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Abstract: This paper develops predictive models for optimal dimensions that minimize the con-
struction cost associated with reinforced concrete retaining walls. Random Forest, Extreme Gradient
Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), and Light Gradient Boosting Machine
(LightGBM) algorithms were applied to obtain the predictive models. Predictive models were trained
using a comprehensive dataset, which was generated using the Harmony Search (HS) algorithm.
Each data sample in this database consists of a unique combination of the soil density, friction angle,
ultimate bearing pressure, surcharge, the unit cost of concrete, and six different dimensions that
describe an optimal retaining wall geometry. The influence of these design features on the optimal
dimensioning and their interdependence are explained and visualized using the SHapley Additive
exPlanations (SHAP) algorithm. The prediction accuracy of the used ensemble learning methods
is evaluated with different metrics of accuracy such as the coefficient of determination, root mean
square error, and mean absolute error. Comparing predicted and actual optimal dimensions on a
test set showed that an R2 score of 0.99 could be achieved. In terms of computational speed, the
LightGBM algorithm was found to be the fastest, with an average execution speed of 6.17 s for the
training and testing of the model. On the other hand, the highest accuracy could be achieved by the
CatBoost algorithm. The availability of open-source machine learning algorithms and high-quality
datasets makes it possible for designers to supplement traditional design procedures with newly
developed machine learning techniques. The novel methodology proposed in this paper aims at
producing larger datasets, thereby increasing the applicability and accuracy of machine learning
algorithms in relation to optimal dimensioning of structures.

Keywords: machine learning; optimization; structural design

1. Introduction

Retaining walls are a ubiquitous element in structural design. Due to their relatively
large dimensions, optimizing their dimensions can lead to significant gains with construc-
tion costs. Furthermore, designing with minimum dimensions has certain advantages for
CO2 emissions because of using the minimum amount of cement. Therefore, the application
of advanced methodologies of optimization in the design of retaining walls has economic
and environmental benefits.

Many newly developed optimization techniques have been used for structural opti-
mization in recent years. Gomes [1] applied the particle swarm optimization technique
to the mass optimization of steel trusses under frequency constraints. Similarly, Dede [2]
analyzed the weight minimization of steel trusses using the teaching–learning-based opti-
mization algorithm. Bekdaş et al. [3] used several metaheuristic optimization algorithms in
the minimum total potential energy analysis of steel trusses. Bekdaş [4] applied the appli-
cations of harmony search, flower pollination, and teaching–learning-based optimization
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algorithms to minimizing the total construction cost associated with axially symmetric
cylindrical reinforced concrete walls. Ocak et al. [5,6] optimized a tuned liquid damper
device, which was used for lateral displacement control of structures using the adaptive
harmony search algorithm. Ulusoy [7] applied the teaching–learning-based optimiza-
tion algorithm to the problem of the fire-resistant design of timber-based roof structures.
Cakiroglu et al. [8,9] showed that the social spider algorithm could affect the cost minimiza-
tion problem for concrete-filled steel tubular columns. The optimum design of retaining
walls has been investigated using various metaheuristic algorithms including the non-
dominated sorting genetic algorithm (NSGA-II) [10], flower pollination algorithm [11],
gravitational search algorithm [12], and harmony search algorithm [13–15].

In addition to various optimization algorithms, the application of machine learning
techniques in structural design has been increasingly reported in the literature.
Feng et al. [16] developed an XGBoost-SHAP machine learning model which estimates
the shear strength of reinforced concrete shear walls. In their study, the database, which
consisted of 434 samples, was split into a training and a test set in a 70% to 30% ratio.
This split ratio is adopted by the majority of the studies in this field and it is based on
the optimum split ratio established by Mangalathu et al. [17]. Somala et al. [18] showed
that in the fundamental period estimation of masonry infilled reinforced concrete frames,
Ensemble Learning Techniques such as Random Forest and XGBoost could outperform the
existing empirical predictive models available in the literature. Ahmed et al. [19] developed
a novel long short-term memory network with overlapping data for the accurate prediction
of earthquake-induced damage in ductile and non-ductile frame structures. Ni et al. [20]
generated fragility curves for buried pipelines using Lasso Regression Analysis. Bekdaş
et al. [21] demonstrated the high accuracy of different Ensemble Learning Algorithms in
predicting the optimal wall thickness of reinforced concrete cylindrical walls. Cakiroglu
et al. [22] developed predictive models using Ensemble Learning Algorithms to estimate
the axial load-carrying capacity of FRP-reinforced concrete columns.

The current paper deals with optimizing six key dimensions which define the dimen-
sioning of a retaining wall. These dimensions are the length of the heel (X1), length of the
toe (X2), the thickness of the stem at the top of the wall (X3), the thickness of the stem at
the bottom of the wall (X4), the thickness of the foundation of the wall (X5), and the stem
height of the wall (H). For each of them, a separate predictive model has been developed
using four different Ensemble Learning Algorithms. Ensemble Learning Techniques have
been demonstrated to have superior performance in terms of prediction accuracy in recent
years in comparison to traditional methods of structural performance prediction. The
dataset needed to train the predictive models has been created using the Harmony Search
Algorithm. More than seventy thousand data samples have been created, where each one
of these data points corresponds to an optimum design configuration. Every data sample
in this dataset contains, in addition to the six geometric variables which define the retaining
wall geometry, the soil density (γ), surcharge loading (q), soil friction angle (φ), the unit
cost of concrete (Cc), and the soil bearing capacity (qz).

Optimal dimensioning of retaining walls can lead to significant gains in terms of cost
and environmental protection. In recent years, various optimization techniques have been
demonstrated for minimizing the construction cost associated with retaining walls. On
the other hand, machine learning algorithms are increasingly being used in the prediction
of structural performance. However, it is necessary to train these predictive algorithms
using large datasets for their accuracy. The availability of large-enough datasets has been a
major bottleneck in the development of accurate predictive machine learning models for
structural design in the recent years. Most of the research in this area has been conducted
using datasets in the order of magnitude of a thousand data samples or fewer. To overcome
this limitation, the current paper demonstrates a novel technique to generate significantly
larger datasets with the help of optimization algorithms. The current paper is unique in
its combination of metaheuristic optimization with machine learning models to obtain
predictive models that can determine optimal dimensions of a retaining wall under various
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loading and soil conditions. The novelty of the paper is the usage of a well-established
optimization methodology for the generation of large datasets that can be used in the
training of machine learning models.

2. Methods of Optimization and Predictive Model Development

The current paper demonstrates the application of the harmony search algorithm
in generating large datasets consisting of optimum design configurations. These design
configurations consist of six key geometric variables which define the geometry of a
retaining wall in addition to soil properties, concrete unit cost, and applied surcharge load.
The variables of retaining wall geometry are shown in Figure 1. After generating a large
dataset with more than seventy thousand combinations of design variables, four different
machine learning models are trained based on this dataset. The following sections describe
optimization and machine learning techniques.

Materials 2022, 15, x FOR PEER REVIEW 3 of 16 
 

 

obtain predictive models that can determine optimal dimensions of a retaining wall under 
various loading and soil conditions. The novelty of the paper is the usage of a well-estab-
lished optimization methodology for the generation of large datasets that can be used in 
the training of machine learning models. 

2. Methods of Optimization and Predictive Model Development 
The current paper demonstrates the application of the harmony search algorithm in 

generating large datasets consisting of optimum design configurations. These design con-
figurations consist of six key geometric variables which define the geometry of a retaining 
wall in addition to soil properties, concrete unit cost, and applied surcharge load. The 
variables of retaining wall geometry are shown in Figure 1. After generating a large da-
taset with more than seventy thousand combinations of design variables, four different 
machine learning models are trained based on this dataset. The following sections de-
scribe optimization and machine learning techniques. 

 
Figure 1. Retaining wall dimensions. 

2.1. Harmony Search Algorithm 
The application of metaheuristic optimization algorithms to structural optimization 

is an active area of research. Among a large number of metaheuristic algorithms, the har-
mony search (HS) algorithm is one of the most widely used and established techniques, 
and applied to numerous areas such as structural design [23], water network design [24], 
flood model calibration [25], economic load dispatch [26], concrete mix proportion design 
[27], chaotic systems [28], timetabling [29], weapon target assignment [30], stock price pre-
diction [31], mobile network security [32], COVID-19 detection from CT scans [33], and 
subway ventilation [34]. 

The technique is based on the incremental improvement of an initial population of 
randomly generated solution candidates, also called the harmony memory matrix. In the 
case of cost optimization of the retaining wall, the solution candidates are vectors consist-
ing of variables such as the wall geometry, soil properties, unit cost of material used in the 
retaining wall construction, and the external loads, as shown in Equation (1) where har-
mony memory size (HMS) denotes the size of the population of candidate solution vec-
tors. 

𝐻𝑀 = ⎣⎢⎢
⎡ 𝑋1ଵ𝑋1ଶ⋮𝑋1ுெௌ

𝑋2ଵ𝑋2ଶ⋮𝑋2ுெௌ
𝑋3ଵ𝑋3ଶ⋮𝑋3ுெௌ

𝑋4ଵ𝑋4ଶ⋮𝑋4ுெௌ
𝑋5ଵ𝑋5ଶ⋮𝑋5ுெௌ

𝐻ଵ𝐻ଶ⋮𝐻ுெௌ
𝑞௭ଵ𝑞௭ଶ⋮𝑞௭ுெௌ

𝑞ଵ𝑞ଶ⋮𝑞ுெௌ
𝛾ଵ𝛾ଶ⋮𝛾ுெௌ

𝜙ଵ𝜙ଶ⋮𝜙ுெௌ
𝐶௖ଵ𝐶௖ଶ⋮𝐶௖ுெௌ

𝑓(𝑥ଵ)𝑓(𝑥ଶ)⋮𝑓(𝑥ுெௌ)⎦⎥⎥
⎤
 (1) 

In Equation (1), each row of the harmony memory matrix (HM) contains the compo-
nents of a candidate solution vector. The last column of the HM contains the output of a 
function f that takes a candidate solution vector as its argument and returns the perfor-
mance of the solution vector. In the case of cost optimization, the output of f is the total 
cost of material used in constructing the retaining wall. Based on their performances, the 

Figure 1. Retaining wall dimensions.

2.1. Harmony Search Algorithm

The application of metaheuristic optimization algorithms to structural optimization
is an active area of research. Among a large number of metaheuristic algorithms, the
harmony search (HS) algorithm is one of the most widely used and established techniques,
and applied to numerous areas such as structural design [23], water network design [24],
flood model calibration [25], economic load dispatch [26], concrete mix proportion de-
sign [27], chaotic systems [28], timetabling [29], weapon target assignment [30], stock price
prediction [31], mobile network security [32], COVID-19 detection from CT scans [33], and
subway ventilation [34].

The technique is based on the incremental improvement of an initial population of
randomly generated solution candidates, also called the harmony memory matrix. In
the case of cost optimization of the retaining wall, the solution candidates are vectors
consisting of variables such as the wall geometry, soil properties, unit cost of material
used in the retaining wall construction, and the external loads, as shown in Equation (1)
where harmony memory size (HMS) denotes the size of the population of candidate
solution vectors.

HM =


X11 X21 X31 X41 X51 H1 q1

z q1 γ1 φ1 C1
c f

(
x1)

X12 X22 X32 X42 X52 H2 q2
z q2 γ2 φ2 C2

c f
(

x2)
...

...
...

...
...

...
...

...
...

...
...

...
X1HMS X2HMS X3HMS X4HMS X5HMS HHMS qHMS

z qHMS γHMS φHMS CHMS
c f

(
xHMS)

 (1)

In Equation (1), each row of the harmony memory matrix (HM) contains the compo-
nents of a candidate solution vector. The last column of the HM contains the output of a
function f that takes a candidate solution vector as its argument and returns the perfor-
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mance of the solution vector. In the case of cost optimization, the output of f is the total
cost of material used in constructing the retaining wall. Based on their performances, the
solution vectors are ranked, and the best- and worst-performing members of the population
are determined. In each HS iteration, the solution vectors are updated according to the
steps shown in Equations (2)–(5).

k = int(rand·HMS), rand ∈ (0, 1) (2)

xi,new = xi,min + rand·(xi,max − xi,min), if HMCR > rand (3)

xi,new = xi,k + rand·PAR·(xi,max − xi,min), if HMCR ≤ rand (4)

HMCR = 0.5
(

1− i
max(i)

)
, PAR = 0.05

(
1− i

max(i)

)
(5)

HMCR and PAR in Equations (2)–(5) are the harmony memory consideration rate and
the pitch adjustment rate, respectively. After each modification step, the newly generated
solution vectors are ranked against the existing vectors. Among these vectors, the ones that
perform better than the vectors of the previous iteration replace those worse-performing
vectors. In the process of generating new solution candidate vectors, the constraints of
optimization are regarded based on design codes for retaining walls so that the new design
has enough capacity to resist the applied loads. The details of the HS algorithm and its
different variants can be found in [35].

2.2. Machine Learning Methodologies

The database of optimum design combinations generated through the HS algorithm
has been used in training predictive models. The design variables included in this dataset
and their ranges are shown in Figure 2, where the values that each design variable takes
are split into four different subgroups. For each one of these groups, the total number of
samples belonging to that group is written inside the horizontal bars and the subgroup
ranges are written above the subgroup boundaries. In Figure 2, the length of a subgroup
indicates the percentage of the samples belonging to that group inside of the entire dataset.
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Figure 2 shows the concrete unit price (Cc) ranging between 50 and 150 USD/m3. It
can be observed that the majority of cases were within the 75–150 USD/m3 range. The
entire range of unit prices for concrete corresponds to a compressive strength of 16 to
50 MPa, which includes the compressive strengths of most commonly used concrete classes,
excluding high strength concrete [36,37]. For the details of the correlation between the soil
friction angles included in this study with the other soil properties and the soil classification,
the reader is referred to [38].

The predictive models in this paper were generated using the XGBoost, Random
Forest, LightGBM, and CatBoost algorithms. These models are further analyzed using
the SHapley Additive exPlanations (SHAP) methodology. The following sections show a
summary of the theoretical background of these methods.

2.2.1. Extreme Gradient Boosting (XGBoost)

The XGBoost algorithm is a decision tree-based method that has the capability of
scaling to large datasets with billions of samples. The decision tree technique starts with
testing a root criterion and recursively branches into leaf nodes, testing further criteria,
ultimately reaching a terminal node that contains the prediction. The algorithm controls
overfitting by using a special regularization technique. The objective of the algorithm
is to obtain mapping between the input vectors xi and the output values yi as shown in
Equations (6) and (7), where L is the loss function, fk is a weak learner, αk is the learning
rate, T is the number of leaves, wk are the leaf weights, and γ and λ are the penalty
coefficients [16,39].

ŷi = φ
(

xi
)
=

K

∑
k=1

αkfk

(
xi
)

(6)

L(φ) = ∑
i
(yi − ŷi)

2
+ ∑

k
γT +

1
2
λ||wk|| (7)

2.2.2. Random Forest

The Random Forest technique combines the predictions of an ensemble of single
decision trees. The algorithm implements bagging and random feature selection techniques
such that every decision tree in the ensemble is built using a bootstrap sample of the
training set and the mean value of the individual tree predictions determines the overall
predictive model prediction. In every node split, a random subset of features is selected for
tree building. The random forest model can be summarized as in Equation (8), where m̂j
stands for a single decision tree [40–42].

m̂(x) =
1
M

N

∑
i=1

m̂j(x) (8)

2.2.3. Light Gradient Boosting Machine (LightGBM)

LightGBM is another decision tree-based algorithm, where the leaf-wise generation
of the predictive model enables the creation of more complex trees. This is a version of
the gradient boosting algorithm with improved computational speed and better accuracy.
Using the Gradient-based One-Side Sampling (GOSS) method, LightGBM can handle
large datasets. The Exclusive Feature Bundling (EFB) method makes it possible to handle
datasets with a large number of design features in a more efficient way compared to the
basic gradient boosting decision tree [43–45].

2.2.4. Categorical Gradient Boosting (CatBoost)

CatBoost differentiates itself from the basic gradient boosting decision tree in that
it is capable of dealing with categorical input features more efficiently. The built-in one-
hot encoding capability of CatBoost can obtain target statistics from categorical features.
Furthermore, the ordered boosting technique allows the CatBoost algorithm to overcome
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the gradient bias. Let Xi = (xi,1, . . . , xi,m) be an input vector consisting of m design features
and Y = (Y1, . . . , Yn), the vector of labels. Let σ = (σ1, . . . ,σn) be a permutation. To reduce
overfitting and use the entire dataset, the CatBoost algorithm uses a random permutation
by substituting xσp ,k with the expression in Equation (9), where P is a prior value and a > 0
is its weight [46,47].

∑
p−1
j=1

[
xσj,k = xσp,k

]
Yσj + a·P

∑
p−1
j=1

[
xσj,k = xσp,k

]
+ a

(9)

2.2.5. SHapley Additive exPlanations (SHAP)

The SHAP analysis is a great contribution to the explainability of the machine learning
models, in that it enables a visual representation of the impact of each input variable on
the predictive model outcome. Furthermore, Shapley values can measure the interdepen-
dencies between different input variables. The algorithm is based on game theory and
uses the additive feature attribution, method where an output model is defined as a linear
combination of simplified input vectors, as shown in Equation (10) [48].

f(x) = g
(
x′
)
= φ0 +

M

∑
i=1

φixi
′ (10)

In Equation (10), the functions f and g are the original predictive model and the
explanation model, respectively. M is the total number of input variables, x is a vector of
input variables, xi are the simplified input vectors, and φi are the Shapley values. The
Shapley values are calculated using Equation (11). Further details of the SHAP algorithm
can be found in [49].

φi(f, x) = ∑
z’⊆x’

∣∣z’
∣∣!(M− ∣∣z’

∣∣− 1
)
!

M!

[
fx

(
z’
)
− fx

(
z’\i

)]
(11)

3. Results

In this section, the predictions of four different Ensemble Learning Algorithms are
compared to the actual optimum dimensions obtained through the harmony search method.

3.1. Comparison of the Model Predictions

The comparisons have been visualized for all of the six key dimensions that describe
the retaining wall geometry. For each algorithm and each dimension that is being predicted,
the accuracy of the predictive models has been measured using three different metrics and
listed in Table 1. In Figures 3–6, the predicted optimum dimensions are plotted against the
actual optimized dimensions. It can be observed that in the plots showing the predictions
for X1, X5, and H, the points representing the different configurations are within a relatively
narrow band, which indicates higher accuracy of prediction. In each one of these plots,
the dotted ±10% lines can be seen, which indicates a 10% deviation from a perfect match
between the predicted and actual optimal dimensions.

Table 1 shows that five out of the six parameters defining the wall geometry could be
accurately predicted using the ensemble learning models. Among these models in Table 1,
low R2 values were obtained for X3, since the database used in the training of the predictive
models is mostly populated with samples where the X3 value is 0.2. This distribution of
the design variable values was obtained after eliminating the design configurations for
which the harmony search method did not converge to an optimum result within design
constraints. Taking the average value of the metrics of accuracy corresponding to different
dimensions, it can be seen from Table 2 that the CatBoost model has the best performance
in terms of all three accuracy metrics. CatBoost was followed by Random Forest and
LightGBM, whose performances were close to each other. Lastly, the XGBoost models had
the lowest accuracy among the four predictive models.
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Table 1. Prediction accuracy of the machine learning models.

Algorithm Variable R2 MAE RMSE Duration [s]

XGBoost X1 0.977 0.0697 0.2988 16.49
X2 0.958 0.0573 0.1319 19.12
X3 0.562 0.0092 0.0759 16.89
X4 0.967 0.0197 0.0708 17.88
X5 0.988 0.0075 0.0192 17.62
H 0.998 0.0907 0.1351 14.98

Random Forest X1 0.997 0.0279 0.1091 65.02
X2 0.958 0.0378 0.1220 62.47
X3 0.559 0.0083 0.0762 94.74
X4 0.960 0.0162 0.0776 66.19
X5 0.989 0.0052 0.0188 61.61
H 0.997 0.0702 0.1525 51.24

LightGBM X1 0.998 0.0463 0.0989 5.86
X2 0.947 0.0719 0.1383 5.68
X3 0.566 0.0100 0.0756 6.27
X4 0.966 0.0208 0.0725 5.59
X5 0.989 0.0075 0.0186 7.36
H 0.997 0.1051 0.1517 6.28

CatBoost X1 0.998 0.0281 0.0860 85.31
X2 0.960 0.0505 0.1189 73.05
X3 0.642 0.0093 0.0687 74.85
X4 0.971 0.0167 0.0660 85.76
X5 0.991 0.0056 0.0170 90.40
H 0.999 0.0524 0.0890 75.43
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Table 2. Average predictive model accuracy and performance.

Algorithm R2 MAE RMSE Duration [s]

XGBoost 0.9083 0.04235 0.12195 17.16
Random Forest 0.91 0.0276 0.0927 66.88

LightGBM 0.9105 0.0436 0.0926 6.17
CatBoost 0.92683 0.0271 0.07427 80.80

The Taylor diagrams in Figure 7 show the model quality by using the Pearson correla-
tion coefficient as the metric of accuracy. The equation for the calculation of the Pearson
correlation is given in Appendix A. The prediction of each model is shown with a circle
and the corresponding correlation coefficient is shown on the radial grid, which ranges
from 0 to 1. Furthermore, for each predictive model as well as the original dataset, the
corresponding standard deviation values are calculated and shown on both the horizontal
and vertical axes. From Figure 7, it can be seen that for the design variables X1, X5, and H,
the correlation coefficients were greater than 0.99 for all predictive models, which indicates
excellent accuracy of prediction. For X2 and X4, the correlation values were 0.98 for all
predictive models. The lowest correlation values were observed for X3 in the interval from
0.75 to 0.80, where the highest correlation values could be obtained through the CatBoost
model. A summary of the predictive model performance can be observed in Table 2, where
the average values of the error metrics are listed for all the models. According to Table 2,
the CatBoost models have the highest accuracy on average.
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3.2. SHAP Analysis

The SHAP summary plots and feature dependence plots presented in this section
provide an effective way of visualizing the impact of various design variables on the overall
predictions of the machine learning models. The summary plot shown in Figure 8 is an
information-rich representation of how ten different input variables affected the CatBoost
model outcome for the prediction of the wall stem thickness at the bottom (X4). In Figure 8,
each dot corresponds to a different sample in the database. The dot positions along the
horizontal axis are related to the SHAP value of the variable such that greater positive
values indicate an increasing effect on the model prediction and negative SHAP values
indicate a decreasing effect on the model output. Furthermore, the magnitude of a variable
in a sample is represented with color such that greater magnitudes are shown with the
shades of blue and lower values are shown with the shades of red. According to Figure 8,
the thickness of the wall foundation (X5) has the greatest impact on X4 such that increasing
the X5 value also increases X4.

The feature dependence plots in Figure 9 present further information about the in-
terdependencies of the different input variables. Figure 9a shows that as the value of X1
increases, the SHAP value decreases. Therefore, its impact on the model output tends to
decrease. Particularly when the length of the toe (X2) has a high value, this relationship
between X1 and its impact is more pronounced. From Figure 9b, it can be observed that
up to a certain value as X2 increases, its SHAP value increases regardless of the value
of X5, which is the variable most dependent on X2. For X2 > 1.5, the impact of these
variables decreases with its size when X5 has higher values shown with the shades of red.
The relationship between the values of X5 and the impact of this variable on the model
output can be observed in Figure 9d. For X5 < 1, the value of X5 and its impact are linearly
proportional regardless of the value of Cc, which is the most dependent parameter on X5.
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4. Discussion

The current paper presents a novel technique for the optimum dimensioning of re-
taining walls. A data-driven approach is presented using four different ensemble learning
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techniques. Predictive machine learning models have been generated using a large dataset
obtained through optimization. The thickness of the retaining wall stem at the bottom has
been used as the decisive parameter that determines the overall size and cost of the struc-
ture. The database necessary to develop the predictive models has been generated using
the HS optimization technique. Using this technique, a large database with over seventy
thousand data samples was generated where each data sample consists of an optimum
combination of eleven design variables and the total construction cost associated with them.
The prediction accuracy of the different models has been presented using root mean square
error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and Pearson
correlation as the metrics of model performance. The highest prediction accuracy could be
achieved by the CatBoost models followed by LightGBM, Random Forest, and XGBoost.
The focus of this analysis was the optimization of the geometric dimensions of a retaining
wall. The overall wall size and shape were described using six key geometric dimensions.

Previous studies in the area of optimal structural dimensioning mostly attempted
to minimize structural cost or weight for a single load case [8,9]. More recent studies in
the area attempted to develop general-purpose predictive models based on a dataset of
structural configurations with known structural behavior [21,22]. However, the availability
of experimental or numerical data describing the structural behavior is a major limiting
factor in the training of robust predictive models since the size of the database used in
the training of these predictive models is a decisive factor that effects to what extent these
models could be used reliably. Furthermore, the range of design variables included in the
dataset determines the accuracy of the predictions on new data samples. The current study
differentiates itself from the previous ones by generating comprehensive predictive models
that incorporate a large number of samples and design variables. Both the size of the dataset
and the ranges of the design variables were selected so that these ranges would include
most load cases with practical relevance. As a result, a dataset of 71,660 data samples
was generated using the harmony search optimization algorithm, which is significantly
larger than the datasets previously used in this field. The current paper demonstrates the
possibility of generating significantly larger datasets using optimization techniques. This
novel approach has the potential to overcome the data availability limitations associated
with training machine learning models for structural dimensioning. Using this approach,
the applicability of machine learning algorithms to the field of engineering design can be
greatly enhanced.

From the SHAP summary plot, it could be observed that all geometric variables, except
for the length of the heel (X1), have an increasing effect on the wall stem thickness at the
bottom (X4). On the other hand, variables such as concrete unit cost, soil friction angle, and
soil bearing capacity have a decreasing effect on X4 as their values increase. Furthermore,
increasing the magnitude of the soil density (γ) was observed to have an increasing effect
on X4. The thickness (X5) of the wall foundation was found to have the greatest impact on
X4, whereas X3 was the variable with the least impact. The low impact of X3 on the model
output can be attributed to the concentration of the X3 values around a single value in the
entire database.

5. Conclusions

The availability of large datasets is crucial for the development of accurate predictive
models in machine learning and particularly in structural dimensioning. The current paper
shows the generation of a database consisting of 71,660 unique optimal combinations of six
different geometric variables and five parameters that describe the material properties and
external loads. The harmony search algorithm has been utilized to obtain these optimal
configurations. The major outcomes of this paper can be summarized as follows:

• Among the four ensemble learning models developed in this paper, the highest overall
prediction accuracy could be achieved by the CatBoost model, with a maximum
coefficient of determination score of 0.999 for the prediction of the optimum stem
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height and an average R2 score of 0.927, while the XGBoost models demonstrated, on
average, the lowest prediction accuracy.

• In terms of computational speed, the LightGBM models demonstrated the best perfor-
mance, with an average duration of 6.17 s for the training and testing, whereas the
CatBoost models were an order of magnitude slower than the LightGBM models.

• The results of the SHAP analysis showed that the thickness of the retaining wall
foundation (X5), the unit cost of concrete (Cc), and the stem height of the wall have
the greatest impact on the optimal design.

• The foundation thickness and concrete unit cost were found to be highly dependent
on each other and a linear proportionality could be observed between the foundation
thickness and the impact of this parameter on the optimal design configuration.

Further research in this area can be carried out by setting different material properties
such as the compressive strength of concrete or the yield strength of steel as the optimization
objective. Furthermore, the arrangement of the steel reinforcement can be included in future
studies as a design variable or optimization objective. One of the limitations of the current
study is that a certain range of unit prices is assumed during the generation of the dataset
which represents the quality of concrete. However, fluctuations in concrete unit prices
have not been considered. Furthermore, it should be noted that the developed ensemble
learning models are only applicable within variable ranges included in the training dataset.
For variable values outside these ranges, detailed structural analysis and optimization
techniques should be applied on a case-by-case basis.
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Appendix A

Table A1. Metrics of Model Accuracy.
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4. Bekdaş, G. New improved metaheuristic approaches for optimum design of posttensioned axially symmetric cylindrical reinforced

concrete walls. Struct. Des. Tall Spec. Build. 2018, 27, e1461. [CrossRef]
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13. Kayabekir, A.E.; Yücel, M.; Bekdaş, G.; Nigdeli, S.M. Comparative study of optimum cost design of reinforced concrete retaining

wall via metaheuristics. Chall. J. Concr. Res. Lett. 2020, 11, 75–81. [CrossRef]
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