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Abstract: The study and development of the technological foundations for creating a textured
surface using an electrode tool obtained by the method of additive manufacturing are the purpose
of the work. Methods for obtaining textured surfaces and for creating a tool electrode for electrical
discharge machining are considered in this work. The modeling of the electrodetool, analysis of
internal stresses during its manufacture by the selective laser melting method, and the manufacture
of electrodes are considered. A Realizer SLM 50 laser machine was used to create the electrode
tool. Ti6Al4V metal powder with an average particle size of 30 µm was chosen as the material for
manufacturing. The experiments were carried out on a copy-piercing electrical discharge Smart
CNC machine. The material of the workpiece is corrosion-resistant, heat-resistant, high-alloy steel
15Cr12H2MoWVNNB. An Olympus GX 51 light microscope (Olympus Corporation, Shinjuku-ku,
Japan) at 100× magnification was used to visually evaluate the texturing results and measure
dimensions. The possibility of using electrodes obtained by the selective laser melting method for
texturing surfaces was studied.

Keywords: texture; oil-retaining grooves; complex profile relief; electrical discharge machining;
electrode tool; selective laser melting technology; additive manufacturing

1. Introduction

An urgent task of mechanical engineering is to improve the quality of manufacturing
high-precision and critical parts with an applied textured profile. The complex profile of
parts and the use of modern structural materials with improved physical and mechanical
properties do not allow the full use of traditional processing methods.

In works [1–6], it was noted that in order to improve the operational characteristics of
the working surfaces of products, for example, working in conditions of increased friction,
it is necessary to apply a textured relief. A textured relief is applied to individual surfaces
requiring certain properties. Surface texturing is a method of surface functionalization
widely used throughout the world. This is used in various fields: medical implants,
wettability tuning, optical properties, hybrid bonding, bond enhancement, or cutting
tools [1–4]. The most common patterns of textured surfaces are dimples, lines (parallel
and hatching), square, conical, rhombic, wavy texture, and annular (bulge and smooth
corrugation) [3,4]. Surface microtexturing is widely used to improve the tribological
properties of cutting tools, such as improving frictional performance and wear protection.
The types of patterns produced on the surfaces of the cutting tool were most commonly
microgrooves, microholes, microstrip grooves, and microgrooves. In the works [1–5], the
influence of polycrystalline diamond tools with microgrooves, made using a fiber laser,
was studied (Figure 1).

Textured surfaces are widely used in mechanical engineering. Theyare used to create
finished products and mold dies and when creating a special auxiliary element in the
form of oil-retaining surfaces in highly loaded friction pairs. The quality and reliability
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of the entire mechanism depend on the accuracy of applying the textured surface to the
working surfaces of the products. It was noted in [5,6] that the application of a textured
relief can improve the strength properties of products due to the creation of a fine-grained
structure on the surface layer. In addition, the coefficient of friction is reduced by obtaining
microstructured oil-retaining cavities. The shape and depth of the resulting pattern and
complex relief are the main requirements for creating oil-retaining grooves on the surface
of products [1–4].
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Figure 1. Surface of a textured cutting tool.

The technological process of applying a special pattern to the surface of a precision
part using the blade method is expensive and technologically inefficient. A special tool
is used to create a complex profile. This tool has high wear during machining. High
temperatures occur in the cutting zone. These factors lead to an increase in the cost of
manufacturing a part and the frequent occurrence of defects in the production process.

Electrical discharge machining (EDM) technology is used to eliminate possible losses
and improve the surface quality. This technology makes it possible to obtain the required
surface profile without significant distortion.

The manufacture of an electrode tool (ET) is a limiting factor in the development
of EDM technology. ETs made of copper, brass, bronze, and other nonferrous alloys
are widely used in EDM. However, obtaining a complex profile on the ET surface is
an economically inefficient process and an expensive process. This is due to the high
cost and labor intensity of the technology. Most of the metal goes into chips during
the manufacture of electrodes from these materials, which makes the process of their
manufacture economically unprofitable [1].

A high pace of development of digital technologies in mechanical engineering is
currently observed. Additive technologies are widely used in the creation of fixtures, dies,
and tools. Their development is due to the fact that high quality requirements are imposed
on finished products [1–5].

Selective laser melting (SLM) technology is one of the ways to obtain ETs. This consists
of layer-by-layer melting of the metal powder to obtain the finished product [7–10]. This
method makes it possible to obtain ETs practically without the use of mechanical operations.
These operations are necessary in order to extract the constructed part from the substrate on
which it is grown, and it is also possible to finish the surface with ETs by grinding [11,12].

The performance of the EDM ET and the applicability of the ET produced by the selec-
tive laser melting method for EDM have not been fully studied [13–18]. The development
of EDM technology by grown ETs obtained by the SLM method for applying a textured
surface is relevant [19,20] (Figure 2).
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Figure 2. Stages of creating a textured surface using the grown ET.

The study and development of the technological foundations for creating a textured
surface using an electrode tool obtained by the method of additive manufacturing are the
purpose of the work.

2. Materials and Methods

A Realizer SLM-50 laser machine was used to create ETs. The size of the zone for
constructions was Ø70 × 35 mm. A pressure of 8 mbar was maintained in the working
chamber. Argon was used as a protective atmosphere. A fiber laser was used in the process,
with a power of 50 W and a wavelength of 680 nm. Titanium powder particles were
sintered on a titanium substrate. The thickness of the treated layer was 30 µm.The metal
powder Ti6Al4V Starbond Ti4 Powder 45, S&S Scheftner GmbH, Mainz, Germany, with
an average particle size of 30 µm and a shape close to a sphere was chosen as the material
for manufacturing.

The experiments were carried out on a copy-piercing electroerosive Smart CNC ma-
chine (Electronica India Limited, West Bengal, India). The material of the workpiece is
corrosion-resistant, heat-resistant, high-alloy steel 15Cr12H2MoWVNNB. Mechanical pro-
cessing (grinding) of the working end was carried out after removing the ET from the
substrate in order to remove the supports.

Processing modes are presented in Table 1.

Table 1. Processing mode.

Pulse on time (Ton), µs 100
Current (I), A 4
Voltage (U), V 50

Depth of processing, mm 2

Processing was carried out in the machine tank filled with transformer oil. An Olym-
pus GX 51 light microscope at 100× magnification was used to visually evaluate texturing
results andto measure dimensions. Theoretical modeling was carried out using Siemens
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NX v.11, Materialize Magics v.22, and ANSYS Additive software 2019. The ETwas modeled
in two types:ET with a square section and a side measuring 19 mm (Figure 3a) and a
cylindrical ET with a diameter of 19 mm (Figure 3b). The end surface of both electrodes
was made in the form of square cells with a cell size of 2 mm and a partition thickness of
1 mm. The height of the working surface of the ETwas 3 mm.
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A 7 × 10 mm cylinder was provided for fixing the electrode in the electrode holder
(Figure 4).
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Figure 4. ET model (side view).

The process of preparing a 3D model for manufacturing included the following steps:

1. Setting the working space of the installation in the CAD system (Siemens NX v.11)
and placing the required number of elements on the platform;

2. Construction of supports;
3. Modeling the construction process in ANSYSAdditive;
4. Correction of the model and supports (if necessary);
5. Construction of the part.

The preparation of the model for manufacturing was carried out in the Materialize
Magics environment. A cylinder with dimensions of 70 × 40 mm was the working space of
the installation for making a model (Figure 5a).This allowed to reduce the time and reduce
the cost of manufacturing. Supports were created in the minimum volume. This volume
was sufficient to hold the grown product. (Figure 5b). The support type was a block. The
support material entered the main part to a depth of 0.1–0.2 mm for reliable fastening of
the part to the supports (Figure 5c).
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After designing the supports, it was necessary to evaluate the internal stresses. These
stresses arose during the construction process. An internal stress analysis was performed
in the ANSYS Additive environment.

3. Results
3.1. Simulation of Internal Stresses

The forces arising during the construction process were applied to the part in the
process of modeling the additive process. The part was deformed. Creating a preliminary
deformation allows you to change the original model. When external loads are applied to
solids, the bodies can be deformed up to destruction. The degree of deformation depends
on the magnitude of the load. Bodies return to their original shape under small loads after
they are removed. Since the deformed bodies are in equilibrium, the external loads must
be balanced by internal forces. Deformation leads to a change in the crystal lattice. Inner
forces appear. These forces are trying to return the system to its original state. As a result,
forces begin to act on each elementary particle of the body. These forces together form the
stress vector P.

To determine the stress vector P, it is necessary to introduce the concept of the stress
tensor σij (Formula (1)).

We introduced the stress tensor as follows:

σij =


σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (1)

For the element σij, the first index shows on which site the given stress acts, and the
second index shows in which direction. If the indices are the same, then this is a normal
stress, and if they are different, it is a shear stress.

If the stress tensor is known, then the stress vector (Formula (2)) can be defined as:

Pnj = σij·ni (2)

Pn1 = σ11·n1 + σ12·n2 + σ13·n3
Pn2 = σ21·n1 + σ22·n2 + σ23·n3
Pn3 = σ31·n1 + σ32·n2 + σ33·n3

(3)

→
P = {Pn1, Pn2, Pn3} (4)
→
n = {n1, n2, n3} (5)

If the stress tensor is determined in a given coordinate system, then, in the future, it
is always possible to determine the stress vector (internal forces) acting on any arbitrarily
chosen area.

The deformable body, as a whole, will be in equilibrium if the main vector of forces
→
R

and the main vector of moments
→
M of mass and surface forces are equal to zero.

→
R =

x

S

→
t dt +

y

V

→
f ·ρdv = 0 (6)

→
M =

x

S

(
→
τ ×

→
t)dS +

y

V

(
→
τ ×

→
f )ρdV = 0 (7)

where
→
τ is radius vector of an arbitrary point;

→
t is force;
→
f is body forces;

ds is elementary section;
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dv is elementary volume;
ρ isdensity of the material.
Select an arbitrary region V* defined by the surface S*.
On the surface S*, forces are distributed, which are internal forces for the volume V

and external for the volume V*. Therefore, if the internal volume is in equilibrium, then:

→
R =

x

S∗

→
PndS +

y

V∗

→
f ·ρdV = 0 (8)

→
M =

x

S∗
(
→
τ ×

→
Pn)dS +

y

V∗
(
→
τ ×

→
f )ρdV = 0 (9)

From the Ostrogradsky–Gauss formula it follows:

x

S∗
dS =

x

S∗

→
Pi·nidS =

y

V∗

∂Pi
∂xi

dV (10)

From Formula (10) it follows:

y

V∗

(
∂Pi
∂xi

+ ρ
→
f
)

dV = 0 (11)

Since V* is an arbitrary volume, equality is possible when

∂Pi
∂xi

+ ρ
→
f =

∂σij

∂xi
+ ρ
→
f = 0 (12)

Equation (12) is an equilibrium equation in differential form.
By analogy with Newton’s 2nd law (based on the D’Alembert principle), we can obtain

the equation of motion in the form:

→
ma = ∑ Fi →

∂σij

∂xi
+ ρ
→
f = ρ

∂2ui
∂t2 (13)

Each term in Equation (13) has its own meaning.
∂2ui
∂t2 is forces of inertia in some elementary volume;

ρ
→
f is body forces (body forces);

∂σij
∂xi

is internal forces (a term that takes into account internal forces in the body).
The strain tensor is a tensor that characterizes the tension (compression) and change

in the shape of each point of the body during deformation.
In a classical continuous medium, in which particles are material points and have only

three translational displacements, but no rotation, the strain tensor (the Cauchy–Green
tensor) is generally defined as:

ε j =
1
2

(
∂ui
∂xj

+
∂uj

∂xi
+ ∑

l

∂ul
∂xi
·∂ul
∂xj

)
(14)

where u = {u1, u2, u3} is a vector describing the displacement of a body point.
The third term in the strain tensor (14) makes it possible to correctly take into account

complex deformation in the case of large deformations. However, the presence of this
term significantly complicates the solution of the problem of mechanics; therefore, in the
case of small deformations (ε << 1), this term can be neglected, writing the strain tensor in
the form:

ε j =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
orεij =

1
2
(
ui,j + uj,i

)
(15)
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The connection between displacements and deformations is called geometric relations.
In the Cartesian coordinate system, geometric relationships can be expressed:

u =
{

ux, uy, uz
}

(16)

ε̂xx = εx =

 εx εxy εxz
εyx εy εyz
εzx εzy εz

 (17)

εx =
1
2

(
∂ux

∂x
+

∂ux

∂x

)
=

∂ux

∂x
(18)

εy =
1
2

(
∂uy

∂y
+

∂uy

∂y

)
=

∂uy

∂y
(19)

εz =
1
2

(
∂uz

∂z
+

∂uz

∂z

)
=

∂uz

∂z
(20)

εxy =
1
2

(
∂ux

∂y
+

∂uy

∂x

)
(21)

εxz =
1
2

(
∂ux

∂z
+

∂uz

∂x

)
(22)

εyz =
1
2

(
∂uy

∂z
+

∂uz

∂y

)
(23)

Physical relationships are the relationship between stresses and strains. Many physical
relationships are nonlinear dependencies, which are described by differential or integrodif-
ferential equations.

In general, the physical relationships look like:

σ̂ = f (ε̂) (24)

Generalized Hooke’s law:
σij = Cijkl ·εkl (25)

The factor Cijkl includes 81 parameters, but for a linear isotropic material, two charac-
teristics remain: Young’s modulus (E) and Punch’s ratio (ε). For elastic materials, Hook’s
law is expressed by Formula (26):

σ = E·ε (26)

For a linear, isotropic material, Hooke’s law is expressed by (27):

σij = λΘδij + 2µεij (27)

where λ and µ are Lame’s parameters;
Θ = εx + εy + εz is the volumetric strain;

δij =

[
1, i = j
0, i 6= j

]
is the Kronecker symbol.

Based on Equations (25) and (27), normal and shear stresses can be determined:

σx = λΘ + 2µεx (28)

σy = λΘ + 2µεy (29)

σz = λΘ + 2µεz (30)

σxy = 2µεxy (31)

σxz = 2µεxz (32)



Materials 2022, 15, 4885 9 of 13

σyz = 2µεyz (33)

Instead of the Lame’s parameters, other technical parameters (material characteristics)
often determined from the experiment can be used.

Further, the temperature deformations and stresses during heating are taken into
account. Let the body heat up by ∆T from temperature T1 to T2, i.e.,T2 = T1+ ∆T. Then, the
total deformations can be written:

εtotal = εelast + εtemperature (34)

Temperature deformations can be expressed in the form (35):

εT
ij = α∆Tδij (35)

where α is the linear coefficient of thermal expansion.
Then, elastic deformations can be expressed in the form (36):

εelast
ij = εtotal

ij − εT
ij = εtotal

ij − α∆Tδij (36)

where εelast
ij is elastic deformations;

εtotal
ij is total deformations (determined from geometric relationships);

εT
ij is temperature deformations.

If we substitute Equation (36) into Hooke’s law, we obtain:

σij = λΘδij + 2µεij − 3Kα∆Tδij (37)

where K = λ + 2
3 µ.

To perform the analysis, we set the parameters of the Ti6Al4V material: modulus of
elasticity E = 116 GPa and Poisson’s ratio µ = 0.31. The obtained values of the deformation
of the EI are shown in Figure 6.

1 

 

 

Figure 6. Deformation of the ET after separation from the supports.

As a result of calculations for internal stresses when constructing the ET, it was
revealed that the largest displacements are observed in the corners of the electrode (1.6 mm)
(Figure 6).
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3.2. Processing Grown ETs

An ET with a square base andan ET with a round base are obtained as a result of
modeling and manufacturing using the SLM technology.

The wear of an ET is estimated after processing the surface of the workpiece. This is
shown in Table 2. The processing was carried out on a round and square section of the ET
on two samples.

Table 2. The amount of wear of an ET.

Electrode No.
Average Height of the Working Part of the Electrode mm

Wear Rate, %
New After Processing

1 (round) 35,795 35,723 0.2
2 (square) 35,202 35,026 0.5

It is shown that the round ET showed minimal wear of the ET. The amount of wear
with a round ET is more than two times less than when machining with a square ET.

The creation of a special textured pattern on the surface was carried out using a cellular
ET with different cell parameters (Figure 7). The relief was formed as a result of processing
on the surface of the workpiece. This figure repeats the end surface of the ET [21–25].
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It has been established that the cell profile has a different character (Figures 7 and 8).
This is due to the fact that the ET surface is formed by sintering a spherical powder. This
powder does not provide 100% surface straightness. This factor indicates uneven processing
and the absence of clear patterns in the construction of a textured relief at the microlevel.
Figures 7 and 8 shows the machined surfaces of the workpiece at 100×magnification.

Copying of the end face of the ET and traces of powder alloys are observed on the
treated surface. Multilevel surface treatment is observed. When processing with a square
ET, the size of the textured depressions is greater than when processing with a round ET
(Figure 9).

On the basis of the experiment, it was shown that a textured surface with complex
macrogeometry and microgeometry on a machined workpiece was created using the grown
EE (SLM method). The presence of convex surfaces of fused powder material on the
ET surface made it possible to form a textured system of multimodal roughness on the
treated surface. The formation of tested surfaces by the EDM method using the grown
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ETon products operating under frictional interaction conditions increases their oiliness and,
accordingly, hydrophobicity.
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4. Conclusions

The use of ET 3D printing methods has expanded the possibilities of electrical dis-
charge machining. It becomes possible to create ETs for surface texturing. This is an
important and separate direction for the development of EDM. This paper shows an im-
portant point using the example of oil-retaining grooves. It is shown that SLM electrodes
make it possible to make not only a macrorelief, but also a microrelief of a textured surface.

1. A study of the technology for creating ETs by the SLM method for EDM was carried
out. The use of additive technologies makes it possible to manufacture a complex-
profile ET with the required end surface topography.
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2. Simulation of the ET manufacturing process was carried out. A model that allows
describing the manufacturing process and assessing the internal stresses that occur
during construction, as well as a possible change in the shape and dimensions of
the finished part, was obtained in the work. It has been established that during the
manufacturing process of the part, the greatest internal stresses occur in the corners
of the ET. These values allow us to make adjustments to the frequency of supports for
additional fastening of the part to the machine substrate.

3. The technology for creating a textured surface of the ET produced by the SLM method
was developed. The creation of oil-retaining grooves on the surface of a product
using EDM has a great practical application in mechanical engineering. As a result
of technology development, oil-retaining grooves were created on the parts of the
friction pair. These grooves improve the performance properties of the product.
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