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Abstract: The prediction and control of the mechanical behaviours of fibre-reinforced polymer (FRP)-
confined circular concrete columns subjected to axial loading are directly related to the safety of the
structures. One challenge in building a mechanical model is understanding the complex relationship
between the main parameters affecting the phenomenon. Artificial intelligence (AI) algorithms can
overcome this challenge. In this study, 298 test data points were considered for FRP-confined circular
concrete columns. Six parameters, such as the diameter-to-fibre thickness ratio (D/t) and the tensile
strength of the FRP (f frp) were set as the input sets. The existing models were compared with the test
data. In addition, artificial neural networks (ANNs) and support vector regression (SVR) were used
to predict the mechanical behaviour of FRP-confined circular concrete columns. The study showed
that the predictive accuracy of the compressive strength in the existing models was higher than the
peak compressive strain for the high dispersion of material deformation. The predictive accuracy of
the ANN and SVR was higher than that of the existing models. The ANN and SVR can predict the
compressive strength and peak compressive strain of FRP-confined circular concrete columns and
can be used to predict the mechanical behaviour of FRP-confined circular concrete columns.

Keywords: FRP-confined circular concrete columns; artificial neural network; support vector regression;
mechanical behaviours

1. Introduction

Fibre-reinforced polymers (FRPs) are widely used in composite structures and for
structural strengthening owing to their light weight, high strength, and good corrosion
resistance [1–7]. As shown in Figure 1, an FRP-confined circular concrete column consists
of core concrete and an external confinement of wrapped FRP. σc is the axial compressive
stress on the FRP-confined circular concrete column; σf is the lateral constraint stress on
the core concrete of the FRP-confined circular concrete column; and σcf is the reaction force
generated by the core concrete under the FRP-confined action.

In FRP-confined circular concrete columns, the core concrete is subjected to triaxial
compression under axial loading, which improves the bearing capacity and ductility of the
members and subsequently reduces the section size and self-weight of the members [8–11].
In addition, external confinement by the wrapping of FRP protects the core concrete from
corrosion and improves the durability of the members. Relevant research has shown that
the restraining action of FRP can increase the bearing capacity and ductility of core concrete
by 2–46% and 14–923%, respectively [12–15]. Therefore, studying the axial compressive
mechanical behaviours of FRP-confined circular concrete columns is vital in expanding
their application in engineering practices.
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Figure 1. FRP-confined circular concrete column.  
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shown that the restraining action of FRP can increase the bearing capacity and ductility of 
core concrete by 2–46% and 14–923%, respectively [12–15]. Therefore, studying the axial 
compressive mechanical behaviours of FRP-confined circular concrete columns is vital in 
expanding their application in engineering practices.  

Researchers have extensively investigated the axial compressive mechanical behav-
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ter-to-fibre thickness ratio (D/t), the compressive strength of the core concrete (fco), the 
strain corresponding to the compressive strength of core concrete (εco), the tensile strength 
of FRP (ffrp), the elastic modulus of FRP (Efrp), and the ultimate tensile strain of FRP (εfrp) 
on the axial compressive mechanical behaviours of FRP-confined circular concrete col-
umns and proposed their axial compression constitutive models. Fardis studied the influ-
ences of the section size and compressive strength of core concrete on the axial compres-
sive mechanical behaviours of FRP-confined circular concrete columns and proposed a 
corresponding axial compression constitutive model based on the test results [16]. Saadat-
manesh established an axial compression constitutive model of CFRP- and GFRP-con-
fined circular concrete columns based on the steel-confined concrete model proposed by 
Mander [17,18]. Nanni studied the influence of the FRP type on the axial compressive 
mechanical behaviours of FRP-confined circular concrete columns and proposed their hy-
perbolic constitutive model based on the test results [19]. Samaan studied the influence of 
FRP layers on the axial compressive mechanical behaviours of GFRP-confined circular 
concrete columns and proposed an axial compression constitutive model [20]. Lam and 
Teng proposed a two-stage constitutive model of FRP-confined circular concrete columns 
based on experimental data, which combined a parabola and a straight line [21–24]. Chas-
tre and Silva studied the influences of the diameter-to-fibre thickness ratio, the elastic 
modulus of FRP, and the strength of core concrete on the axial compressive mechanical 
behaviours of GFRP-confined circular concrete columns and proposed an axial compres-
sion constitutive model of FRP-confined circular concrete columns based on the test re-
sults [25]. In order to reduce the error increase in the FRP constraint model due to FRP 
failure, Gian proposed an effective strain analysis model of FRP-confined cylinder con-
crete columns based on a theoretical analysis and the test data [26]. Wu and Wei studied 
the effects of the ultimate tensile strain of FRP and the strength of core concrete on the 
axial compressive mechanical behaviours of FRP-confined circular concrete columns and 
proposed an axial compression constitutive model of FRP-confined circular concrete 
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Researchers have extensively investigated the axial compressive mechanical behaviours
of FRP-confined concrete columns. They have studied the influences of the diameter-to-
fibre thickness ratio (D/t), the compressive strength of the core concrete (f co), the strain
corresponding to the compressive strength of core concrete (εco), the tensile strength of FRP
(f frp), the elastic modulus of FRP (Efrp), and the ultimate tensile strain of FRP (εfrp) on the
axial compressive mechanical behaviours of FRP-confined circular concrete columns and
proposed their axial compression constitutive models. Fardis studied the influences of the
section size and compressive strength of core concrete on the axial compressive mechanical
behaviours of FRP-confined circular concrete columns and proposed a corresponding axial
compression constitutive model based on the test results [16]. Saadatmanesh established
an axial compression constitutive model of CFRP- and GFRP-confined circular concrete
columns based on the steel-confined concrete model proposed by Mander [17,18]. Nanni
studied the influence of the FRP type on the axial compressive mechanical behaviours
of FRP-confined circular concrete columns and proposed their hyperbolic constitutive
model based on the test results [19]. Samaan studied the influence of FRP layers on the
axial compressive mechanical behaviours of GFRP-confined circular concrete columns
and proposed an axial compression constitutive model [20]. Lam and Teng proposed
a two-stage constitutive model of FRP-confined circular concrete columns based on ex-
perimental data, which combined a parabola and a straight line [21–24]. Chastre and
Silva studied the influences of the diameter-to-fibre thickness ratio, the elastic modulus of
FRP, and the strength of core concrete on the axial compressive mechanical behaviours of
GFRP-confined circular concrete columns and proposed an axial compression constitutive
model of FRP-confined circular concrete columns based on the test results [25]. In order to
reduce the error increase in the FRP constraint model due to FRP failure, Gian proposed
an effective strain analysis model of FRP-confined cylinder concrete columns based on a
theoretical analysis and the test data [26]. Wu and Wei studied the effects of the ultimate
tensile strain of FRP and the strength of core concrete on the axial compressive mechanical
behaviours of FRP-confined circular concrete columns and proposed an axial compression
constitutive model of FRP-confined circular concrete columns based on the test results [27].
With the depth of research on FRP-confined concrete columns increasing, researchers have
carried out a series of research works on FRP-confined non-circular concrete columns. Gian
established a simplified model of FRP-confined circular concrete columns based on the
iterative constraint model proposed by himself [28]. Jiang studied the effect of FRP restraint
on reducing the strength degradation of square concrete columns based on a test under the
eccentric loading of FRP-confined square concrete columns [29]. He reviewed the research
status of FRP-confined non-circular concrete columns with modified shapes and proved the
advantage of the curving section through the influence of key parameters on the FRP con-
straints [30]. All the existing models are semi-empirical and semi-theoretical formulations
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based on limited data, which do not consider the influence of all the parameters on the
compressive strength and ultimate compressive strain of the FRP-confined circular concrete
columns. The accuracy of the prediction needs to be evaluated; therefore, it is urgent to
propose a reliable model that can accurately predict the axial compressive constitutive
relationship of FRP-confined circular concrete columns.

In recent years, machine learning has shown unique advantages in solving various
problems in structural engineering. A variety of machine learning methods have been
widely applied in performance prediction, data classification, image recognition, struc-
tural simulation, etc. In particular, artificial neural networks (ANNs) and support vector
regression have attracted the most attention [31–38].

ANNs are mathematical models that simulate the neural frame of a human to process
complex information. They are widely used for data prediction [39,40]. Liu used an ANN
and a swarm intelligence algorithm to predict the carbonation depth of recycled concrete
through nine parameters, including temperature, recycled aggregate replacement rate,
water absorption, and exposure time, and the results showed that the ANN performed
better than the conventional formula [41]. Amiri used an ANN to predict the mechanical
behaviours and durability of concrete containing constructional waste through the water-
binder ratio, the recycled aggregate replacement rate, and other parameters. The results
proved that the ANN had excellent accuracy in predicting the target value [42]. Jayasinghe
established a shear test database of concrete beams without shear reinforcement and
evaluated the forecast accuracy of the ANN and existing models. The results showed that
the ANN was more accurate and is an effective tool for the influence analysis of a single
parameter [43].

Support vector regression (SVR) is a regression model developed by Vapnik [44], who
introduced insensitive loss functions into the support vector machine (SVM) based on
statistical learning theory. It has better predictive ability. Ahmad used SVR, NMR (nuclear
magnetic resonance), and an ANN to predict the splicing strength of reinforced concrete
members based on the diameter of the rebar, the compressive strength of concrete, and
the protective cover thickness. The results show that SVR has the highest forecasting
accuracy [31]. Tran used SVR to predict the adhesion strength of the interface between
FRP and concrete using the water–cement ratio, the recycled aggregate replacement rate,
the sand rate, and other parameters. The results showed that SVR had good predictive
performance [45].

ANNs and SVR have been successfully applied in the field of architecture and achieved
ideal results [46–50]. Whether they can accurately predict the axial compressive mechanical
behaviour of FRP-confined circular concrete columns needs to be evaluated. Based on this,
our study collected the test data of the axial compressive mechanical behaviours of FRP-
confined circular concrete columns from the relevant published literature and established
a reliable database containing 298 datasets. D/t, f co, εco, f frp, Efrp, and εfrp were set as
input sets. Based on the established database, the forecast accuracy of the existing axial
compression constitutive model for FRP-confined circular concrete columns was evaluated
and analysed. ANN and SVR models were developed, and the forecast accuracy of the
axial compressive mechanical behaviours of the FRP-confined circular concrete columns
was evaluated and analysed using the ANN, SVR, and the existing axial compression
constitutive models. Finally, based on the intelligent algorithm model, the affecting key
factors were analysed using expanded parameters. Finally, the key factors affecting the
axial compressive mechanical behaviours of the FRP-confined circular concrete columns
were analysed based on an intelligent algorithm.

2. Database

The database relied on 298 specimens of tested data obtained from 13 studies [1,8,43–45,51–58].
The data information has been listed in Appendix A. It is crucial to collect appropriate parameters
to study the axial compressive mechanical behaviour of FRP-confined circular concrete columns.
Thus, such a database considers the influence of six parameters on the mechanical behaviour of
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FRP-confined circular concrete columns and the influence of D/t, fco, εco, f frp, Efrp, and εfrp on the
axial mechanical behaviour of FRP-confined circular concrete columns. Detailed information on the
main parameters is presented in Table 1.

The range of the D/t, f co, εco, f frp, Efrp, and εfrp are shown in Figures 2 and 3. The D/t
was mainly distributed in the range of 0–500. The minimum f co was 9.9 MPa, the highest
was 136.3 MPa, and the data between 50 MPa and 100 MPa were the highest. The εco was
concentrated in the range of 1500–3000 µε. The f frp in the range of 2000 MPa–4000 MPa
was up to 65%. Most data on the Efrp were distributed in the range of 200–300 GPa. The
data points of the εfrp in the range of 4.5 × 104–5 × 104 µε were the least, and maximum
data points were in the range of 3 × 104–4.5 × 104 µε.
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Table 1. The detailed information of main parameters.

Parameter D/t f co/MPa εco/µε f frp/MPa Efrp/GPa εfrp/µε

Minimum 57.3 9.9 950 383 21.6 7200
Median 615.4 39.4 2600 3500 234 16,000

Maximum 1500.0 136.3 3850 4933 245 43,000
Average 721.2 46.7 2440 3321 196.6 16,686
Standard
deviation 433.1 25.6 598 1066 71.2 4967

Skewness 0.3 1.7 −0.9 −1.1 −1.3 3.9

3. Predictive Models of the Axial Compressive Mechanical Behaviours of FRP-Confined
Circular Concrete Columns
3.1. Evaluation Indices

To evaluate the predictive accuracy of the models of the axial compressive mechanical
behaviours of the FRP-confined circular concrete columns, the regression coefficient (R2),
the mean square error (MSE), the mean absolute percentage error (MAPE), and the integral
absolute error (IAE) were used to evaluate the predictive accuracy of the models. R2 reflects
the correlation between the independent and dependent variables. The closer R2 is to 1, the
higher is the correlation between the predictive value and the actual value. The MSE reflects
the average error. The lower the MSE, the smaller the error between the predictive value and
the actual value. MAPE reflects the degree of data dispersion. The smaller the MAPE, the more
the predictive value converges to the actual value. Additionally, the IAE reflects the predictive
accuracy. The smaller the IAE, the higher the predictive accuracy of the data. All the indices
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are often used to evaluate the predictive accuracy of the neural network model [42,59–62].
The design formulae for each index are given in Equations (1)–(4).

R2 =
(∑n

i=1(Oi −Oi)(Ci − Ci))
2

∑n
i=1
(
Oi −Oi

)2
∑n

i=1
(
Ci − Ci

)2 (1)

MSE =
1
n

n

∑
i=1

(Ci −Oi)
2 (2)

MAPE =
1
n

n

∑
i=1

∣∣∣∣Ci −Oi
Ci

∣∣∣∣ (3)

IAE =

√
∑n

i=1(Oi − Ci)
2

∑n
i=1 Ci

× 100% (4)

where Oi is the actual value of the compressive strength or ultimate compressive strain
(MPa/µε); Ci is the predictive value of the compressive strength or ultimate compressive
strain (MPa/µε); Oiis the average value of the actual value of the compressive strength or
ultimate compressive strain (MPa/µε); Ciis the average value of the predictive value of the
compressive strength or ultimate compressive strain; and n is the number of data points.

3.2. Evaluation of Existing Axial Compression Constitutive Models
3.2.1. Existing Axial Compression Constitutive Models

At present, there is much research on the axial compressive mechanical behaviour
of FRP-confined circular concrete columns. The influence of key parameters on the axial
compressive mechanical behaviours of FRP-confined circular concrete columns has been
studied, and many axial compression constitutive models of FRP-confined circular concrete
columns have been proposed. Among them, the Mander [16], Fardis [17], Lam [21],
Bisby [63], Wu [64], and Youssef [65] models are widely used.

The Mander model was proposed as a steel-confined concrete model in 1988 [16]
and was later adopted by the guidelines for the selection, design, and installation of
FRP systems for externally strengthening concrete structures to calculate the axial com-
pressive mechanical behaviours of FRP-confined circular concrete columns [66]. Fardis
experimentally studied the axial compressive mechanical behaviours of 46 FRP-confined
circular concrete columns and proposed axial compression constitutive models of CFRP-
confined circular concrete columns [17]. Lam and Teng proposed a constitutive model for
FRP-confined circular concrete columns combined with a parabola with a straight line [21].
Bisby studied the influence of the FRP type on the axial compressive mechanical behaviours
of FRP-confined circular concrete columns and proposed a constitutive model applicable to
medium and weak FRP-confined concrete columns [63]. Wu Gang proposed a simplified
trilinear constitutive model for FRP-confined circular concrete columns [64]. Youssef pro-
posed an axial compressive constitutive model of FRP-confined circular concrete columns
considering the influence of the FRP type and the diameter-to-fibre thickness ratio [65].
Detailed information on each model is shown in Table 2.
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Table 2. Details of existing axial compression constitutive models.

Models Equation
for Stress

Equation
for Strain Parameters Range of

Application

Mander
[16]

fcc
fco

= 2.254
√

1 + 7.94 fl
fco
− 2 fl

fco
− 1.254 εcc

εco
= 5 fcc

fco
− 4 fco/tfrp/styles of FRP CFRP/GFRP-confined concrete

columns

Fardis
[17]

fcc
fco

= 1 + 4.1
ffrp tfrp

R fco
εcc = 0.002 + 0.0005

Efrp tfrp
R fco

R/styles of FRP CFRP-confined circular concrete
columns

Lam
[21]

fcc
fco

= 1 + 2 fl
fco

εcc
εco

= 15 fl
fco

+ 2 fco/tfrp/styles of FRP/ffrp
CFRP/GFRP-confined circular

concrete columns

Bisby
[63]

fcc
fco

= 1 + 3.587 fr
0.84 εcc

εco
= 1 + 0.024 fr

fco
styles of FRP Medium and weak FRP-confined

concrete column

Wu
[64]

fcc
fco

= 1.316 + 2.098 fl
fco
− 0317( fl

fco
)

2
εcc = 3.223εfrp(

fl
fco

)
0.44

fco/tfrp/styles of FRP/R AFRP/CFRP/GFRP-confined
circular concrete columns

Youssef
[65]

fcc
fco

= 1 + 2.25 fr
1.25

εcc = 0.003368 + 0.259 fr
fco

(
ffrp
Efrp

)0.5
tfrp/styles of FRP/R CFRP/GFRP-confined circular

concrete columns

Note: fcc: compressive strength of FRP-confined circular concrete columns (MPa); fco: compressive strength of
core concrete (MPa); εcc: strain corresponding to compressive strength of FRP-confined circular concrete columns
(µε); εco: strain corresponding to compressive strength of core concrete (µε); ffrp: tensile strength of FRP (MPa);
Efrp: elastic modulus of FRP (GPa); R: section radius of specimen (mm); fr : effective lateral constraint stress
provided by FRP (MPa); fl : lateral constraint stress provided by FRP (MPa).

3.2.2. Predictive Results of Existing Axial Compression Constitutive Models

Based on the established database, the predictive accuracies of the six axial compres-
sive constitutive models of FRP-confined circular concrete columns were compared and
analysed. The results of the compressive strength of each model are shown in Figure 4.
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Figure 4. Predictive results of compressive strength. (a) Mander Model, (b) Fardis Model, (c) Lam
Model, (d) Bisby Model, (e) Wu Model, (f) Youssef Model.
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As shown in the figure, most of the data points of the Mander [16] and Fardis [17]
models are above a straight line, indicating that both the models overestimate the com-
pressive strength of FRP-confined circular concrete columns. However, most of the data
points of the Bisby [63] and Youssef [65] models are below the best fit line, indicating
that both these models underestimate the compressive strength of FRP-confined circular
concrete columns. The predictive capability of the Lam [21] and Wu [64] models is good,
and the data points are uniformly distributed on both sides of the best fit line. Among
them, the Lam model [21] has a more concentrated distribution of data points, and the Lam
model [21] has the highest predictive accuracy of compressive strength for FRP-confined
circular concrete columns.

The predictive results of the models for strain corresponding to the compressive
strength of the FRP-confined circular concrete columns are shown in Figure 5. It can be
observed from the figure that most of the data points of the Mander [16], Lam [21], and
Wu [64] models are above the best fit line, indicating that these models overestimate the
peak compressive strain of FRP-confined circular concrete columns. Most of the data points
of the Fardis [17], Bisby [63], and Youssef [65] models are below the best fit line. This
indicates that these models underestimated the peak compressive strain of FRP-confined
circular concrete columns. The distribution of the data points in each figure is scattered,
indicating that the predictive accuracy of the peak compressive strain in the existing axial
compressive constitutive models of FRP-confined circular concrete columns is poor.
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Figure 5. Predictive results of peak compressive strain. (a) Mander Model, (b) Fardis Model, (c) Lam
Model, (d) Bisby Model, (e) Wu Model, (f) Youssef Model.

The evaluation indexes (R2, MSE, MAPE, and IAE) for the predictive accuracy of the
compressive strength of the above models are listed in Table 3. It can be seen from Table 3
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that the predictive accuracy of all the models is good, and the R2 is above 0.5. The Lam
model [21] had the highest predictive accuracy, with an R2 of up to 0.83 and the lowest
average error and a small dispersion.

Table 3. Predictive accuracy of compressive strength.

Models R2 MSE MAPE IAE/%

Mander [16] 0.79 788.5 0.22 1.64
Fardis [17] 0.79 1078.3 0.21 1.86
Lam [21] 0.83 271.9 0.20 1.30
Bisby [63] 0.50 707.5 0.27 1.99
Wu [64] 0.79 393.5 0.19 1.31

Youssef [65] 0.83 317.8 0.22 1.45

Table 4 summarises the evaluation indices (R2, MSE, MAPE, and IAE) of the predic-
tive accuracy in the peak compressive strain of all the models. It can be observed from
Table 4 that the predictive accuracy of the peak compressive strain is lower than that of the
compressive strength for all the models. The regression coefficient of the Fardis model [17]
with the highest predictive accuracy was only 0.48; it had a high dispersion and error.

Table 4. Predictive accuracy of peak compressive strain.

Models R2 MSE/10ˆ7 MAPE IAE/%

Mander [16] 0.45 5.45 0.39 2.36
Fardis [17] 0.48 5.69 0.61 3.48
Lam [21] 0.46 63.49 0.59 4.15
Bisby [63] 0.13 9.18 0.79 4.86
Wu [64] 0.15 47.10 0.52 3.97

Youssef [65] 0.45 5.49 0.33 2.81

3.3. Evaluation of Predictive Models Based on ANN and SVR

The predictive accuracy of the compressive strength and peak compressive strain
by the existing axial compressive constitutive model of FRP-confined circular concrete
columns is low and that of the peak compressive strain is especially poor. Therefore, a
new predictive model is urgently required to predict the axial compressive mechanical
behaviour of FRP-confined circular concrete columns.

3.3.1. Machine Learning Models
Artificial Neural Networks (ANNs)

An ANN is an information processing system that simulates the structural and func-
tional characteristics of a biological neural system [61]. It includes input, hidden, and
output layers. Each of these layers contains some nodes, which are interconnected to the
elements in the subsequent layers [67]. The accuracy and the precision of the ANN is highly
dependent on the structure of the developed models as well as the model parameters.
These parameters contain the number of nodes in the hidden layers, the momentum rate,
the learning cycle, and the learning accuracy. The basic idea is that in each hidden layer
node, the weighted inputs from the previous layer are added together and the deviation is
added to the system, where the weight depends on the momentum rate, and the deviation
depends on the learning accuracy. This combination is then passed through a nonlinear
activation function to form the output of each hidden neuron [68]. The back-propagation
algorithm is often used to train ANN. Training is defined as the procedure for finding the
optimal weights of the network so that the prediction error is minimized. In the learning
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cycle, the results are back-propagated, and the weights and the bias are adjusted in such a
way that the obtained error is minimized [69].

A MATLAB-based program with a graphical user interface (GUI) was developed to
train and evaluate the ANN model. The ANN model divided the established database into
two parts: 80% for training (general is 70–90%) and 20% for testing (general is 10–30%).
According to the predictive target, there are six and one nodes in the input and output
layers, respectively; the momentum rate is 0.5; the learning cycle is 103; and the learning
accuracy is 4 × 10−7.

The number of nodes in the hidden layer plays a vital role in the predictive accuracy
of an ANN. To determine this, the predictive accuracies of different numbers of nodes in
the hidden layers were compared and analysed. The influence of the number of nodes
in the hidden layers on the predictive accuracy of the compressive strength is shown in
Figure 6, and the influence of the number of nodes in the hidden layers on the predictive
accuracy of peak compressive strain is shown in Figure 7. It can be seen that when the
number of nodes in the hidden layers is 10, the MSE of the compressive strength and peak
compressive strain is the lowest, and R2 is the highest. The predictive accuracy of the ANN
model was the highest. Therefore, when predicting the compressive strength and peak
compressive strain, the number of nodes in the hidden layers in the ANN model was 10.

Materials 2022, 15, x FOR PEER REVIEW 10 of 20 
 

 

3.3.1. Machine Learning Models 
Artificial Neural Networks (ANNs) 

An ANN is an information processing system that simulates the structural and func-
tional characteristics of a biological neural system [61]. It includes input, hidden, and out-
put layers. Each of these layers contains some nodes, which are interconnected to the ele-
ments in the subsequent layers [67]. The accuracy and the precision of the ANN is highly 
dependent on the structure of the developed models as well as the model parameters. 
These parameters contain the number of nodes in the hidden layers, the momentum rate, 
the learning cycle, and the learning accuracy. The basic idea is that in each hidden layer 
node, the weighted inputs from the previous layer are added together and the deviation 
is added to the system, where the weight depends on the momentum rate, and the devia-
tion depends on the learning accuracy. This combination is then passed through a nonlin-
ear activation function to form the output of each hidden neuron [68]. The back-propaga-
tion algorithm is often used to train ANN. Training is defined as the procedure for finding 
the optimal weights of the network so that the prediction error is minimized. In the learn-
ing cycle, the results are back-propagated, and the weights and the bias are adjusted in 
such a way that the obtained error is minimized [69].  

A MATLAB-based program with a graphical user interface (GUI) was developed to 
train and evaluate the ANN model. The ANN model divided the established database 
into two parts: 80% for training (general is 70–90%) and 20% for testing (general is 10–
30%). According to the predictive target, there are six and one nodes in the input and 
output layers, respectively; the momentum rate is 0.5; the learning cycle is 103; and the 
learning accuracy is 4 × 10−7. 

The number of nodes in the hidden layer plays a vital role in the predictive accuracy 
of an ANN. To determine this, the predictive accuracies of different numbers of nodes in 
the hidden layers were compared and analysed. The influence of the number of nodes in 
the hidden layers on the predictive accuracy of the compressive strength is shown in Fig-
ure 6, and the influence of the number of nodes in the hidden layers on the predictive 
accuracy of peak compressive strain is shown in Figure 7. It can be seen that when the 
number of nodes in the hidden layers is 10, the MSE of the compressive strength and peak 
compressive strain is the lowest, and R2 is the highest. The predictive accuracy of the ANN 
model was the highest. Therefore, when predicting the compressive strength and peak 
compressive strain, the number of nodes in the hidden layers in the ANN model was 10. 

 
(a) (b) 

Figure 6. Influence of changes in the number of hidden layers on predictive accuracy of compressive 
strength: (a) the influence of changes in the number of hidden layers on MSE; (b) the influence of 
changes in the number of hidden layers on R2. 

5 6 7 8 9 10 11 12 13 14 15 16
0

50

100

150

200

250

300

M
SE

Number of note in hidden layer

 ANN

5 6 7 8 9 10 11 12 13 14 15 16
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
R2

Number of notes in hidden layer

 ANN

Figure 6. Influence of changes in the number of hidden layers on predictive accuracy of compressive
strength: (a) the influence of changes in the number of hidden layers on MSE; (b) the influence of
changes in the number of hidden layers on R2.

Support Vector Regression (SVR)

The SVM is an intelligent algorithm for general classification problems, first proposed
by Boser in 1992 [70]. Unlike traditional neural networks based on empirical risk minimisa-
tion, SVR is based on the principle of structural risk minimisation, which aims to minimise
the upper bound of the expected risk and avoids reliance on the designer’s empirical
knowledge. Vapnik introduced an insensitive loss function into the SVM to form a support
vector regression (SVR) [44].
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compressive strain: (a) The influence of changes in the number of hidden layers on MSE; (b) the
influence of changes in the number of hidden layers on R2.

For the SVR model, the established database was divided into two parts: 80% for
training and 20% for testing. The SVR model involves three parameters: ε (insensitive
loss function), C (regularised constant), and g (kernel coefficient). In SVR, the main goal
is to obtain a function that differs at most ε from the actual targets for all training data,
while being as flat as possible [71]. The smaller the ε, the smaller the error of the regression
function and the higher the degree of model fitting, where C is the regularized constant
specified by the user. It is defined as the penalty factor to indicate the trade-off between the
flatness of the function and the empirical error. C was mainly used to prevent overfitting.
The higher the C, the more the samples with a training error greater than ε are punished,
and the stronger is the predictive ability [72]. g is the kernel coefficient. The choice of
kernel function is closely related to the performance of the SVR. The commonly used
kernel functions in the regression include the linear kernel function, the polynomial kernel
function, the radial basis function (RBF), and the sigmoid kernel function. Considering
the infinite dimensional feature space corresponding to the RBF, the RBF is adopted in this
study. Its expression is shown in Equation (5).

K
(

xi, xj
)
= e−g||xj ,−,xj ||2 (5)

where xi, xj is the input vector, and g is the key parameter of the RBF which can affect
the smoothness of the function. The larger the g, the better the predictive effect of the
training set.

To determine the optimal values of ε, C, and g in the SVR, each value is tested in a
certain space on the premise of specifying the step. Then, based on the flow of the SVR
algorithm, the parameter values of the SVR with optimal accuracy are derived: ε = 0.01,
C = 20, and g = 0.3. The flow of the SVR algorithm is illustrated in Figure 8.
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Figure 8. The SVR algorithm flow.

3.3.2. Predictive Results and Discussion of ANN and SVR

Based on the established database, the comparison between the ANN and SVR models
for the predictive results of compressive strength and peak compressive strain are shown
in Figures 9–12, respectively. It can be seen from Figures 9–12 that the ANN and SVR
models can accurately predict the compressive strength and peak compressive strain of
FRP-confined circular concrete columns, and the predictive accuracy is much higher than
that of their existing axial compressive constitutive models.
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Figure 10. Predictive results of compressive strength by SVR.
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Figure 11. Predictive results of peak compressive strain by ANN.
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Figure 12. Predictive results of peak compressive strain by SVR.

Among the existing axial compressive constitutive models for FRP-confined circular
concrete columns, the Lam [21] and Fardis [17] models have the highest predictive accu-
racies for the compressive strength and peak compressive strain of FRP-confined circular
concrete columns, respectively. The evaluation indexes of the predictive accuracy for the
ANN, SVR, Lam [21], and Fardis [17] models are listed in Table 5. It can be seen that the
predictive accuracy of the SVR model for the compressive strength and peak compressive
strain of FRP-confined circular concrete columns is slightly higher than that of the ANN
model and far higher than that of the Lam [21] and Fardis [17] models. In the SVR model,
the R2 of the compressive strength and peak compressive strain is up to 0.96 and 0.94,
respectively. In conclusion, the SVR model proposed in this study can provide an approxi-
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mate basis for revising and unifying the compressive strength and peak compressive strain
formulas for FRP-confined circular concrete columns.

Table 5. Predictive accuracy analysis of compressive strength and peak compressive strain.

Performance
Indices

Compressive Strength Peak Compressive Strain

ANN SVR Lam [21] ANN SVR Fardis [17]

R2 0.92 0.96 0.83 0.87 0.94 0.48
MAPE 0.11 0.09 0.20 0.18 0.13 0.61
IAE/% 0.09 0.07 1.30 0.15 0.11 3.48

MSE 84.00 63.46 271.9 0.74 × 107 0.47 × 107 5.69 × 107

4. Parameter Analysis

An ANN was used to accurately analyse the influence of D/t, f co, f frp, Efrp,
f cc/ f co, and εcc/εco on the axial compressive mechanical behaviour of FRP-confined circular
concrete columns. While analysing the influence of each parameter, the values of the other
parameters were set as the average value of each parameter in the established database.

The influence of D/t on the compressive strength and peak compressive strain of the
FRP-confined circular concrete columns is shown in Figure 13. It can be seen that both the
compressive strength and the peak compressive strain of FRP-confined circular concrete
columns decrease with an increase in the D/t of the specimen. When the D/t increased from
200 to 1000, the compressive strength decreased from 130 MPa to 60 MPa and the peak
compressive strain decreased from 3 × 104 to 104. When the D/t increases and the section
size of the core concrete remains unchanged, the fibre thickness decreases and the force of
constraint it can provide decreases, thus reducing the bearing capacity and ductility of the
specimens [73–77].
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Figure 13. The influence of D/t on compressive strength and peak compressive strain.

The influence of the Efrp on the compressive strength and peak compressive strain of
the FRP-confined circular concrete columns is shown in Figure 14. It can be seen that the
compressive strength of the FRP-confined circular concrete columns is positively correlated
with the Efrp, whereas the peak compressive strain is negatively correlated with the Efrp.
When the Efrp increases from 40 GPa to 200 GPa, the compressive strength increases from
90 MPa to 150 MPa, and the peak compressive strain decreases from 2.5 × 104 to 1.5 × 104.
When the Efrp increases, the elastic deformation resistance, the brittleness of the specimens,
and the bearing capacity of the specimens increase, and the ductility decreases [12,78,79].
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Figure 14. The influence of Efrp on compressive strength and peak compressive strain.

The influence of f frp on the compressive strength and peak compressive strain of the
FRP-confined circular concrete columns is shown in Figure 15. It can be observed that the
compressive strength and the peak compressive strain of the FRP-confined circular concrete
columns increase with an increase in f frp. When f frp increases from 800 MPa to 4000 MPa,
the compressive strength increases from 50 MPa to 250 MPa, and the peak compressive
strain increases from 8 × 103 to 4 × 104. When f frp increases, the force of the constraint
provided by the FRP increases, and the bearing capacity and the ductility of the specimens
are improved [51,80,81].
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Figure 15. The influence of f frp on compressive strength and peak compressive strain.

The influence of f co on the compressive strength and peak compressive strain of the
FRP-confined circular concrete columns is shown in Figure 16. It can be seen that the
compressive strength of the FRP-confined circular concrete columns is positively correlated
with f co, while the peak compressive strain of the FRP-confined circular concrete columns is
negatively correlated with f co. When f co increases from 40 MPa to 100 MPa, the compressive
strength of the FRP-confined circular concrete columns increases from 90 MPa to 160 MPa,
and their peak compressive strain drops from 1.6 × 104 to 4 × 103. When f co increased, the
overall strength, brittleness, and the bearing capacity of the specimens increased, and the
ductility decreased [82–84].
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Figure 16. The influence of f co on compressive strength and peak compressive strain.

The influence of the mechanical behaviours of the core concrete on the FRP-confined
circular concrete columns is shown in Figure 17. It can be seen that f cc/f co is negatively
correlated with f co, while εcc/εco is positively correlated with εco. When f co increases from
40 MPa to 100 MPa, f cc/f co drops from 2.5 to 1.5. When εco increases from 3000 µε to
6000 µε, εcc/εco increases from 4 to 5. When f co increases, its ductility decreases, and the
restraint of FRP on the core concrete weakens. Additionally, when εco increases, its ductility
increases. The restraint effect of FRP on core concrete is strengthened.
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Figure 17. The influence of mechanical behaviours of core concrete on FRP-confined circular concrete
columns.

5. Conclusions

This study evaluated the existing axial compressive constitutive model of FRP-confined
circular concrete columns and established a predictive model for the axial compressive
mechanical behaviours of FRP-confined circular concrete columns based on ANNs and
SVR. The main conclusions are as follows.

(1) A database of the axial compressive mechanical behaviours of FRP-confined circu-
lar concrete columns was established from the relevant published literature, which
included 298 datasets. The effects of D/t, f co, εco, f frp, Efrp, and εfrp on the axial
mechanical behaviours of FRP-confined circular concrete columns were considered.

(2) Comparing and analysing the existing axial compressive constitutive model of FRP-
confined circular concrete columns, the Lam model [21] exhibited the highest predic-
tive accuracy for the compressive strength of FRP-confined circular concrete columns.
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(3) Comparing and analysing the existing axial compressive constitutive models of
FRP-confined circular concrete columns, the Fardis model [17] exhibited the highest
predictive accuracy for the peak compressive strain of FRP-confined circular con-
crete columns.

(4) The ANN and SVR models can be used to predict the axial mechanical behaviours of
FRP-confined circular concrete columns. Their predictive accuracy was much higher
than that of the existing axial compressive constitutive model of FRP-confined circular
concrete columns, and SVR had the highest predictive accuracy.

(5) An intelligent algorithm was used to analyse the parameters of the axial mechanical
behaviour of FRP-confined circular concrete columns. The analysis results show that
D/t is positively correlated with the compressive strength, whereas f co, f frp, and Efrp
are negatively correlated with the compressive strength of the FRP-confined circular
concrete columns. The f frp is positively correlated with the peak compressive strain,
whereas D/t, Efrp, and f co are negatively correlated with the peak compressive strain
of FRP-confined circular concrete columns.
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Appendix A

Table A1. Database information.

Reference Parameters Time Number of Data

[1] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP 2012 30

[8] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP 2018 21

[43] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP, GFRP 2001 4

[44] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP, GFRP 2001 16

[45] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP 2012 12

[51] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP 2020 16

[52] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP, GFRP 2016 80

[53] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP, GFRP 2019 22

[54] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), GFRP 2018 8

[55] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP 2004 12

[56] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP 2013 17

[57] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP 2018 45

[58] D/t, fco(MPa), εco(µε), ffrp(MPa), Efrp(GPa), εfrp(µε), CFRP 2010 15
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