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Abstract: A hydrogen depressurization system is required to supply the hydrogen to the fuel cell
stack from the storage. In this study, a Tesla-type depressurization construction is proposed. Parallel
Tesla-type channels are integrated with the traditional orifice plate structure. A computational fluid
dynamics (CFD) model is applied to simulate high-pressure hydrogen flow through the proposed
structure, using a commercial software package, ANSYS-Fluent (version 19.2, ANSYS, Inc. South-
pointe, Canonsburg, PA, USA). The Peng–Robinson (PR) equation of state (EoS) is incorporated into
the CFD model to provide an accurate thermophysical property estimation. The construction is
optimized by the parametric analysis. The results show that the pressure reduction performance is
improved greatly without a significant increase in size. The flow impeding effect of the Tesla-type
orifice structure is primarily responsible for the pressure reduction improvement. To enhance the flow
impeding effect, modifications are introduced to the Tesla-type channel and the pressure reduction
performance has been further improved. Compared to a standard orifice plate, the Tesla-type orifice
structure can improve the pressure reduction by 237%. Under low inlet mass flow rates, introduction
of a secondary Tesla-type orifice construction can achieve better performance of pressure reduction.
Additionally, increasing parallel Tesla-type channels can effectively reduce the maximum Mach num-
ber. To further improve the pressure reduction performance, a second set of Tesla-type channels can
be introduced to form a two-stage Tesla-type orifice structure. The study provides a feasible structure
design to achieve high-efficiency hydrogen depressurization in hydrogen fuel cell vehicles (HFCVs).

Keywords: hydrogen; hydrogen fuel cell; depressurization; orifice plate structure; computational
fluid dynamics; numerical model

1. Introduction

Contemporarily, the transportation sector represents more than one-quarter of carbon
gas emissions [1]. An increasing application of hydrogen is considered a potential strategy
to gradually fulfill net-zero carbon emissions in the transportation sector [2]. Hydrogen
is also considered the ultimate conventional energy source of the 21st century due to its
cleanness and sustainability [3]. Therefore, the application of hydrogen fuel cell vehicles
(HFCVs) has attracted significant interest [4]. A practical and economical method for HFCV
applications is by using pressurized hydrogen storage tanks, as the volumetric energy
density of gaseous hydrogen is extremely low [5]. To improve the travelling distance of
HFCVs, the tank pressure has been continuously increased during the development of
HFCVs. However, the optimal working pressure of the fuel cell tends to be low, leading to
the growing demand on the performance of depressurization system [6–8].
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In recent years, a number of studies on high-pressure gas depressurization have been
undertaken. Luo and his colleagues [9] developed a pressure reducing valve that has a
fixed pressure ratio. The pressure and leakage characteristics were theoretically analyzed
through simulations. The results show that as the operating pressure increases, the pressure
ratio reduces to the designed value. Ulanicki et al. [10] investigated the oscillation of pres-
sure reducing valves (PRVs) at low flow rates. The study was motivated by an industrial
case analysis. The purpose of this study is eliminating pressure fluctuation. The results
show that the PRV is less stable for small valve openings. Binod and his group [11] utilized
a computational fluid dynamic (CFD) model to investigate the transient process in pressure
regulation and shut-off valves. Okhotnikov et al. [12] studied pressure drops and steady
flow torques of the valve at various flow rates and orifice openings by the CFD method, and
relative information, such as the discharge co-efficient and flow jet angles dependencies
on the orifice opening, was obtained from this study. Jin and his group [13,14] designed a
high-level multi-stage PRV (HMPRV) for hydrogen depressurization in hydrogen refueling
stations. It was found that the HMPRV can successfully control the gas pressure and work-
ing temperature and is less prone to block flow. In their previous work, the mechanisms of
pressure reduction and energy conversion was investigated based on a novel PRV with an
orifice plate. In order to optimize valve performance, a parametric study on the throttling
portion of a HMPRV was undertaken by Hou and his team [15]. It was found that larger
hydrogen kinetic energy causes a stronger turbulent vortex, higher energy consumption,
larger multistage injection casing diameter, injection-plate diameter, and pressure ratio.
Chen et al. [16] investigated the effects of valve openings on flow characteristics in detail.
It was found that larger pressure and velocity gradients mainly appeared at the throttling
components for all valve openings. A larger valve opening resulted in more energy con-
sumption. Chen et al. [17,18] simulated the compressible turbulent flow in an HMPRV
using CFD software ANSYS-Fluent to analyze the noise and energy consumption. Liu
and his group [19] studied the hydrogen flow through a perforated plate in a pressure-
reducing system based on a CFD model. The thermodynamic properties of hydrogen were
described using a real fluid equation of state (EoS). In addition, the effect of the types of
perforated plate was investigated. The results show that the size of the perforated plate has
a significant effect on the hydrogen flow.

The above-mentioned PRVs comprise rotating parts with complex structures which
will cause excessive turbulence and noise; the complexity of the structures will also result
in manufacturing difficulties. In recent years, the Tesla valve [20] has attracted growing
attention in relation to pressure depressurization, as it can cause a significant pressure drop
when the flow of fluids is reversed. Tesla valves have a fixed geometry with no moving
parts, therefore, they may have a longer lifetime and can facilitate mass production. A large
number of investigations have been undertaken on using Tesla valve for pressure reduction,
mainly focusing on structure optimization. The Tesla valve shape is optimized through
two-dimensional (2D) CFD simulations combined with an optimization procedure [21]. A
three-dimensional (3D) parametric model is proposed for the Tesla valve by Zhang et al.,
and his group optimized the geometric relationships of Tesla valve [22]. De Vries et al. [23]
designed a new Tesla valve and symmetrically integrated it into a single rotating pulsating
heat pipe (PHP). They then investigated the flow characteristics and thermal performance
of the PHP. Bao et al. [24] designed a novel Tesla valve with a special tapering/widening
structure, analyzed and compared it with other types of Tesla valve, to find which showed
a superior absolute pressure drop ratio. Monika et al. [25] developed a multi-stage Tesla
valve configuration to enhance heat transfer. Zhang and his colleagues [26] designed a
multistage pressure-reducing valve; the valve combined a Tesla-type orifice valve and a
sleeve pressure structure valve. In this study, the influences of working parameters on
fluid pressure and velocity distributions were analyzed. Qian et al. [27,28] performed
simulations for hydrogen reverse flow in a multi-stage Tesla valve. They summarized the
power–law relationship in the flow rate, the number of stages, and the pressure ratio, and
evaluated them using Mach number, turbulent dissipation rate, and blown-barrel loss as
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criterions. Jin and his team [29] studied the influence of different structural parameters
of a single-stage Tesla valve on the hydrogen pressure reduction. The results show that a
smaller hydraulic diameter, a smaller inner curve radius, and a larger valve angle could
provide a higher pressure drop at a larger inlet velocity. Qian and Jin et al. [27,29] predicted
the physical properties of the ideal gas EoS during simulation. However, since the ideal gas
EoS does not take into account the effect of intermolecular potential energy, it will produce
large errors under high-pressure conditions.

As mentioned above, several studies were conducted on Tesla valves as well as multi-
stage pressure-reducing structures. However, studies connecting the Tesla valve to the
traditional perforated plate structure are seldom found. The actual gas EoS refers to the
mathematical expression of the functional relationship between the state parameters when
a certain amount of gas reaches equilibrium state. The ideal gas completely ignores the
interaction between gas molecules and cannot explain phenomena such as gas–liquid
change and throttling in which molecular forces play an important role. However, the
hydrogen depressurization system operates at very high pressures under which the ideal
gas EoS may produce large errors. Additionally, Peng–Robinson (PR) EoS, a real gas EoS, is
simple to calculate and accurate to the physical property of pure gas. Some studies on flow
and heat transfer under complex conditions offer a great help to this paper’s investigation
of the flow through the Tesla-type orifice structure. Rezaei et al. [30] studied electro-osmotic
flow of an aqueous solution of NaCl using the molecular dynamics simulation to investigate
the effects of the electric field and temperature on the flow properties. Toghraie et al. [31]
conducted a simulation to study boiling heat transfer through a volume fraction (VOF)
method, and they also studied the quench phenomena through a fluid jet on a hot horizontal
surface. Li and his co-workers [32] investigated the fluid flow and heat transfer using two-
phase approach mixed convection of a non-Newtonian nanofluid in a porous H-shaped
cavity. These studies showed that the simulation technology was able to simulate the fluid
flow through complex geometric conditions.

In this paper, a 3D CFD model integrated with the PR real gas EoS was proposed
to investigate the pressure decrease in a new Tesla-type orifice structure. The traditional
perforated plate structure is displaced by a flow channel with Tesla valves in the hydrogen
pressure reduction system. The structure (Tesla-type orifice plate structure) consists of
multiple Tesla valves in parallel to achieve higher pressure reduction. In addition, the
optimization for the Tesla valve is undertaken to improve the characteristics of the backflow
impact in its flow channel. Furthermore, a two-stage Tesla-type orifice plate structure,
which comprises two Tesla in series, is introduced. The effects of structural parameters
on the flow characteristics are investigated to obtain better depressurization performance.
This research offers technical support for HFCVs.

2. Numerical Methods
2.1. Governing Equations

The CFD software ANSYS-Fluent is employed for the numerical solution. ANSYS-
Fluent uses the finite volume method to discretize the governing differential equations of
fluid flow based on the Navier–Stokes (N–S) equation, which involves the solution of mass,
momentum, and energy conservation equations [33], as expressed in Equations (1)–(3).

∂ρ

∂t
+∇·(ρν) = 0 (1)

∂

∂t
(ρν) +∇·(ρν) = −∇·p +∇·τ + ρg (2)

∂

∂t
(ρE) +∇·[ν(ρE + p)] = ∇·(ke f f ∆T − τν) (3)
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where ρ is the density, t the time, ν the velocity vector, p the pressure vector, τ the viscous
stress tensor, g the gravitational acceleration, E the total energy per unit control body, and
keff the effective thermal conductivity.

2.2. Turbulence Model

An appropriate turbulence model is crucial to simulate hydrogen flow with high
compressible pressure gradient. As the influence of the compressibility on turbulence
dissipation cannot be explained by the standard k-ε model [34], the realizable k-ε model
is applied in this work. In practice, the realizable k-ε turbulence model [35] has been
successfully used in various flows, such as separated flows, channel and boundary layer
flows, and rotating homogeneous shear flows. Particularly, the realizable k-ε model can
better predict the diffusion rates of axisymmetric and planar jets. The realizable k-ε model
is described as:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε−YM + Sk (4)

∂

∂t
(ρε) +

∂

∂xj

(
ρεuj

)
=

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√

υε
+ C1ε

ε

k
C3εGb + Sε (5)

where Gk denotes the generation of turbulence kinetic energy owing to the average velocity
gradients; Gb represents the generation of turbulence kinetic energy owing to buoyancy;
YM is the contribution of the fluctuating dilatation incompressible turbulence to the overall
dissipation rate; C2 and C1ε are constants; σk and σε are the turbulent Prandtl numbers for
k and ε, respectively; and SK and Sε are user-defined source terms.

2.3. PR EoS

An accurate prediction of the thermodynamic properties of the fluid is essential to
achieve satisfactory accuracy in the CFD model. In this study, a real gas Eos, i.e., the PR
EoS, is applied to predict better thermodynamic properties of high-pressure hydrogen. The
PR EoS [36] is illustrated by:

P =
RT

ν− b
− a(T)

ν2 + 2bν− b2 (6)

b = 0.0778
RTc

Pc
(7)

a(T)= 0.45724
R2T2

c
Pc

[1 + n(1− (T/Tc)
0.5]

2
(8)

n = 0.37464 + 1.54226ω− 0.26993ω2 (9)

where R represents the universal gas constant, ν the molar volume, Pc the critical pressure,
Tc the critical temperature, and ω the eccentricity factor of the gas.

Hydrogen densities at various conditions, which are adopted from the experimental
data of Michels et al. [37] are utilized to evaluate the accuracy of the PR EOS. Figure 1
shows the comparison between experimental data and EoS predictions. It is obvious
that the ideal gas EoS will cause large discrepancies at high pressures. The densities
calculated by PR EOS are consistent with the measurements and the maximum relative
error is 3.8%. GERG-2008 (Groupe Européen de Recherches Gazières) EoS [38] performs
slightly better than the PR EoS at higher pressures. However, comparing to the PR EoS,
it is much more time-consuming to solve the GERG-2008 EoS at runtime during the 3D
CFD simulations; therefore, it is an adequate choice to employ PR EoS in the simulations to
ensure acceptable accuracy.
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Figure 1. Comparison between different equations of state and experimental hydrogen thermophysi-
cal parameters.

2.4. Verification of the Numerical Methods

As measured data of hydrogen through the Tesla-type channel is scarce, the experiment
performed by Liu et al. [39] for water flowing through Tesla-type channel is used for model
validation. Figure 2a shows a structured hexahedral mesh generated for the single stage
Tesla-type channel used in the experiment. The mesh independence was verified using
meshes with different numbers of cells. Figure 2b shows the predicted pressure reduction
with increasing cell numbers. It was found that the pressure reduction did not change much
when the number of cells increased to 1.379 million; therefore, the grid with 1.379 million
cells was used for the validation simulation. To ensure the accuracy of simulation results,
grid-independent verification has been carried out for all subsequent simulations.

The experimental and simulated pressure reduction for different inlet flow rates are
shown in Figure 3. It displaces a great consistency between prediction and measurement.
The CFD model somewhat over-predicted the pressure reduction. The largest relative error
between the results from simulation and observation is 4.48%, indicating that the CFD
model can produce satisfactory prediction of fluid flow in a Tesla-type channel.

2.5. Computational Domain and Boundary Conditions

The benchmark structure of the traditional orifice plate valve was introduced and
analyzed by Chen et al. [16,17]. For a better pressure reduction effect, Tesla-type chan-
nels are integrated into a conventional orifice plate structure to form a novel hydrogen
depressurization structure. Figure 4a shows the structure of the traditional orifice plate
valve. The central flow domain is a 200 mm diameter circular channel with a 50 mm
long inlet section, a 450 mm long outlet section, and a 25 mm thick orifice plate. There
are 37 holes on the plate which are staggered in equilateral triangles (see Figure 4b). In
Figure 4a, Point A is where the orifice plate connected to the inlet section, while Point B is
where the orifice plate connected to the outlet section. A Tesla-type channel usually has
a good effect on pressure reduction. The pressure reduction performance can be further
optimized when Tesla-type channels are integrated into conventional orifice plate struc-
tures. Figure 4c shows a modified structure which replaces the straight orifice flow channel
with a Tesla-type channel in a traditional orifice plate. This Tesla-type orifice structure
uses a circular channel with a diameter of 5 mm, so as to better couple with the main flow
channel. Other structural parameters of the Tesla-type channel are: inlet length: L1 = 5 mm;
outlet length: L2 = 5 mm; side straight channel length: L = 10 mm; the angle between side
channel and main channel: α = 45◦; the angle between bending channel and main channel:
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β = 130◦; and the radius of the curve in the circular section: R = 2.5 mm. In Figure 4c, Point
C is where the Tesla-type channel connected to the inlet section, and Point D is where the
Tesla-type channel connected to the outlet section. Due to the symmetrical geometry, the
computational domain uses half of the Tesla-type orifice structure.

Figure 2. Computational mesh and grid-independence study. (a) Mesh for the single stage Tesla-type
channel. (b) Pressure reduction between inlet and outlet under different grid densities.

Figure 3. Pressure reduction: predicted vs. measured.
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Figure 4. Computational domain and meshing. (a) Schematic of the fluid domain of conventional
orifice plate structure. (b) The distribution of holes on the plate. (c) Schematic of fluid domain of the
Tesla-type orifice structure. (d) Mesh division of Tesla-type orifice structure.

The boundary conditions for conventional orifice plate structure and Tesla-type orifice
structure are similar, which are defined as (see Figure 4): (a) inlet: mass flow inlet (flow
rate Qm) with a constant temperature (300 K); (b) outlet: pressure outlet with a 0.2 MPa
constant pressure; (c) symmetry plane: symmetrical impermeable boundary conditions
with zero gradients of all variables; and (d) adiabatic wall boundary conditions specified to
other boundary surfaces.

As the orifice plate has a relatively complex structure, a non-structural tetrahedral
mesh was generated for the computational domain, as shown in Figure 4d. Mesh refinement
was applied around the Tesla-type channel. Additionally, the energy residuals are 10 to
the minus 6, and everything else is 10 to the minus 3. Key information of the model
implementation is shown in Table 1.
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Table 1. Key information of the model implementation.

Computational Time Number of Iterations Convergence Criteria

40–80 h/case 20 1 × 10−6/1 × 10−3

3. Results and Discussion
3.1. Distribution of Pressure and Density

The pressure distributions for traditional orifice plate structure and Tesla-type ori-
fice structure on the symmetry plane under different inlet mass flow rates are shown in
Figures 5 and 6, respectively. It is found that the pressure reduction varies with inlet mass
flow rate Qm for both structures. As shown in Figure 5a for the conventional orifice plate
structure at Qm = 0.02 kg s−1, the maximum pressure gradient mainly occurs at Point A
(refer to Figure 4a). At Qm = 0.1 kg s−1 (Figure 5b), the pressure begins to change dra-
matically at the location of the plate orifice. In general, there is a continuous pressure
distribution between the orifice plate and outlet section when Qm is less than 0.1 kg s−1.
When Qm increases to 0.5 kg s−1 or 1 kg s−1 (Figure 5c,d), step change in pressure gradient
occurs at the connection between the orifice plate and outlet section. When Qm = 0.5 kg s−1

(Figure 5c), a small annular region with sudden pressure reduction is observed at Point B
(refer to Figure 4a). The conventional orifice plate structure reduces the size of flow channel
to throttle the hydrogen to achieve the pressure reduction. As shown in Figure 6, the Tesla-
type orifice structure can achieve higher pressure reduction due to the increased resistance
in the structure. Figure 6 shows that the pressure reductions are not only observed at
connections between the Tesla channel and the inlet and outlet sections (Points C and D in
Figure 4c), but also great pressure reduction can be seen between two stages of the Tesla
channel. It is worth noting that the low-pressure zone at Point D shown in Figure 6a,b
disappears with the rise of mass flow rate.

Figure 5. Pressure distribution on the symmetry plane for conventional orifice plate under different
mass flow rates (pressure in Pascal). (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1. (c) Qm = 0.5 kg s−1. (d)
Qm = 1 kg s−1.
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Figure 6. Pressure distribution on the symmetry plane for the Tesla-type orifice structure under differ-
ent mass flow rates (pressure in Pascal). (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1. (c) Qm = 0.5 kg s−1.
(d) Qm = 1 kg s−1.

Figures 7 and 8 are the density distributions for the traditional orifice plate structure,
as well as the Tesla-type orifice structure. The reduction in hydrogen pressure leads to the
reduction in density. When the flow rate increases, the pressure and density gradients in
the flow field increase. It is seen that the pressure greatly influences hydrogen density. This
highlights the necessity of using real gas EoS in the simulation. In the Tesla-type orifice
structure, the pressure varies in the channel due to the impact of the bending section. This
is also reflected in the variation in the density.

3.2. Analysis of Mach Number and Turbulence Intensity

Figure 9 shows the Mach number distribution in the conventional orifice plate structure
under different inlet mass flow rate conditions. Similar Mach number distributions were
observed when the inlet mass flow rates were Qm = 0.02 and 0.1 kg s−1. Under both mass
flow rates, the Mach number is less than 1 throughout the flow domain. When hydrogen
passes Point A, after adiabatic expansion, the pressure energy is converted into kinetic
energy. This is reflected in the sudden decrease in the pressure and sharp rise in the
velocity/Mach number. After entering the outlet section, the jet boundary is restricted by
decreasing kinetic energy and velocity. The Mach number is distributed in such a way
that the area near the wall is small and the area in the middle flow domain is large. As
the mass flow rate rises to 1 kg s−1, the downstream jet flow affected area increases as
well. When Qm = 0.02 kg s−1, Mach numbers in the traditional orifice plate structure and
Tesla-type orifice structure are less than 0.3 while hydrogen behaves as a subsonic flow.
When Qm rises to 0.5 or 1 kg s−1, the traditional orifice plate structure and the Tesla-type
orifice structure have a supersonic flow at Point B and Point D. The hydrogen flows from
the inlet section into the channel with abruptly decreasing area and then flows into the
outlet section with much larger area. The flow is similar to that in a Laval nozzle [40].
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Figure 7. Density distribution on the symmetry plane for conventional orifice plate structure un-
der different mass flow rates (density in kg m−3). (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1.
(c) Qm = 0.5 kg s−1. (d) Qm = 1 kg s−1.

Figure 8. Density distribution on the symmetry plane for Tesla-type orifice structure under different
mass flow rates (density in kg m−3). (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1. (c) Qm = 0.5 kg s−1.
(d) Qm = 1 kg s−1.
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Figure 9. Mach number distribution on the symmetry plane for the conventional orifice plate structure
under different mass flow rates. (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1. (c) Qm = 0.5 kg s−1.
(d) Qm = 1 kg s−1.

As shown in Figures 9 and 10, hydrogen is accelerated to the speed of sound in both
the conventional orifice plate and the Tesla-type channels. Eventually, supersonic speed is
achieved at the outlet section with an expanded cross-section. For both structures, it can be
found that when Qm = 0.5 and 1 kg s−1, there is an area at Point B and Point D with low
pressure and large Mach number. It is evident that expansion waves are generated here. In
the Tesla-type orifice structure, the larger Mach number in the bending channel indicates
that the velocity in the bending channel is higher than that in the straight channel, as the
hydrogen flows more easily in the bending channel. When the hydrogen with high velocity
flows out from the bending channel, it will impede the hydrogen in the straight channel,
reducing the flow rate of hydrogen in the straight track and lowering the Mach number. The
Mach number distribution in the outlet section of the Tesla-type orifice structure is clearly
different from that of the conventional orifice plate structure. The Mach number near the
lower part is larger than that in the upper part. The comparison between Figures 9 and 10
demonstrates the area of the Tesla-type orifice structure with a Mach number greater than 1
is smaller than that of the traditional orifice plate structure. This indicates that the Tesla-
type orifice structure reduces the area of fluid with high velocity, which can also help
achieve better pressure reduction.

Figures 11 and 12 show the turbulence intensity on the symmetry plane of the con-
ventional orifice plate structure and the Tesla-type orifice structure, respectively. We can
see that the maximum turbulence intensity increases with the inlet mass flow rates. As Qm
reaches 0.02 and 0.1 kg s−1, the maximum turbulence intensity of the conventional orifice
plate structure appears at Point A. The turbulence intensity at Point B is much higher than
that at the end of outlet section. As Qm = 0.02 kg s−1, the jet of each plate orifice at the exit
has less influence on each other. The turbulence intensity between the two plates is smaller
and the velocity of the hydrogen jet is lower. Additionally, the velocity gradient in this area
is low because the diversion effect between the two jets of the plate orifice is small. When
Qm = 0.1 kg s−1, the area of low turbulence intensity zone between the plate orifice exits
decreases as the plate orifice exit velocity becomes larger. As Qm reaches 0.5 and 1 kg s−1,
the maximum turbulence intensity of the conventional orifice plate structure appears at
Point B and near the wall.
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Figure 10. Mach number distribution on the symmetry plane for Tesla-type orifice structure un-
der different mass flow rates. (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1. (c) Qm = 0.5 kg s−1.
(d) Qm = 1 kg s−1.

Figure 11. Turbulence intensity distribution on the symmetry plane for the conventional orifice
plate structure under different mass flow rates (%). (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1.
(c) Qm = 0.5 kg s−1. (d) Qm = 1 kg s−1.
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Figure 12. Turbulence intensity distribution on the symmetry plane for the Tesla-type orifice structure
under different mass flow rates (%). (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1. (c) Qm = 0.5 kg s−1.
(d) Qm = 1 kg s−1.

As shown in Figure 12, the maximum turbulence intensity in the Tesla-type orifice
structure appears at Point D. The maximum turbulence intensity is observed at the upper-
most plate orifice exit when a supersonic flow occurs there. The turbulence intensity is
more significant in the exit section of the Tesla-type orifice structure near the upper wall.
It is found that changes in hydrogen flow rate, as well as changes in the structure, affect
turbulence intensity. Comparison of Figures 11 and 12 shows that the Tesla-type orifice
structure is easier to enable the formation of vortices due to higher turbulent intensity
induced; this is mainly because the Tesla-type orifice structure makes it easier for the
fluid to enter the bending channel. The interaction between the fluid in straight and the
bending channel results in the increase in turbulent intensity and also leads to the abrupt
pressure drop.

4. Optimization of Tesla-Type Orifice Structure
4.1. Optimization Methods

The above study shows that a higher pressure-reduction performance can be achieved
by replacing the conventional orifice plate structure with a simple orifice plate integrated
with a Tesla-type orifice structure flow channel. In order to achieve a better performance
on pressure reduction, the structure of a Tesla-type orifice can be further optimized by
improving the Tesla-type channel. Figure 13a shows the improved Tesla-type orifice
structure flow path. The pressure reduction performance of the Tesla-type orifice structure
is investigated. The above study illustrates the main reason that a Tesla valve can reduce
pressure is that its bending channel has an impeding effect on the flow in the straight
channel. To enhance the flow impeding effect, a novel construction was introduced at
the junction of the bending and straight channels. In the new structure, the flow in the
bending channel was brought to interact with the flow in the straight channel earlier (see
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Figure 13a). The angle β between the main channel and the bent channel was increased.
These modifications increase the impeding effect of the return flow in bending channel. In
the new structure, L3 = 8.6 mm (Figure 13a).

Figure 13. Improved Tesla-type channel and two-stage Tesla-type orifice structure. (a) Improved
Tesla-type channel. (b) Two-stage Tesla-type orifice structure.

In addition to the improvement in the Tesla-type channel, another set of parallel
Tesla-type channels was introduced to the Tesla-type orifice structure, which forms a
two-stage Tesla-type orifice structure, as shown in Figure 13b. The lengths of the inlet
section, the primary outlet section, and the secondary outlet section are 50, 100, and
200 mm, respectively. The main flow channel is also a circular channel with a diameter of
200 mm. Additionally, half of the proposed structure is used as the computational domain
(Figure 13b).

To evaluate the pressure reduction performance of the improved Tesla-type orifice
structure, the same mass flow rates of 0.01, 0.1, 0.5, and 1 kg s−1 and outlet pressure of
0.2 MPa are used for the CFD simulations.

4.2. Flow Field Analysis of the Two-Stage Tesla-Type Orifice Structure

Figure 14 shows the pressure distribution on the symmetry plane of the two-stage
Tesla-type orifice structure under different inlet mass flow rates. It is found that the pressure
in the orifice structure reduces several times. In addition to the pressure reduction when
entering the Tesla-type flow channel orifice in the inlet section, a significant pressure
reduction can be seen each time when hydrogen flows through the junction of the bending
and straight channels. In each outlet section of the two-stage Tesla-type orifice structure, the
pressure of hydrogen is evenly distributed with minimal variation. As the mass flow rate
increases, the pressure reduction in the orifice structure increases continuously. Compared
to Figure 6, it is obvious that the improved Tesla-type orifice structure achieved better
pressure reduction performance. Additionally, the pressure in the improved Tesla-type
orifice structure was reduced much more smoothly.
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Figure 14. Pressure distribution on the symmetry plane for the two-stage Tesla-type orifice structure
under different mass flow rates (Pressure in Pascal). (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1.
(c) Qm = 0.5 kg s−1. (d) Qm = 1 kg s−1.

The Mach number distributions are shown in Figure 15. As the inlet mass flow
rate increases, the maximum Mach number in the two-stage Tesla-type orifice structure
gradually increases. When Qm = 0.02 kg s−1, the largest Mach number appears behind the
bending channel of the second stage. This is caused by the sharp decrease in pressure and
the rise in velocity at this location because of the hydrogen in the bending channel joining
the hydrogen from the straight channel. There is limited difference in Mach numbers
between the two stages of Tesla-type channels. When Qm = 0.1 kg s−1, the maximum Mach
number appears at the rear position of the bending channel of the second stage of the new
orifice channels. This indicates that the velocity is higher at the second stage of Tesla-type
orifice structure, implying more pressure reduction. When Qm rises to 0.5 and 1 kg s−1, a
supersonic flow occurs in the two-stage Tesla-type orifice structures. The hydrogen gas
flows out of the second stage Tesla-type channels with a sudden increase in cross-section
area. An expansion wave is generated, causing a sudden increase in flow velocity, with
maximum Mach numbers observed near the channel exits.

Figure 16 shows the relative magnitude of maximum Mach number for four types of
valves under different mass flow rates. In Figure 16, F-1 represents the conventional orifice
plate structure, F-2 the original Tesla-type orifice structure, F-3 the one-stage improved
Tesla-type orifice structure, and F-4 the two-stage optimized Tesla-type orifice structure.
Figure 16a shows that, when the traditional orifice plate structure is replaced by the Tesla-
type orifice structure, up to 0.5 kg s−1 mass flow rate, there is a relatively large growth
in Mach number; however, a further increase in the mass flow rate causes very limited
improvement in the Mach number. When Qm = 1 kg s−1, the Mach number of Tesla-type
orifice structure becomes smaller than that of the conventional orifice plate structure. A
similar trend is demonstrated in Figure 16c, but the growth in mass flow rate will result in
a greater reduction in Mach number for the one-stage improved Tesla-type orifice structure.
Figure 16b demonstrates that the one-stage improved Tesla-type orifice structure initially
shows a larger Mach number than the original Tesla-type orifice structure; however, the
growth in the mass flow rate will lead to a Mach number smaller than that of the original
Tesla-type orifice structure. Figure 16d shows that, when the mass flow rate is less than
0.1 kg s−1, the two-stage Tesla-type orifice structure has a slightly larger Mach number



Materials 2022, 15, 4918 16 of 21

than the one-stage one. However, the increase in the mass flow rate will soon cause a
smaller Mach number for the two-stage Tesla-type orifice structure. Overall, for most of the
mass flow rates, the two-stage Tesla-type orifice structure shows a smaller maximum Mach
number. This proves that the two-stage Tesla-type orifice structure is an effective way to
obtain the same pressure reduction with lower Mach number.

Figure 15. Mach number distribution on the symmetry plane for the two-stage Tesla-type orifice struc-
ture under different mass flow rates. (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1. (c) Qm = 0.5 kg s−1.
(d) Qm = 1 kg s−1.

Figure 17 demonstrates the pressure on the centerline of the symmetry plane of the
four structures. The change in hydrogen pressure due to the difference in the structure is
well reflected. In Figure 17, X = 0 corresponds to where the inlet section is connected to
the plate orifice and positive X corresponds to the flow direction of hydrogen. It is shown
in Figure 17 that, for all four types of pressure reduction valves, higher inlet mass flow
rate leads to higher pressure reduction. Among these valves, the conventional orifice plate
structure has the worst pressure reduction performance. Comparison between the original
and the optimized Tesla-type orifice structures shows that the first stage pressure reduction
is formed when the hydrogen enters the plate orifice, and the subsequent two stages of
pressure reduction is due to the flow channel characteristics of Tesla valve structure. The
investigation reveals that the optimized Tesla-type orifice structure does improve the effect
of impeding flow and obtained better pressure reduction performance.

It can also be seen from the figure that, for the Tesla-type valves, as Qm reaches 0.02 and
0.1 kg s−1, the hydrogen pressure experiences a recovery before the hydrogen enters the
outlet section. This is different from the pressure recovery for Qm = 0.5 and Qm = 1 kg s−1.
When Qm = 0.5 and Qm = 1 kg s−1, low-pressure sectors are formed due to the expansion
when hydrogen enters the outlet section, and the pressure recovery curve is smoother. In
contrast, when Qm = 0.02 and 0.1 kg s−1, the pressure recovery is due to the vortex formed
at the intersection of the bending and straight channels, and the pressure recovery curve is
sharper than that for higher inlet mass flow rates.
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Figure 16. Relative change in Mach number of four structures under different mass flow rates.
(a) Relative change in Mach number between F-1 and F-2. (b) Relative change in Mach number
between F-2 and F-3. (c) Relative change in Mach number between F-1 and F-3. (d) Relative change
in Mach number between F-3 and F-4.

Figure 18 shows the comparison of the pressure reduction performance of the four struc-
tures at different inlet mass flow rates. The pressure reduction is enhanced when the straight
channel in the traditional orifice plate structure is replaced by the Tesla valve flow channel
(Figure 18a). When Qm reaches 0.02 kg s−1, there is an up to 170% increase in the magnitude
of pressure reduced. As the mass flow rate increases, the relative increase in the magnitude
of pressure reduction across the Tesla-type orifice structure decreases. At Qm = 0.5 kg s−1,
the downward trend slows down after the appearance of the supersonic flow. Similarly,
the improved Tesla-type orifice structure achieved better pressure reduction performance
than the conventional orifice plate structure. However, at Qm = 0.02 kg s−1, it achieved a
237% increase in the magnitude of pressure reduced compared to the conventional orifice
plate structure.

In Figure 18b, the pressure reduction performance between the original and improved
Tesla-type orifice structures is compared. It indicates that the one-stage improved Tesla-
type orifice structure achieved further pressure reduction. For Qm < 0.1 kg s−1, the growth
rate of the relative pressure reduction in the one-stage improved Tesla-type orifice struc-
ture becomes more significant than that of the original Tesla-type orifice structure. When
supersonic flow presents in the orifice structure, the relative increase in the magnitude
of pressure reduction in the one-stage improved Tesla-type orifice structure shrinks. As
shown in Figure 18d, the two-stage improved Tesla-type orifice structure shows obvious
improvement in the pressure reduction performance compared to the one-stage one. How-
ever, the relative increase in the pressure reduction magnitude reduces with the increase
in mass flow rate. When supersonic flow forms in the valve, the relative increase in the
pressure reduction magnitude reduces to its minimum value. Under this situation, increase
in the mass flow rate will result in the increase in pressure reduction magnitude. Overall, it
is found that the improved Tesla valve is able to achieve better pressure reduction perfor-
mance than the original Tesla valve. Under a low inlet mass flow rate, a second stage of
Tesla valve can be introduced to further improve the pressure reduction performance.
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Figure 17. Pressure distribution on the centerline of the symmetry plane for the four structures
under different mass flow rates. (a) Qm = 0.02 kg s−1. (b) Qm = 0.1 kg s−1. (c) Qm = 0.5 kg s−1.
(d) Qm = 1 kg s−1.

Figure 18. Comparison of pressure reduction performance of four structures. (a) F-1 and F-2 pressure
reduction. (b) F-2 and F-3 pressure reduction. (c) F-1 and F-3 pressure reduction. (d) F-3 and F-4
pressure reduction.
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5. Conclusions

In this work, a novel Tesla-type orifice structure used for high-pressure hydrogen
depressurization in HFCVs is proposed. The cylindrical channel in a traditional orifice
plate structure is replaced by a Tesla valve flow channel. It is found that the pressure
reduction performance could be improved significantly without a significant increase in
size. The flow impeding effect of the Tesla-type orifice structure is primarily responsible for
the pressure reduction improvement. To enhance the flow impeding effect, modifications
are introduced to the Tesla-type channel and the pressure reduction performance has been
further improved. It can be concluded that:

(1) In contrast to the conventional orifice structure, the Tesla-type orifice structure has
a better performance on pressure reduction. Modifications introduced to the Tesla
channel can further improve the pressure reduction performance. Under an inlet mass
flow rate of 0.02 kg s−1, the pressure reduction can be increased by 237% compared to
the conventional orifice structure;

(2) To further improve the pressure reduction performance, a second set of Tesla-type
channels can be introduced to form a two-stage Tesla-type orifice structure. Addition-
ally, the angle β between the bent channel and the main channel increased by more
than 130◦ and L3 reduced to 8.6 mm in the two-stage Tesla-type orifice structure;

(3) Under the same mass flow rate, the maximum Mach number in the Tesla-type orifice
structure is greater than that in the conventional orifice plate structure before the
occurrence of supersonic flow. A lower Mach number can alleviate the start-up noise
of fluid flow and save energy. When the supersonic flow is formed, the Tesla-type
orifice structure shows a similar or smaller maximum Mach number. The two-stage
Tesla-type orifice structure can effectively reduce the maximum Mach number with
the same pressure reduction;

(4) Due to the asymmetry of the Tesla-type orifice structure, hydrogen flows towards the
lower wall when entering the outlet section, producing a wall-fitting effect on the
lower wall surface. The vortex can lead to mechanical energy consumption because it
generally aggravates the turbulence of the hydrogen flow. A large vortex is formed in
the upper area of the outlet chamber with a low turbulence intensity. In contrast to the
traditional orifice plate structure, the Tesla-type orifice structure shows less vortices
in the high turbulence intensity region, reducing energy consumption.
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Nomenclature

C2C1ε Constants
E Total energy per unit control body
g Gravitational acceleration
Gk Generation of turbulence kinetic energy due to the mean velocity gradients
Gb Generation of turbulence kinetic energy due to buoyancy
keff Effective thermal conductivity
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L2 Outlet length
p Pressure vector
Pc Critical pressure
Qm Flow rate
R Universal gas constant
t Time
Tc Critical temperature
v Velocity vector
v Molar volume

YM
Contribution of the fluctuating dilatation incompressible turbulence to the
overall dissipation rate

Greek symbols
α Angle between side channel and main channel
β Angle between bending channel and main channel
ρ Gas density
τ Viscous stress tensor
σk σε Turbulent Prandtl numbers for k and ε

ω Eccentricity factor of the gas
Abbreviations list
EoS Equation of State
PHP Pulsating Heat Pipe
2D/3D two-dimensional/three-dimensional
PR Peng–Robinson
GERG-2008 Groupe Européen de Recherches Gazières
HMPRV High-level Multistage PRV
CFD Computational Fluid Dynamic
PRVs Pressure Reducing Valves
HFCVs Hydrogen Fuel Cell Vehicles
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