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Abstract: Layering of filling body is common in large-scale filling areas. In this paper, the cement–sand
ratio of 1:8 is based on the configuration of 68%, 70%, 72% and 74%; four concentrations; and filling
layers of one-, two-, three- and four-layered cemented filling samples. Combined with a uniaxial
compression test and two-dimensional particle flow software (PFC2D), the mechanical properties
and failure modes were explored. The results show that the concentration can strengthen the
uniaxial compressive strength of the filling body while increasing the filling times weakens its power;
therefore, the constitutive damage model was constructed. It was found that the initial layered
damage existed in the layered filling, and the total damage showed an upward trend of first fast
and then slow; the main failure modes of one-layer and two-layer backfills showed prominent shear
failure characteristics, and the three-layer and four-layer fillings were closer to tensile failure. From
the crack generation to the specimen failure, there is a mutual conversion between different energies.

Keywords: layered cemented filling; constitutive damage model; PFC2D; energy conversion;
failure mode

1. Introduction

Mining is one of the essential conditions to ensure the rapid development of China’s
economy, but mining also brings problems such as goaf collapse and mining waste
pollution [1–14]. The filling mining method can effectively control stope ground pres-
sure and stope deformation while making full use of mine solid waste tailings, which not
only ensures the safety of mining but also solves the problem of environmental pollution to
a certain extent [15–26], so it is extensive use of various metal and non-metal mines.

Tailings cemented backfill is a multiphase composite material formed by mixing
tailings, cement and water according to a specific ratio. As an essential part of the filling
mining method, many scholars conducted studies on its physical properties and failure
mode. Cao S et al. [27] found that the dynamic compressive strength of cemented tailings
composites increased exponentially with the increase in average strain rate, and the pore
size of cemented tailings composites increased with the increased average strain rate. The
fractal dimension of the pore area increased linearly with an increased average strain rate.
Gai X et al. [28] improved the uniaxial compressive and splitting tensile strength by adding
fibers into the tailings cement. The addition of fibers transformed the failure mode of the
tailings cement into ductile failure. Wang et al. [29] found that all the damage curves of
tailings cemented backfill showed S-shaped distribution by establishing the constitutive
model of tailings cemented backfill. The first slowly increased, then rapidly increased and
finally slowly rose to the highest point.
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The above studies mainly focused on the complete filling body, and with the consump-
tion of external mineral resources, deep mining has gradually become the mainstream
mining trend [30,31]. The development of deep mining technology is accompanied by the
rapid increase in the number and size of goaf [32–37]. Limited by the current domestic
filling technology, it is almost impossible to fill large-scale mined-out areas once, which
leads to the stratification of the filling body due to layer-by-layer filling [38–41]. Different
from the complete backfill, the structural characteristics and mechanical properties of lay-
ered backfill are more complicated. In order to study the mechanical properties and failure
mode of the layered filling different from the complete filling body, this paper focused
on the layered filling body samples with the cement–sand ratio of 1:8. The mechanical
properties of the layered filling under different concentrations and different layered states
were measured by the uniaxial compression test, and the constitutive damage model of the
filling body was established to explore the damage evolution characteristics. At the same
time, the particle flow software PFC2D was used to simulate and analyze the micro failure
mechanism from three aspects: fracture evolution law, failure mode and energy conversion.

2. Materials and Methods
2.1. Material

The Portland cement used in the test was PC.42.5 cement produced by a cement
plant. The whole tailings material was taken from a metal mine in Shandong. Its chemical
composition is shown in Table 1. After drying tailings, the particle size of tailings was
analyzed by a laser particle size analyzer, as shown in Figure 1.

Table 1. Chemical composition of tailings.

Class SiO2 Al2O3 CaO MgO P S Fe Au

Contents(%) 65.7 14.3 1.88 0.49 0.08 0.13 3.05 <0.01
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Figure 1. Particle size distribution curve of tailings.

It can be seen from the figure that the particle size of the tailings is mainly distributed
between 0.6 µm and 350 µm, and the particles with a particle size smaller than 125.32 µm
account for more than 50%. The average particle size is 141.32 µm.

2.2. Methods
2.2.1. Sample Preparation

Silicate cement and early dried tailings were configured according to the cement–sand
ratio of 1:8 and slurry concentration of 68%, 70%, 72% and 74%. The sample mold adopts
a cylinder high transparent acrylic tube with a height of 100 mm and an inner diameter
of 50 mm. This paper mainly studied the influence of filling layers on the strength of the
filling body. Before production, lubricating oil was smeared inside the mold, and the slurry,
after uniform stirring, was poured into the mold. The filling time interval of each layer
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was 24 h. After the filling of each layer was completed, it was left to stand for 24 h, then
de-molded and placed in a standard curing environment for 28 d. A uniaxial compression
test was carried out after the maintenance. The filling mold and partial filling body samples
are shown in Figure 2.
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2.2.2. Numerical Simulation

In order to analyze the failure mode of layered backfill from the microscopic point
of view better, this paper used PFC2D to establish a discrete element model of layered
backfill. It takes 74% slurry concentration backfill as an example to simulate the uniaxial
compression process of different layers of backfill. In order to be as close as possible to
the actual situation, a numerical calculation model was established as a rectangle with
a length of 100 mm and a height of 50 mm. Two particle models were used to simulate
the tailings and cement particles, and the radius of cement particles was slightly smaller
than that of tailings particles. The tailings model with a specific gradation was filled in
the rectangle according to a specific porosity. Then a certain number of cement particles
were randomly generated between the tailing particles. In order to make the force of the
model closer to the actual strength of the filling body sample, the parallel bond model was
adopted between the particles [18,42]. The four-layer horizontal filling body was taken as
an example to establish its numerical model, which is shown in Figure 3, through the bond
transfer force and moment between particles and smooth bonding between layers.
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As shown in Figure 3, light color particles represent tailings particles, dark color
particles represent cement particles, green lines represent smooth joint contact between
particles and black lines represent a parallel bonding model between particles. Without
any boundary conditions on both sides of the model, the uniaxial compression test was
simulated by applying the downward and upward motion rates to the top and bottom
walls, and stress–strain, energy and number of cracks during loading were recorded.

3. Results and Discussion
3.1. Analysis of Mechanical Properties of Layered Filling Body
3.1.1. Uniaxial Compressive Strength of Layered Backfill

The uniaxial compressive capacity of the filling body is one of the most intuitive
standards to test the quality of a filling body. The slurry concentration and filling layer
number are essential factors affecting the strength of the filling body. This experiment
adopted the LGS5000 press produced by the precise instruments of the Kunshan egret
industry. Each group of samples with the average value of the compressive results of the
five samples as the test results. If one of the test data of five samples exceeded the average
value by 15%, the data would be rejected, and the average value of the remaining data
was taken as the test result; the test results are shown in Table 2. Figure 4 is the histogram
of compressive strength distribution, from which we can intuitively see the quantitative
relationship between the uniaxial compressive strength of the filling body and different
filling times or concentrations. The influence degree of slurry concentration and filling
times on the uniaxial compressive strength of the filling body was analyzed by two-factor
variance, and the results are shown in Tables 3–5.

Table 2. Uniaxial compressive strength of layered backfill/(MPa).

Slurry Concentration One Filling Two Filling Three Filling Four Filling

68% 1.04 0.84 0.72 0.35
70% 1.32 0.89 0.77 0.55
72% 1.82 1.65 1.36 1.26
74% 2.24 2.13 1.76 1.44
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Table 3. Two-factor analysis of variance table.

Source SS DF MS F P

Correction model 23.573 a 15 1.572 151.731 <0.001
Intercept 126.479 1 126.479 12,211.378 <0.001

Slurry concentration 17.805 3 5.935 572.999 <0.001
Filling times 5.404 3 1.801 173.913 <0.001

Slurry concentration ∗ Filling times 0.365 9 0.041 3.914 <0.001
Error 0.663 64 0.010
Total 150.715 80

Revised total 24.236 79
a: R2 = 0.973.

Table 4. Pairings comparison of slurry concentration.

Slurry Concentration/% Case
Subset

1 2 3 4

68 20 0.7320
70 20 0.8825
72 20 1.5225
74 20 1.8925
P 1.000 1.000 1.000 1.000

Table 5. Pairings comparison of filling times.

Filling Times Case
Subset

1 2 3 4

4 20 0.9000
3 20 1.1525
2 20 1.3775
1 20 1.5995
P 1.000 1.000 1.000 1.000

It can be seen from Table 3 that the p values of slurry concentration and filling times are
all less than 0.05, which indicates that slurry concentration and filling times have significant
effects on the uniaxial compressive strength of the filling body and compared with filling
times, the F value of slurry concentration is larger, which proves that slurry concentration
has more significant effects on the uniaxial compressive strength of filling body. At the
same time, the S-N-K method was used to compare the slurry concentration and filling
times at different levels. It was found that slurry concentration was positively correlated
with uniaxial compressive strength while filling times were negatively correlated with
uniaxial compressive strength. When the slurry concentration is 74% and the filling times
are 1, the uniaxial compressive strength of the filling body is the highest.

3.1.2. Elastic Modulus of Layered Filling Body

Elastic modulus measures an object’s ability to resist elastic deformation. The elastic
modulus of the layered filling body is an important parameter affecting its performance.
High elastic modulus means that deformation requires high stress. The calculation formula
of elastic modulus E is shown in Equation (1).

E =
σ0.8 − σ0.2

ε0.8 − ε0.2
(1)

where σ0.8 and σ0.2 are the 80% and 20% peak stress, respectively; ε0.8 and ε0.2 are the strain
corresponding to 80% and 20% peak stress, respectively.

By taking 74% slurry concentration as an example, the elastic modulus of cemented
tailings backfill with different layers was calculated according to Equation (1) as shown in
Table 6.
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Table 6. Mechanical parameters of layered cemented filling body.

Layer Number Peak Stress/MPa Peak Strain/% Elastic Modulus/GPa

1 2.24 1.45 0.154
2 2.13 1.41 0.151
3 1.76 1.27 0.139
4 1.44 1.10 0.131

3.2. Damage Constitutive Equation and Damage Evolution of Layered Cemented Filling Body
3.2.1. Establishment of Damage Constitutive Equation

In the layered filling process, due to different hydration times and other external
factors, the filling body on the surface and under the layered structure is prone to damage
such as pores and cracks, which is defined as the initial layered damage. With the increase
in filling times, the internal initial delamination damage gradually accumulates, thereby
reducing the mechanical properties of the filling body. Therefore, it can not be limited
considering the influence of external loads on the mechanical properties of the filling
body, and a constitutive damage equation considering structural characteristics should
be established.

The initial delamination damage Dn is defined according to the macroscopic damage
mechanics available in Equation (2).

Dn = 1 − En

E1
(2)

where En is the elastic modulus of the filling body with n layers; E1 is the elastic modulus
of the complete filling body.

Under the external load, some randomly distributed micro defects gradually occur
inside the filling body. This damage is defined as the loading damage of the filling body.
According to the Lemaitre strain equivalence principle, the loading damage constitutive
equation of the filling body can be defined as Equation (3).

σ = E(1 − Ds)ε (3)

where Ds is the damage of filling body under load; E is the elastic modulus of the filling
body without damage; ε for filling body strain;

Based on the strain equivalent assumption of the filling body, when the filling body is
loaded to the strain ε level, the loading damage can be expressed as Equation (4).

Ds = 1 − e−( ε
ε0
)m

(4)

where m and ε0 are parameters for the damage constitutive model;
Different from the complete backfill, in the layered backfill, the damage of the backfill

under load is composed of two parts, one part is the initial delamination damage, and the
other part is the load damage. Under the action of layered structure and load, the two kinds
of damage are coupled and influence each other. Therefore, the stress–strain relationship of
the layered filling body under the condition of internal damage is Equation (5).

σ = En(1 − Ds)ε (5)

Substituting Equation (2) into Equation (5), the stress–strain relationship expressed
by the initial delamination damage and the load damage can be obtained, as shown in
Equation (6).

σ = E0(1 − Ds)(1 − Dn)ε (6)

From Equation (6), the total damage D of the layered backfill after two kinds of damage
coupling under load is:

D = Dn + Ds − DnDs (7)

Equations (2) and (4) are substituted into Equation (7):
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D = 1 − En

E0
exp

[
−
(

ε

ε0

)m]
(8)

From Equations (3) and (8), the axial stress σ1 under the constitutive damage model of
layered backfill under the uniaxial compression test is shown in Equation (9).

σ1 = E0(1 − D)ε1 (9)

where σ1 is the axial stress for filling body; ε1 is the axial strain of filling body.
Equation (8) can be replaced by Equation (9):

σ1 = En exp
[
−
(

ε

ε0

)m]
ε1 (10)

Pairwise Equation (10) Derivation:

∂σ1

∂ε1
= En exp

[
−
(

ε

ε0

)m][
1 − ε1m

ε0

(
ε

ε0

)m−1
]

(11)

Assuming that when the filling body reaches the peak value in the stress–strain curve,

σ1 = σf , ε1 = ε f and then
∂σf
∂ε f

= 0, Equations (10) and (11) can simultaneously be obtained:

m = ln

(
σf

Enε f

)
(12)

ε0 = ε f (m)1/m (13)

3.2.2. Analysis of Damage Evolution Characteristics

According to Table 6 and Formula 2, the relationship between the initial damage and
the number of filling layers can be obtained, as shown in Figure 5.
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Figure 5 shows that the initial delamination damage of the filling body increases with
the number of layers. When the number of layers increases from one layer to four layers,
the initial delamination damage of the layered filling body increases by 1.95%, 9.74% and
14.94%, respectively, which also proves the coupling effect of layers aggravate the initial
damage of the filling body.

The damage constitutive model parameters of different layered fillings can be obtained
by substituting Table 3 data into Equations (12) and (13), as shown in Table 7.
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Table 7. Parameters of damage constitutive model.

Layer Number m ε0/%

1 2.306 2.083
2 2.303 2.026
3 2.299 1.824
4 2.302 1.580

According to Equation (8) combined with Table 4 data, the total damage evolution
curve of filling body under delamination and load coupling can be obtained, as shown in
Figure 6.
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Figure 6. Total damage evolution curve of layered backfill.

It can be seen from Figure 6 that for layered backfill, there is initial damage before its
strain occurs. Since the first layer of backfill is completely filled, there is no initial damage,
so the initial total damage is 0. The second layers of backfill begin to show initial damage,
but the damage increase is not apparent. When the filling body layers are the third and
fourth layers, the initial damage increases significantly. With the increase in strain, the
total damage of backfills with different layers increases sharply at first, then slowly and
finally gradually tends to the growth mode of 1. The total damage growth rate of fillings
with different layers is roughly the same. When the damage to the filling body is the same,
the more layers of the filling body are, the greater the strain is. This is because when the
layered filling body is under load, the layered structure surface closes under load, resulting
in strain increases.

3.3. Micro-Failure Mode Analysis of Layered Cemented Backfill
3.3.1. Failure Mode Analysis of Layered Cemented Filling Body

Figure 7 shows the numerical failure mode and the actual failure mode of different
layered filling samples. It can be seen from the figure that the failure mode simulated by
PFC2D is basically consistent with the virtual failure mode. The main failure modes of
the first filling sample and the second filling sample both showed obvious shear failure
characteristics. The sample appeared to be a shear plane composed of multiple oblique
cracks with an angle of 45◦ to the concentrated load direction, which ran through the whole
sample and led to the failure of the sample. Compared with the one-layer backfill sample,
the angle between the shear plane and the concentrated load direction of the two-layers
backfill sample is smaller, and the failure mode gradually evolves to the tensile failure
throughout the whole sub-layer. The main failure modes of three layers backfill sample
and four layers backfill sample are closer to tensile failure, and the failure areas are mainly
concentrated in the top and middle layers. At the same time, after the uniaxial compression
test of the backfill sample was filled multiple times, the sub-layers had different degrees
of dislocation phenomenon. There are some defects, such as pores and cracks between
the layers, and the surface of the layered layers is uneven. In addition, the filling time
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difference forms a low-strength interlayer between adjacent layers. During the loading test,
layered defects and low-strength interlayers reduce the overall compressive strength of the
filling body, making it more prone to failure, which leads to the gradual decrease in the
number of tiny cracks in the filling body during the failure process with the increase in
layers of the filling body. From the damage evolution curve, it can be seen that before the
external load is applied, the layered filling body itself has initial damage. When the load is
applied, due to the closure of the layered structure surface, the damage first occurs in the
filling body. With the increase in the load, the damage gradually accumulates and gradually
expands to the periphery. When the number of layers is more, the damage accumulation
of the filling body is faster, which leads to the failure of the filling body with more layers,
such as the filling body with three and four layers, due to the excessive accumulation of
damage in the middle layer, so the load cannot be continuously transferred to the bottom,
so the bottom is relatively complete and maintains a certain strength.
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Figure 7. Failure mode of numerical model of horizontally layered filling body; (a) one layer,
(b) two layers, (c) three layers, (d) four layers.

3.3.2. Analysis of Fracture Evolution Law of Layered Cemented Filling Body

The composite diagram of the stress–strain curve and crack increment curve for the
numerical model of the horizontal layered filling body is shown in Figure 8. Table 8 shows
the relationship between stress–strain and crack increment, which can more intuitively
reflect the stress and strain values when the crack occurs and the crack growth rate changes.
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Table 8. The relationship between stress–strain and crack increments.

Number of Layers
Cracks Begin to Appear Inflection Point of Crack

Number Growth

Stress/MPa Strain Stress/MPa Strain

One layer 1.23 0.0075 2.23 0.0144
Two layers 1.13 0.0069 2.10 0.0139

Three layers 0.99 0.0067 1.75 0.0127
Four layers 0.75 0.0051 1.40 0.0106

In the PFC2D simulation, the connection between particles was realized by parallel
bonding bonds, which can establish an elastic interaction between two particles close
to each other, to transfer the force and moment between particles. However, when the
force acting on the bonding bond is greater than its maximum bearing limit, the bonding
bond fails, and the two particles become independent units that cannot transmit force. It
can be seen from Figure 6 that in the early stage of loading, the bond strength between
particles in the filling body is greater than the contact force between particles, so the early
loading force cannot destroy the bond between particles, and there are no cracks in the
filling body. As the loading force increases, the contact force between particles increases.
When the stress of the filling body reaches about 55% of the peak stress, the contact force
between some particles begins to exceed the bond strength, which leads to the fracture
of the bond. At this time, the cracks begin to appear and gradually develop. When the
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loading enters the later stage, more and more particles break the bond, and the number
of cracks gradually increases. When the filling body stress reaches 90–100% of the peak
stress, the crack increment curve appears inflection point and rises rapidly, and the number
of cracks begins to grow rapidly. At this time, the filling body samples begin to enter
the post-peak failure stage, and the stress–strain curve begins to decline. It can be seen
from the table that with the increase in filling layers, the stress and strain when cracks
appear and the crack growth rate changes gradually decrease. This shows that with the
gradual increase in filling times, the filling body reaches the initial failure and peak strength
faster, which further verifies the weakening effect of filling times on the strength of the
filling body.

3.3.3. Energy Conversion of Layered Cemented Backfill under Failure State

Figure 9 shows the energy conversion of horizontally layered fillings with different
layers in a broken state.
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(d) four layers. 
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(d) four layers.

According to the principle of conservation of energy, the energy is not generated by
the air, nor does it disappear by the air. Before the uniaxial compression test, the internal
energy of the filling sample is in a certain equilibrium state. In the compression test, with
the application of external force, the original energy balance in the sample is broken, and
different energies are transformed with the change in stress–strain state, which leads to
cracks and final failure of the sample. Therefore, the study of the energy change in the
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specimen during compression plays a vital role in studying the failure mechanism of the
filling body [43,44].

Through PFC2D, all kinds of energy in the process of sample compression can be
accurately counted, including five kinds of energy; boundary energy, which is the energy
produced by the external force on the sample; strain energy, which is the energy between
particle contact; kinetic energy, which is the energy of particle motion; bond energy, which
is energy stored at the bond; and friction energy, which is the friction energy between
particles. In order to simplify the analysis, the deformation process of the specimen is
divided into three stages: linear elastic stage (before fracture occurrence), elastic–plastic
stage (from stress to peak stress at the beginning of fracture occurrence) and plastic stage
(after peak stress). The strain energy stored by the sample in the linear elastic stage is
all the elastic strain energy. With the gradual increase in external load, the strain energy
and bond energy inside the specimen increase due to the absorption of boundary energy.
When the stress of the sample reaches 55% of the peak stress, the sample enters the
elastic–plastic stage. The bonding bonds between some particles cannot withstand more
bond energy, and fractures and cracks begin to occur. However, due to the loss of bond
bonding bonds between particles, the friction energy between particles begins to increase
gradually, and the energy inside the sample continues to accumulate, accompanied by
the generation of cracks. Partial elastic strain energy is converted into dissipation energy
(dissipation energy = boundary energy, kinetic energy, strain energy, bond energy). When
the load continues to increase, and the stress of the specimen reaches its peak stress, the
specimen begins to enter the plastic stage. At this stage, the bond bonds between most
particles are broken, the bond energy begins to decline, and the number of cracks begins to
rise sharply. With the expansion of each old crack and the generation of new cracks, more
elastic strain energy in the sample gradually transforms into dissipative energy, resulting
in the gradual increase in dissipative energy. During the whole compression process, since
the filling sample is solid and the particle motion is weak, the kinetic energy is small, and
the changing trend is not apparent.

4. Conclusions

(1) The uniaxial compressive strength of layered backfill increases with the increase
in slurry concentration. The increase in slurry concentration has the most obvious
effect on the uniaxial compressive strength of the filling body, and the increase in the
number of layers has a weakening effect on the strength of the filling body. Based on
the damage theory, the constitutive damage model was constructed. It was found that
the total damage of the filling body increases sharply with the increase in strain, and
then increases slowly and finally gradually tends to one;

(2) By using PFC2D to analyze the fracture evolution law and failure mode of the filling
body, it is found that when the stress of the filling body reaches about 55% of the
peak stress, the cracks begin to appear and gradually develop; when the filling body
stress reaches 90–100% of the peak stress, the number of cracks begins to rise sharply.
The main failure modes of one layer and two layers backfills show obvious shear
failure characteristics, and the failure modes of three layers and four layers backfills
are closer to tensile failure;

(3) The generation of cracks is accompanied by the mutual transformation of different
energies. In the online elastic stage, the energy in the filling body begins to accumulate,
and the strain energy and bond energy increase continuously; in the elastic–plastic
stage, part of the strain energy begins to transform into dissipation energy, and the
friction energy gradually increases and cracks begin to produce; in the plastic stage,
the strain energy continues to transform into dissipated energy, and the bond energy
begins to decline. The cracks gradually develop, and the number increases sharply
until the specimen is destroyed.
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