limit
state functions.
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Robust design optimization belongs to non-deterministic optimization formulations.
Because this approach includes the effect of structural parameter randomness on the
response scatter, it usually increases structural reliability [36,37]. A typical RBDO objective
function usually has the terms for structural response variability. The constraints may be
deterministic or may be expressed by the first two statistical moments. More attention is
paid to the adequate performance of structures subjected to small parameter variations.
Unlike other types of optimization (e.g., reliability-based design optimization), imprecise
specification of the types of probability distributions is not significant. The values of the
first statistical moments of the response depend primarily on the first moments of the
random variables. In the absence of adequate data, a uniform or normal distribution of the
variables is often assumed.

The robust optimization algorithm has seven steps:

1. Specify the feasible region according to congruent with (7) and (8) and select the
weighting factor γ.

2. Generate N realizations of the vector of design variables uniformly spaced over the
current feasible region, in accordance with the optimal Latin-hypercube design.

3. Determine statistical moments of the objective and constraint functions for each of the
N realizations of vector {Xd, µx}.

4. Construct the response surface using methods, such as kriging, directly for individual
statistical moments: µ̂f, σ̂f, µ̂gi

, σ̂gi
, σ̂ck .
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5. Solve the deterministic optimization problem

Find the value of variables : Xd, µx (7)

Minimizing :
∼
f

DRS
=

1− γ
µ∗

µ̂f (Xd,µx) +
γ

σ∗
σ̂f (Xd,µx) (8)

Subject to constraints:

µ̂gi
(Xd,µx) −

∼
βi σ̂gi

(Xd,µx) ≥ 0, i = 1, . . . , kg, (9)

σ̂ck (Xd,µx) ≤ σu
k , k = 1, . . . , kc, (10)

X̂d
l
j ≤ X̂d j ≤ X̂d

u
j , j = 1, . . . , nd, (11)

µ̂x
l
r ≤ µx r ≤ µ̂x

u
r , r = 1, . . . , nx, (12)

6. Check the condition for convergence; if it is satisfied, terminate the algorithm.
7. Shift the feasible region over the optimal point determined at step 5. Reduce the

feasible region and return.

The weighting factor γ ∈ [0,1] in Formula (8) defines the importance of each criterion.
Assuming that γ = 0, an optimization problem transforms into the mean value minimization
problem, whereas for γ = 1 it becomes a problem of minimizing the variance of the objective
function. Values µ* and σ* are normalizing constants. Normalization coefficients are
determined based on the extreme values of appropriate moments obtained in step 3.
Quantities X̂d

l
j , X̂d

u
j , µ̂x

l
r, µ̂x

u
r , are the current boundaries of the feasible region.

The key element of the algorithm for the realization of a robust optimization problem is
an effective method of estimating mean values and standard deviations of the objective and
constraint functions. Techniques of approximating implicit functions of design variables
using metamodels, i.e., response surface designs, were used for this purpose. Response
surfaces are developed by fitting the approximating functions to the set of experimental
points [38–43]

In order to find the global maximum, random search methods, and evolutionary or
heuristic algorithms are very often used [42–44].

In Numpress Explore, the kriging algorithm uses a two-stage technique for solving the
optimization problem. Initially, the starting point for the nonlinear Nelder–Mead simplex
algorithm is found with a moderate number of iterations of the simulated annealing
algorithm and continued until convergence is reached [45,46].

The assumption that the considered experimental data do not have any uncertainty
associated with them is true in the case of most numerical simulations. Multiple repeated
calculations on the same computer for the same input data and with the pseudorandom
number generator, always set at the start, lead to the same results. However, there are
applications when the results have some noise, so the use of interpolating response surfaces
is not rational.

A very good example of such a situation is robust optimization, where the points
building the experimental basis are the results of Monte Carlo simulations, e.g., statistical
moments of the objective and constraint functions. Considering the finite size of the samples
that are used in the simulations, the results are scattered. In some cases, when it is not
possible to properly model the effect of selected random parameters on the function value,
this effect is accounted for by adding a noise component to the function.

The kriging method is an interpolation method [47].
The choice of the experimental design has an extremely significant influence on the

quality of the created response surface. The most recommended designs for determinis-
tic, computer-generated experimental data include optimal Latin hypercubes in which
the experimental points are distributed as uniformly as possible in the n-dimensional
parameter space.
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A Latin hypercube–LH, or an n-dimensional Latin square, is a design of experiment
defined using a matrix L of N rows and n columns. Each column is a permutation of
integers from 1 to N, where N is the assumed/set/fixed number of points.

A characteristic feature of Latin hypercube designs is that any two arbitrarily selected
points do not have the same coordinate.

Multidimensional optimal Latin squares, or optimal Latin hypercubes (OLH), can be
regarded as a special case of LH designs. In the work [48], Stocki proves that the simulation
methods that use OLH are much more effective in the estimation of statistical moments of
random functions than the classic ‘purely random’ simulation methods. In the OLH design,
design points fill the design region uniformly, which is extremely important in the case of
constructed response surfaces or random search methods.

Advantages of OLH designs include universality, i.e., once generated, optimal n-
dimensional hypercubes with N points can be saved and used repeatedly for various tasks
with n-random variables [49].

Finding the optimal Latin hypercube configuration for a large number of variables and
points included in the planned numerical experiment is not easy and requires specialized
algorithms. These include the CP algorithm [50] or genetic algorithms [51].

In both cases, the ultimate goal is to obtain the coordinates of N points in the Rn space
(N realizations of an n-dimensional random vector). In the sample obtained, probability
distributions of random variables must be considered.

In the optimization of Latin hypercube point arrangements, we can distinguish two
types of criteria: the minimum distance criterion and the force criterion.

To discuss the criteria, it is necessary to introduce definitions of two functions.
Function d(L) can be defined as the squared Euclidean distance between two points

on the design of experiment (13):

d(L) = min
1≤i,j ≤ N,i 6=j

‖xi − xj‖2 (13)

Let us denote the number of minimum distance occurrences as nd. For a given
realization of the Latin hypercube, we then get nd(L).

A function G, obtained in physical analogy, is the sum of repulsive forces acting on a
set of electrically-charged particles (14):

G(L) =
N

∑
i=1

N

∑
j=i+1

1
‖xi − xj‖2 (14)

The criterion of the minimum distance is as follows:

A Latin hypercube L1 is considered better than L2 if d(L1) > d(L2), whereas when
d(L1) = d(L2), L1 is better than L2 if nd(L1) < nd(L2). For the force criterion, L1 is said
to be better than L2 if G(L1) < G(L2).

An example (Figure 6) of assessing the quality of hypercubes according to the criteria
of distance and force.
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For cubes A and B, we get:
Square of the smallest (Euclidean) distance between two points on the plan of experi-

ments (15):

d(A) = min
1 ≤ i, j ≤ N, i 6= j

‖xi − xj‖2 = 5 = d(B) = min
1 ≤ i, j ≤ N, i 6= j

‖xi − xj‖2 = 5 (15)

According to the criterion of the shortest distance, it is assumed that when d(L1) = d(L2),
L1 is better than L2 if nd(L1) < nd(L2).

In this case, for d(A), the number of occurrences of the minimum distance is 5, while
for d(B) it is 3.

According to the distance criterion, hypercube A is worse than B.
The sum of the mutual forces acting on the set of electrically charged particles (16):

G(A) =
N

∑
i=1

N

∑
j=i+1

1
‖xi − xj‖2 = 1.67 > G(B) =

N

∑
i=1

N

∑
j=i+1

1
‖xi − xj‖2 = 1.52 (16)

In the force criterion, L1 is better than L2 if G (L1) <G (L2).
According to the strength criterion, cube A is worse than B.
A value of a given criterion can be improved (by maximizing the first or minimizing the

second criterion) as a result of modifying the points in the Latin hypercubes. The obtained
design of experiment that uniformly fills the volume of an n-dimensional hypercube,
thereby avoiding excessive concentration of the points in some areas.

Both in the case of the CP algorithm and genetic algorithms, the condition of conver-
gence comes down to comparing the current change in the criterion value to the initial
change. The implementation of the convergence condition using the example of the force
criterion that uses function G (14) in the case of the CP method will be presented below.

Let ∆G1 be the change in the function G value after the first iteration. The convergence
condition is checked after each iteration k and takes the form (17):

∆GK < ε ∆G1 (17)

where ∆GK is a change in the value of function G at the k-th iteration, ε is the chosen
parameter of convergence.

Satisfying the above inequality causes the algorithm to terminate. The longer the
optimization process takes, the greater the values of N and n and the smaller the value of
parameter ε.

Each column of matrix L corresponds to one random variable having a set probability
distribution. It is a permutation of numbers 1 to N. Realization xk(m) of the random
variable XK, 1 ≤ k ≤ n, corresponding to m, 1 ≤ m ≤ N, in the k–th column of the
matrix L is determined using the distribution of the variable Xk (18):

xk(m) = F−1
XK

(∼
xm

)
(18)

where:
∼
xm =

m
N
− 1

2N
(19)

∼
xm (19) is a realization of the random variable

∼
xm with standard uniform random

distribution. xK is a realization of the random variable Xk with cumulative probability
distribution F−1

XK
(x).

Our aim is to generate samples of the random variable Xk with arbitrary distribution,
described by FXK

(x). This is achieved by generating samples of the standard uniform

random variable
∼
xm and transforming them into samples of Xk (Figure 7).
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In the above method, the range of variation of each random variable is divided into
N intervals of equal probability. Realizations xk

(i), I = 1, . . . , N, correspond to the centres
of the intervals for variable Xk. Another solution is a random choice of xk

(i) inside the
i-th interval.

In general cases, random variables can have any probability distributions and can be
correlated. The method of generating the realizations of random variables with the help of
the design of experiment generated by the Latin hypercube, however, does not consider
relations between variables. In order to use Latin cubes in random simulations, original
variables must be transformed to a set of independent random variables. Depending on
whether the functions of the total probability density or only the boundary probability
distributions of random variables and the correlation coefficient matrix are known, the
Rosenblatt transformation [52] or the Nataf transformation [53] can be applied. Maintaining
a probability measure, both transformations convert the original random variables into
independent Gaussian standard variables. The realizations of the variables generated in the
standard space according to (18) are then converted to original X variables using inverse
transformation. However, it should be noted that these transformations do not guarantee
uniform point distribution when projected onto individual axes. The transformation
approach to independent variables is universal. Since creating new Latin hypercubes for
each correlation matrix is not required in this approach, the previously prepared, optimal
Latin hypercube can be used for any correlation of random variables.

3. Results

A steel single-layer shallow frame roof modelled with truss elements was analyzed. A
force of P = 5 kN was applied to the structure at each node. The bars were designed of S235
steel with the yield strength fy = 235 MPa, Young’s modulus E = 210 GPa and Poisson’s
ratio v = 0.3 [N1]. The geometry of the considered structure is shown in Figure 8. The frame
roof is supported by 16 reinforced concrete columns 8 m in height. The rigid reinforced
concrete tie beam in the roof provides immovable support.

Linear static-strength analysis was performed as the first step. Table 1 summarizes
the values of the cross-sectional forces, load capacity for the most stressed elements of
individual bar groups and the limit values of displacements of nodes 2 to 17. Three groups
of bars are distinguished in the structure in accordance with Table 2.

In the second step, a linear buckling analysis was performed. Figure 9 shows the
deformation of the structure. The value of the critical load factor was µcr = 1.4596.

Linear analysis (LA) with linear bifurcation analysis (LBA) performs well in the design
of typical high-rise steel roofs. The situation changes radically when the structure is
a shallow single-layer lattice dome. Such structures are subject to large displacement
gradients; therefore, it is absolutely necessary to use geometrically nonlinear analysis in
the design process. The loss of stability in shallow single-layer lattice domes is related
to snap-through at the nodes and not to the buckling of the members. The phenomenon
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is sudden and creates a domino effect. Snap-though in the position of one node leads to
snap-through at subsequent nodes. It is accompanied by a sharp decrease in the stiffness of
the structure. In Figure 10b, we can see that the value of the current stiffness parameter
does not change significantly until snap-through occurs. However, just before it occurs, the
parameter CSP virtually tends to zero vertically. The load responsible for snap-through is
5 kN × 1.12 = 5.6 kN (Figure 10a). The limit displacement is 11.31 mm (Table 3).
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Table 1. Values of cross-sectional forces and load capacities for the most stressed structure elements
and values of maximum vertical and horizontal displacements for nodes 2–17 in linear analysis.

Internal Force/Load Capacity Meridian
Bar No 33

Parallel
Bar No 56

Ned [kN]–axial force 45.675 85.187
Nc,Rd [kN]–design capacity of the cross-section

at uniform compression 307.850 352.500

Nb,Rd [kN]–design buckling capacity of the
element in compression 151.618 335.679

Maximum vertical displacement [mm] 9.36
Allowable vertical displacement [mm]–D/300 50.10

Maximum horizontal displacement [mm] 1.08
Allowable horizontal displacement [mm]–H/150 6.80

Table 2. Cross-sections of individual bar groups and the maximum bar stress.

Group Node No. Profile Stress

Meridian 1 to 48 RK60 × 60 × 6.3 30%
Parallel 49 to 80 RK70 × 70 × 6 25%

Diagonals 81 to 112 RK50 × 50 × 5 0%
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Table 3. Values of cross-sectional forces for the most stressed elements in the structure and values of
maximum vertical and horizontal displacements for nodes 2–9 for the critical load in geometrically
nonlinear analysis.

Internal Force/Load Capacity Meridian
Bar No. 34

Parallel
Bar No. 59

Ned [kN]–axial force 51.174 100.564
Stress [%] 34 30

Maximum vertical displacement [mm] 11.31
Allowable vertical displacement [mm]–D/300 50.1

Maximum horizontal displacement [mm] 1.32
Allowable horizontal displacement [mm]–H/150 6.80
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In the final step, the stresses for individual groups of bars were verified at the moment
of loading the structure with force P = 5.6 kN (Figure 11).
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Internal forces and capacities for the support bars are compiled in Table 4. The
parameters that are necessary for verifying the buckling of a bar are given in Table 5.

Table 4. Internal forces and cross-section capacities.

Internal Force/Load Capacity Meridian
Bar No. 34

Parallel
Bar No. 59

NEd [kN] 51.174 100.564
Nc,Rd [kN] 307.850 352.500
Nb,Rd [kN] 151.618 335.679

Table 5. Buckling parameters.

Parameter Meridian
Bar No. 34

Parallel
Bar No. 59

Ly= Lz—length of element [mm] 2568.88 979.44
Lcr,y = Lcr,z—buckling effective length [mm] 2568.88 979.44

Lamy = Lamz—slenderness of bar 118.46 37.75
Lam,y = Lam,z—relative slenderness of bar 1.26 0.40

χy = χz—buckling coefficient 0.49 0.95

The stresses in bar 34, modelled from a steel pipe RK 60 × 60 × 6.3 (meridian), and in
bar 59, modelled from a steel pipe RK 70 × 70 × 6 (parallel), were considered. The lengths
of the elements were as follows: 2568.9 mm for the supporting meridian and 979.4 mm for
the parallel. Figure 12 shows the maximum stress values in bars 34 and 59.

The stresses take a value of 39.25 MPa in the case of the support meridians and
67.16 MPa in the case of the parallels. It is worth noting that the stresses do not exceed
68 MPa, while the yield strength of S235 steel is fy = 235 MPa.

These results demonstrate that the stability of individual members is maintained. The
decisive form of the loss of stability is the global loss of stability due to nodal snap-through.
Therefore, for further calculations, the conditions related to the displacement of nodes
are used.
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3.1. Reliability Analysis

The reliability analysis was carried out using the FORM [2] method when the structure
was loaded with a force P = 5.0 kN (load multiplier µ = 1.0). Geometric characteristics of
the cross-sections were assumed as random variables: P-surface area of the meridians and
R-surface area of parallels. The random variables are described in Table 6. The variables
are not correlated. The mass of the modelled structure is M = 2507.386 kg. The values of
the coefficients of variation were assumed at the level of 5%.

Table 6. Description of random variables.

Random Variables Xi
Mean Values

[cm2]
Standard Deviation

[cm2]
Coefficient of
Variation [%]

P 13.1 0.655 5
R 10.7 0.535 5

The limit function adopted based on the analysis results was related to the maximum
node displacement value and had the form (20):

fs= 1− w(x)
wmax

= 1− w(x)
1.131

(20)

where w(x) is the displacement in a given calculation step, and wmax is the maximum
displacement from nonlinear static analysis.

The value of the reliability index at the moment of loading the structure with a force
P = 5.0 kN was β = 2.934, while the failure probability was pf = 0.016.

3.2. Deterministic Optimisation

We are looking for the optimal surface areas of cross-sections of individual groups of
bars: for meridians; P, and for parallels; R.
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Mass of the structure will be the objective function (21):

fC= minimum (ρ · (
48

∑
i=1

Li · P+
80

∑
j=49

Lj · R)) = min (Masa) (21)

where Li is the length of i-th bar from meridians, and Lj is the length of j-th bar from
parallels.

The simple constraints described in Table 7 represent the upper and lower bounds on
the sought design variables.

Table 7. Design variable bounds.

Design Variable Lower Bound
[cm2]

Upper Bound
[cm2]

P 12.455 13.755
R 14.25 15.75

The inequality constraint (22) was formulated as a condition of not exceeding the
permissible vertical displacement of the node wd = 1.131 cm:

g(x)= w(x) − wd= w(x)− 1.131 < 0 (22)

The deterministic optimization was carried out using the Nelder–Mead simplex
method with the maximum number of iterations N = 1000 and convergence parame-
ter ε = 1.0 × 10−8. The obtained dimensions of the cross-section are summarized in Table 8.
The value of the objective function for this case was 2418.096 kg

Table 8. Design variable values from deterministic optimization.

Design Variable Optimal Value
[cm2]

P 12.456
R 14.250

The probability of failure and the reliability index, which in this case were also subject
to verification, were pf = 0.068 and β = 1.488, respectively.

3.3. Robust Optimisation

For robust optimization, random and design variables (µP, µR), the objective function
and constraints were defined. The value of the coefficient of variation was set at 5%.

For the case under consideration, the robust optimization problem takes the
form (23)–(25):

Find values of variables: µP, µR (23)

Minimizing:

fC =
1− γ
η∗ [Mass]+

γ

σ∗σ [Mass] (24)

Subject to constraints:

E[w(x) − 1.131] −
∼
β·σ [w(x) − 1.131] ≥ 012.455 ≤ µP ≤ 13.75514.25 ≤ µR ≤ 15.75 (25)

where α ∈ [0,1] defines the importance of each criterion, η∗, σ∗ normalizes constants, and
w(x) − 1.131 allows vertical displacement constraint.

In order to confirm the correctness of the performed calculations, two methods of
response surface construction were used: kriging and the second-order method. Parameters
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were assumed as follows: γ = 0.5 and
∼
β = 2.0. The design variable values obtained from

both methods are compiled in Table 9.

Table 9. Comparison of the results of kriging and the second-order method.

Kriging Second-Order

Parameter γ 0.5 0.5
Assessment of the dispersion of the sample size 48 48

Sample size to generate RS base points 48 48
Optimal point

Random variable P 12.455 12.455
Random variable R 14.726 14.732

Value of optimised objective function 0.971 0.972
Approximated mass of the structure 2435.53 2435.78

Approximated value of mass standard deviation 68.29 68.29
Validation

Random variable P 12.455 12.455
Random variable R 14.726 14.730

Approximated mass of the structure 2435.53 2435.78
Approximated value of mass standard deviation 68.29 68.29

In the robust optimization algorithm used in Numpress Explore, the optimal point
obtained as the minimization of the function approximating the objective function is
verified by means of validation procedure. In the validation process, we confirm the
correctness of the obtained results by solving the problem (substituting the values of
decision variables) for the original objective function (FEM analysis). During the analysis,
a set of points is created from which the smallest value of the objective function is verified.
In a properly designed analysis, the values obtained as the optimal point are consistent
with the validation results.

The probability of failure and the reliability index, which in this case were also subject
to verification, were pf = 1.84 × 10−3 and β = 2.089, respectively.

4. Discussion

According to the current design trend, the structure should not only be safe, but also
optimal. FEM-based programs are equipped with basic optimization modules, but only
in a deterministic version. The random deviations of the design parameters clearly show
the shortcomings of this analysis. The initial mass of the structure was 2507.386 kg. The
decisive global form of loss of stability was related to the nodal snap-through. Therefore,
for further calculations, the conditions related to the displacement of nodes were used. On
this basis, the limit function was formulated. The value of the reliability index was 2.934,
while the failure probability was 0.016. Deterministic optimization definitely “slimmed
down” the structure, but at the cost of its safety. The mass of the structure was 2418.096 kg,
while the reliability index decreased to 1.488. As a result of robust optimization, the cross-
sectional area of individual groups of bars and the mass of the structure were modified. In
this case, an increase in the value of the reliability index and a decrease in the probability
of failure in relation to deterministic optimization were observed. These values were:
β = 2.089 and pf = 1.84 × 10−3, respectively. The mass of the structure was 2435.780 kg.
Additionally, in order to verify the calculations, two different methods of constructing
the response surface were used: kriging and second-order method. Based on the results
presented in Table 9, we can conclude that the analysis was carried out correctly.

5. Conclusions

1. Shallow steel roof framing characterizes strong nonlinear effects. Therefore, cal-
culations should be based on a geometrically nonlinear analysis. The buckling of
individual members does not always lead to the loss of stability of the structure. The
phenomenon of the snap-through is often the decisive form of loss of stability.
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2. Optimal designs are usually particularly sensitive to parameter imperfections. Opti-
mal solutions located on the border of the acceptable area may, due to imperfection,
enter the hazardous area relatively easily, and thus turn out to be completely useless
if the parameter values differ even slightly from the assumed nominal values.

3. An indispensable element of structure design should be the support of deterministic
optimization with robust optimization. As a result of robust optimization, we obtain
a structure that is less optimal (with a negligibly greater mass), but definitely safer, as
evidenced by the values of reliability indexes. Taking into account the uncertainty of
the design parameters in the formulation of the robust optimization unequivocally
solves this problem, giving the designer control over the safety level of the structure.
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3. Mochocki, W.; Radoń, U. Analysis of Basic Failure Scenarios of a Truss Tower in a Probabilistic Approach. Appl. Sci. 2019, 9, 2662.

[CrossRef]
4. Kubicka, K.; Obara, P.; Radon, U.; Szaniec, W. Assessment of steel truss fire safety in terms of the system reliability analysis. Arch.

Civ. Mech. Eng. 2019, 19, 417–427. [CrossRef]
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