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Abstract: Nanoparticle aggregate structures allow for efficient photon capture, and thus exhibit
excellent optical absorption properties. In this study, a model of randomly distributed nanochain
aggregates on silicon substrates is developed and analyzed. The Gaussian, uniform, and Cauchy
spatial distribution functions are used to characterize the aggregate forms of the nanochains and their
morphologies are realistically reconstructed. The relationships between the structural parameters
(thickness and filling factor), equivalent physical parameters (density, heat capacity, and thermal
conductivity), and visible absorptivity of the structures are established and analyzed. All the above-
mentioned parameters exhibit extreme values, which maximize the visible-range absorption; these
values are determined by the material properties and nanochain aggregate structure. Finally, Al
nanochain aggregate samples are fabricated on Si substrates by reducing the kinetic energy of the
metal vapor during deposition. The spectral reflection characteristics of the samples are studied
experimentally. The Spearman correlation coefficients for the calculated spectral absorption curves
and those measured experimentally are higher than 0.82, thus confirming that the model is accurate.
The relative errors between the calculated visible-range absorptivities and the measured data are less
than 0.3%, further confirming the accuracy of the model.

Keywords: optical absorber; nanoparticle clusters; morphological reconstruction; equivalent physical
characteristics; visible-range absorption

1. Introduction

Nanostructures consisting of metal nanoparticle clusters can be described as aggre-
gates of nanocells. These sparse and porous nanostructures can efficiently capture photons,
and thus exhibit excellent optical properties [1–3]. Hence, optical absorbers based on
nanoaggregate structures are widely used in microbolometers [4], photothermal convert-
ers [5,6], solar cells [7,8], and photocatalysis [9]. In addition, nanoaggregate structures
show several desirable physical properties, such as low heat capacity, high specific surface
area, and low density. As a result, these structures have shown significant potential in the
fields of tunable excitation radiation and photothermoacoustics [10].

Several quasianalytical models have been developed for characterizing the nanoag-
gregate structures, including the effective medium model [11], cluster-cluster aggregation
(CCA) model [12], and fractal lossy antennas (FLA) model [13]. The effective medium
model simplifies complex nanoclusters into hypothetical ellipsoids. However, the permit-
tivity elucidated by the effective medium model is based on statistical parameters, and the
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model lacks a description of the nanostructures. The CCA model represents the aggregate
morphology of spherical units and the growth process of clusters based on the theory
of diffusion-limited aggregation [14–16]. The FLA model describes the nanoaggregate
structure as a forest-like structure composed of chains. The length of the chains in the FLA
model is the order of microns.

In this paper, a new model of randomly distributed nanochain aggregate structures
is proposed to describe their micromorphology. The relationships between the structural
parameters (thickness and filling factor), equivalent physical parameters (density, heat
capacity, and thermal conductivity), and visible-range absorptivity of the model were es-
tablished and analyzed. These relationships can serve as a theoretical reference for further
research on areas such as the study of the photothermoacoustic effect of nanoaggregate
structures. To evaluate the model, Al nanochain aggregate structures were fabricated
on Si substrates, and the spectral reflection characteristics of the samples were deter-
mined experimentally. The experimental results showed that the model can realistically
reconstruct the morphology of the structures and allows for accurate calculations of their
spectral absorptivity.

2. Materials and Methods
2.1. Fabrication of Nanoaggregate Structures

To fabricate nanoaggregate samples, we chose two types of substrates, Si wafers and
polyimide (PI) films. The Si wafers were cleaned using an oxygen plasma. The PI films
were fabricated on Si wafers by spin coating. A 6 mL polyamic acid (PAA) solution was
spin-coated on the Si wafers at a low speed (800 r min−1) for 1 min and then at a high speed
(7000 r min−1) for 3 min. The PAA coating was then air-dried at 25 ◦C for 1 h and cured
in an oven filled with N2 gas for 3 h at 300 ◦C to chemically transform PAA into PI. The
process for fabricating a layer of the nanoaggregate structure is shown in Figure 1. Metal
Al was evaporated in a He atmosphere at a pressure of 980 Pa, and the Al metal vapor
was made to pass through the He atmosphere to reduce its kinetic energy before it was
deposited on the substrate.
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Figure 1. Process for fabricating layer of nanoaggregate structure.

2.2. Model of Nanochain Aggregates
2.2.1. Basic Structural Unit of Model

We obtained scanning electron microscopy (SEM, Supra55, Zeiss, Oberkochen, Germany)
images of the fluffy, “smoke-like” metal deposition structure, as shown in Figure 2. The
fluffy structure is porous, micron sized, and composed of a large number of clusters, which,
in turn, consist of randomly distributed nanochains. These nanochains are composed of
metal nanoparticles, which can be considered as nanospheres.
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Figure 2. SEM images of nanoaggregate structure.

2.2.2. Spatial Distribution of Nanochains

A large number of nanochains were generated in a three-dimensional space to form
clusters. The distribution of nanochains is disordered, but this disordered distribution
shows statistical regularity. Therefore, we try to use classical probability distribution
functions, Gaussian, uniform and Cauchy distributions, to characterize such statistical
regularity. The spatial distribution function represents the aggregate form of the nanochains
and reflects the probability density distribution of the nanochains in the clusters, as shown
in Figure 3. In the spatial coordinate system with the cluster centroid as the origin, the
probability density functions corresponding to the three spatial distributions are as follows:

G(r) =
1√

2π σ
exp(− r2

2σ2 ), (1)

U(r) =
1

2σ
√

3
, (2)

C(r) =
1
π
(

σ

r2 + σ2 ), (3)

where G(r), U(r), and C(r) represent the probability density functions of the Gaussian,
uniform, and Cauchy distributions, respectively; r represents the distance between the
nanochain and the cluster centroid; σ is the size parameter of the spatial distribution, which
determines the radius of the cluster.
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As a structural parameter, the distribution function used affects the propagation path
of photons within the structure. Thus, the selection of the appropriate distribution function
is essential for accurately calculating the optical absorption. Given that the actual spatial
distribution of nanochains is highly random, we add a weight to each distribution function
to improve the accuracy of the model, demonstrated by the following equation:

WG + WU + WC = 1, (4)

where WG is the weight of the nanochain clusters based on the Gaussian distribution
function; WU is the weight of the nanochain clusters based on the uniform distribution
function, and WC is the weight of the nanochain clusters based on the Cauchy distribution
function. The weight of the distribution function reflects the number (percentage) of clusters
aggregated by a specific distribution function to all clusters in the model.

2.2.3. Aggregation Model of Clusters

In addition to the spatial distribution of nanochains in a cluster, we use the uniform
distribution function to describe the spatial distribution of the clusters in the aggregation
model as well. Similar to the spatial distribution of nanochains, the spatial distribution of
the clusters in the aggregation model can be described as U(x, y, z) = 1

2σ
√

3
. This completes

the physical modeling of the nanochain aggregate structure, as shown in Figure 4.
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where i, j, and k are the grid numbers in x, y, and z directions, respectively; n is the number 
of time domain iterations; ∆t is the time step; σ is the conductivity; and ε is the dielectric 
constant. The dielectric constant and conductivity were wavelength-dependent 
parameters taken from the literature [21]. The reflectivity and transmittivity of the model 
were calculated using frequency domain power monitors with the following formula: 

Figure 4. Modeling of nanochain aggregate structure. (a) Basic nanochain structure. (b) Nanochains
with random three-dimensional orientations. (c) Cluster based on Gaussian distribution. (d) Cluster
based on uniform distribution. (e) Cluster based on Cauchy distribution. (f) Top view of physical
model. (g) Sectional view of physical model.

We define the dimension of the model in the direction perpendicular to the substrate
as the model thickness, d. In addition to the thickness, we define a structural parameter,
namely, the filling factor (γ), to describe the relative density of the nanochain aggregate
structure. The filling factor was calculated as the ratio of the structural density to the
material density. It also reflects the porosity of the nanochain aggregate structure. In the
proposed model, the filling factor was varied by changing the number of nanospheres
contained in each cluster.
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2.2.4. Finite-Difference Time-Domain (FDTD) Method

The FDTD method was used to calculate the spectral absorptivity of the model [17–20].
The FDTD method discretized the time-domain Maxwell’s equations by central differ-
ence approximation of the spatial and temporal partial derivatives. The finite difference
equations with the following form were obtained:

En+1
x (i + 1, j, k) =

1− σ(i+1/2,j,k)∆t
2ε(i+1/2,j,k)

1+ σ(i+1/2,j,k)∆t
2ε(i+1/2,j,k)

· En
x (i + 1/2, j, k) + ∆t

ε(i+1/2,j,k) ·

1
1+ σ(i+1/2,j,k)∆t

2ε(i+1/2,j,k)

· [Hn+1/2
z (i+1/2,j,k)−Hn+1/2

z (i+1/2,j−1/2,k)
∆y +

Hn+1/2
y (i+1/2,j,k−1/2)−Hn+1/2

y (i+1/2,j,k+1/2)
∆z ]

(5)

where i, j, and k are the grid numbers in x, y, and z directions, respectively; n is the
number of time domain iterations; ∆t is the time step; σ is the conductivity; and ε is the
dielectric constant. The dielectric constant and conductivity were wavelength-dependent
parameters taken from the literature [21]. The reflectivity and transmittivity of the model
were calculated using frequency domain power monitors with the following formula:

T( f ) =
Re(P( f )) · d

→
S

Re(Psource( f )) · d
→
S

(6)

where T( f ) is the normalized transmittivity of the monitor; P( f ) and Psource( f ) are the

Poynting vectors on the surfaces of the monitor and light source, respectively; and d
→
S is the

differential element of normal direction. The incident light source was set as a plane wave
with a wavelength step of 2 nm. To simplify the model and allow for faster computations,
the periodic boundary condition was used for the FDTD calculations. The spectral reflec-
tivity (Rλ) and transmittance (Tλ) of the model were obtained using power monitors. The
spectral absorptivity (Aλ) of the model was calculated using Equation (7), and the visible
absorptivity (A) of the model was calculated by integrating the spectral absorptivity.

Aλ = 1− Rλ − Tλ, (7)

We designed the Gaussian, uniform, and Cauchy models based on the spatial distribu-
tion of the nanochains. The spatial distribution of the clusters within the computational
region was uniform for all three models, as described in the previous subsection.

3. Results and Discussion
3.1. Optical Absorption Properties of Model
3.1.1. Relationship between Filling Factor and Optical Absorption

We first analyzed the relationship between the filling factor and optical absorption. We
set the nanochain materials as Al, Au, and Cr and used a model thickness of 1 µm and filling
factor of 0.5–8%. The spectral absorption curves in the wavelength range of 400–800 nm, as
well as the visible-range absorptivity of the model for different filling factors, are shown in
Figure 4. The filling factor affects the motion path of the incident photons, and thus the
efficiency of the model in capturing photons. An extremely sparse or dense distribution of
nanochains leads to a reduction in the model absorptivity. For all three models, the filling
factor and visible-range absorptivity exhibited a quadratic relationship. The extreme values
of the filling factor, which enhanced the visible-range absorption, are listed in Table 1. We
propose the following equation to describe the relationship between the filling factor and
visible-range absorptivity:

A = c + c1 · γ + c2 · γ2, (8)
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where c1, c2, and c are constant coefficients, whose values are determined from the FDTD
results. The aggregate form of the nanochains has a significant effect on the visible-range
absorptivity, as shown in Figure 5. The Gaussian model possesses the highest visible-range
absorptivity, indicating that the nanostructure corresponding to this model is more efficient
at capturing photons.

Table 1. Relationships between model parameters and visible-range absorptivity.

Parameter Type of Relationship
Curve

Material of the
Models

Extreme Values for Gaussian,
Uniform and Cauchy Models

Filling factor (%) Quadratic

Al γG = 5.4, γU = 4.4, γC = 4.6

Au γG = 7.4, γU = 5.0, γC = 5.6

Cr γG = 6.0, γU = 4.4, γC = 5.2

Thickness (µm) Exponential
Al dG = 21, dU = 29, dC = 36

Au dG = 47, dU = 49, dC = 59

Cr dG = 37, dU = 42, dC = 43

Density (×103 kg m−3) Quadratic

Al ρG = 0.146, ρU = 0.113, ρC = 0.124

Au ρG = 1.430, ρU = 0.996, ρC = 1.121

Cr ρG = 0.431, ρU = 0.316, ρC = 0.374

Thermal conductivity (W m−1 K−1)) Cubic

Al kG = 33.86, kU = 28.64, kC = 30.43

Au kG = 55.87, kU = 43.02, kC = 47.50

Cr kG = 14.36, kU = 11.68, kC = 13.05

Volumetric heat capacity (×103 J m−3 K−1) Quadratic

Al sG = 128.3, sU = 99.79, sC = 109.3

Au sG = 183.15, sU = 123.75, sC = 143.55

Cr sG = 194.13, sU = 123.75, sC = 143.55
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3.1.2. Relationship between Thickness and Optical Absorption

The nanoaggregate structure demonstrates ultralow surface reflection in the visible
band [1–3]. For nanochain aggregate structures with the same filling factor, a higher value
of thickness would mean that the expected motion path of the incident photons would
be longer. Once the thickness of the model exceeds a threshold value, the visible-range
transmittance of the model decreases to zero. When the model thickness is more than this
threshold value, it no longer affects the visible-range absorptivity of the model. Therefore,
the relationship between the thickness and absorptivity takes the form of an exponential
function, as shown in Figure 6. We set the nanochain material as Al, Au, and Cr and
used the model filling factor of 0.6% and thickness of 1–60 µm. The extreme values of the
thickness, which enhanced the visible-range absorption, are listed in Table 1. The critical
thickness for the Gaussian model is much smaller than those for the uniform and Cauchy
models because of the higher photon-capturing efficiency of the former. The maximum
visible-range absorptivities of the three models are similar, indicating that the aggregate
form of the nanochains has a negligible effect on the surface reflection of the model. Based
on Equation (6), we obtained the following fitting equation:

A = c + C1 · (γ + C2 · γ2) · e−d / C3 , (9)

where C1, C2, and C3 are constant coefficients, whose values can be obtained from the
FDTD results. Equation (7) represents the relationship between the visible-range absorp-
tivity, filling factor, and model thickness. It can be observed that c1 = C1 · e−d / C3 and
c2 = C1 · C2 · e−d / C3 .
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3.1.3. Relationship between Equivalent Density and Optical Absorption

High optical absorption can be achieved by fabricating nanochain aggregate structures
from various materials. Specific application scenarios would result in limitations in terms
of the density of the optical absorber. Therefore, it is essential to study the relationship
between the equivalent density and optical absorption of nanochain aggregate structures.
Based on the above-stated definition of the filling factor, the relationship between the filling
factor and equivalent density of the structure can be described as follows:

ρe f f = ρ0 · γ + ρm · (1− γ), (10)

where ρeff is the equivalent density of the structure; ρ0 is the density of the material used,
and ρm is the density of the medium. The structural equivalent densities are affected by the
filling factor and material density, as shown in Figure 6a. For vacuum, ρm = 0. Therefore,
the relationship between ρeff and A is as follows:

A = c + C1 · [
ρe f f

ρ0
+ C2 · (

ρe f f

ρ0
)

2
] · e−d / C3 , (11)

We set the model thickness as 1 µm and the filling factor as 0.6–8%. The nanochain
materials included Al, Au, and Cr. The relationship between the equivalent density and
visible-range absorptivity of the nanochain aggregate models is shown in Figure 7. The
models use the same structural parameters. Thus, the material density of the model has a
distinct effect on its equivalent density. The extreme values of the equivalent density, which
enhanced the visible-range absorption, are listed in Table 1.
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3.1.4. Relationship between Equivalent Thermal Conductivity and Optical Absorption

Thermal conductivity is an important physical parameter for optical absorbers, with
respect to infrared scene generation and photoacoustic effects. Optical absorbers with
high thermal conductivities exhibit fast heat dissipation and high-sensitivity time-domain
temperature responses. Optical absorbers with low thermal conductivities can generate
high-temperature radiation signals at relatively low incident laser powers. The relationship
between the equivalent thermal conductivity of the model and its filling factor can be
estimated from the classical cheese model [22], which is as follows:

ke f f = k0 · ε + km · (1− ε), (12)

where keff is the equivalent thermal conductivity of the model; k0 is the thermal conductivity
of the material used; km is the thermal conductivity of the medium, and ε = γ2/3 represents
the two-dimensional (2D) porosity in the direction of heat conduction. After combining
Equations (7) and (10), we obtain the following equation:

A = c + C1 · [(
ke f f

k0
)

3
2

+ C2 · (
ke f f

k0
)

3

] · e−d / C3 , (13)

Figure 8 shows the relationship between the filling factor, equivalent thermal conduc-
tivity, and visible-range absorptivity for the Gaussian, uniform, and Cauchy models. The
extreme values of the equivalent thermal conductivity, which enhanced the visible-range
absorption, are listed in Table 1. Thus, Au nanoaggregate structures are more suitable as
optical absorbers that must exhibit efficient absorption and fast heat dissipation. However,
Cr nanoaggregate structures allow for efficient energy capture and accumulation.
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3.1.5. Relationship between Equivalent Volumetric Heat Capacity and Optical Absorption

The specific heat capacity affects the time-domain temperature response rate of optical
absorbers. High optical absorption and low specific heat capacity are essential material
properties for ensuring a strong photoacoustic effect [10,23]. Similar to the case for the
equivalent density, the relationship between the filling factor and equivalent volume heat
capacity of the model can be described as follows:

se f f = s0 · γ + sm · (1− γ), (14)

A = c + C1 · [
se f f

s0
+ C2 · (

se f f

s0
)

2
] · e−d / C3 , (15)

where seff is the equivalent volumetric heat capacity of the model; s0 is the volumetric
heat capacity of the material used, and sm is the volumetric heat capacity of the medium.
The equivalent volumetric heat capacities of the Al and Au models were almost equal,
while that of the Cr model was slightly higher, as shown in Figure 9. The extreme values
of the equivalent volumetric heat capacity, which enhanced the visible-range absorption,
are listed in Table 1. Because its absorptivity is higher, the Al nanoaggregate structure
is more suitable as an optical absorber that shows a low volumetric heat capacity and
high-sensitivity time-domain temperature response.
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Figure 9. (a) Relationship between filling factor and equivalent volumetric heat capacity of model.
(b–d) Relationship between equivalent volumetric heat capacity and visible-range absorptivity of
Gaussian, uniform, and Cauchy models. Equivalent volumetric heat capacity of model with maximum
absorptivity is marked in the figures.

3.2. Model Validation
3.2.1. Sample Characterization

We fabricated six different samples with nanoaggregate-structured layers. Pho-
tographs and SEM images of the samples are shown in Figure 10. The thickness and
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2D porosity of the layers of the nanochain aggregates were measured. The filling factor of
the samples was calculated using the expression ε = γ2 / 3. The structural parameters of
the samples are listed in Table 2.
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Figure 10. Photographs and SEM images of nanoaggregate samples. Samples #1–3 were formed
on 500 µm Si substrates. Samples #4–6 were formed on 300 nm PI layer; PI layer was fabricated
by spin-coating.

Table 2. Structural parameters of nanoaggregate samples.

Number 1# 2# 3# 4# 5# 6#

Thickness of the absorbed layer (µm) 4.78 7.34 8.37 4.83 5.07 5.56
Filling factor (%) 6.1 5.1 4.1 5.9 6.3 6.8

Substrate thickness and material 500 µm Si 300 nm PI + 500 µm Si

Energy dispersive spectroscopy (EDS, Ultim Extreme, Oxford, UK) detection is per-
formed on the sample and Si substrate to quantitatively analyze the oxide content in Al
nano aggregates. Figure 11a shows the types (O, Al and Si) and the relative weight ratio
(0.175:1:0.416) of the elements contained in the sample. According to the relative atomic
mass of each element, the atomic ratio of O, Al and Si is calculated as 0.0109:0.037:0.0149.
Since EDS detection is carried out in vacuum, the O element is derived from aluminum
oxide and silicon oxide. The Al element is derived from aluminum and oxide in the nano
aggregates, and the Si element is derived from silicon and oxide in the substrate. Figure 11b
shows the types (O and Si) and the relative weight ratio (0.011:0.416) of the elements con-
tained in the substrate. Results of the substrate are normalized based on the Si weight ratio
in the sample (0.416). The atomic ratio of O and Si is calculated as 0.0007:0.0149. The O
element in the substrate is derived only from silicon oxide. Therefore, it can be calculated
that 93.6% of the O element in the sample is derived from aluminum oxide and 6.4% from
silicon oxide. In addition, 81.5% of the Al element is derived from aluminum; 18.5% from
aluminum oxide. The molecular ratio of aluminum to its oxide is calculated as 8.81:1.
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Figure 12. Measured spectral absorption curves of various substrates and nanoaggregate samples. 
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Figure 11. EDS results of the sample and Si substrate. (a) Results of the sample are normalized based
on Al peak intensity, and the relative weight ratio of O, Al and Si is 0.175:1:0.416. (b) Results of Si
substrate are normalized based on the Si weight ratio in the sample (0.416), and the relative weight
ratio of O and Si is 0.011:0.416.

The spectral absorption curves of the samples in the 400–800 nm band were measured
using a dual optical path ultraviolet–visible (UV–vis) spectrophotometer (TU-1901, Persee,
Beijing, China). Two standard reflectance plates were used for correction. All the samples
were supported by a 500 µm Si wafer, which was completely opaque in the visible range.
The spectral absorptivities of the samples were calculated using Equation (7). The spectral
absorption curves of the Si substrates, PI substrates, and samples are shown in Figure 12.
The root mean square error (RMSE) between the measured and fitted curves was less than
0.7%, as shown in Table 3. The absorptivities of the samples were higher than 0.97 in the
400–800 nm band.
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Figure 12. Measured spectral absorption curves of various substrates and nanoaggregate samples.
(a) Measured spectral absorption curves of Si and PI substrates. (b) Measured spectral absorption
curves of samples #1–3. (c) Measured spectral absorption curves of samples #4–6.

Table 3. Statistics of measured error.

Object RMSE between Measured and Fitted Curves

Si 0.0044

1# 0.0008

2# 0.0001

3# 0.0007

PI 0.0071

4# 0.0002

5# 0.0007

6# 0.0001
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3.2.2. Analysis of Calculation and Experimental Results

We constructed a physical model of the nanoaggregate samples based on the structural
parameters listed in Table 2. The spectral reflectivity and absorptivity of the substrate
used were included in the model as the boundary conditions. The weights of the three
distribution functions in the aggregation model were adjusted to optimize the calculation
results. The values of WG, WU, and WC were set at 0.6, 0.2, and 0.2, respectively. A
comparison of the calculation and experimental results is shown in Figure 13. The Spearman
correlation coefficient was used to evaluate the correlation between the calculation and
measurement curves; the values obtained are listed in Table 4.

1 
 

 
Figure 13. Spectral absorption curves determined based on weighted Gaussian, uniform, and Cauchy
distribution models and those obtained experimentally.

Table 4. Comparison of calculation and measurement results.

Object Spearman Correlation Coefficient of
Spectral Absorption Curves

Relative Error of Visible
Absorptivity

1# 0.976 0.0018

2# 0.954 0.0031

3# 0.962 0.0017

4# 0.846 0.0028

5# 0.822 0.0013

6# 0.996 0.0029



Materials 2022, 15, 4778 14 of 16

To evaluate the accuracy of the model described by Equation (9), we compared the
calculated values of the visible-range absorptivity with the measured ones, as shown in
Figure 14. The relative errors are presented in Table 4.

1 
 

 
Figure 14. Calculated and measured values of visible-range absorptivity of various samples.

The calculated spectral absorption curves of the samples are in good agreement with
the experimental curves, with the Spearman correlation coefficients being higher than
0.82. Within the range of values used for the structural parameters of the samples, the
relative errors between the calculated visible-range absorptivities and those determined
experimentally were less than 0.3%. This confirmed that the model was accurate.

3.3. Discussion

The model of nanoaggregate structure presented here is only a preliminary model,
which is mainly established and verified for Al. Due to the limitation of the experimental
conditions, the samples have a relatively small range of fill factor and thickness compared
to the range of the presented model predictions. Therefore, the accuracy of the model
is only verified in a relatively small range. We will study and improve the fabrication
method to expand the range of sample thickness and filling factor in subsequent research.
In addition, the model should be further improved to make it universal. The general
form of nanoaggregate structure can be applied to metal absorbers obtained by various
processes. This model is suitable for the study of surface absorption of various optical
sensors, photothermal effect and photovoltaic, as well as terahertz generation and detection.

4. Conclusions

In this study, the structures of randomly distributed nanochain aggregates on silicon
substrates were modeled, and the model was evaluated. The relationship between the
structural parameters (thickness and filling factor), equivalent physical parameters (density,
heat capacity, and thermal conductivity), and visible-range absorptivity of the model were
established and analyzed. All the above-mentioned parameters exhibited extreme values,
which enhanced the visible-range absorptivity. The accuracy of the model was verified
experimentally. The following conclusions were drawn based on the results obtained.

(1) The visible-range absorptivity of the structure was quadratically related to the filling
factor. The filling factor affects the motion path of incident photons and, thus, the effi-
ciency of capturing photons. An extremely sparse or dense distribution of nanochains
leads to a reduction in the model absorptivity.

(2) The visible-range absorptivity of the modeled structure is exponentially related to its
thickness. The critical thickness of the Gaussian model is much smaller than those of
the uniform and Cauchy models because of the higher photon-capturing efficiency of
the former. The maximum visible-range absorptivities of the three models are similar,
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indicating that the aggregate form of the nanochains has a negligible effect on the
surface reflection of the model.

(3) The visible-range absorptivity of the modeled structure is quadratically related to
its equivalent density. The Al nanochain aggregate structure is more suitable as an
optical absorber that exhibits a low density and high visible-range absorption.

(4) The visible-range absorptivity of the modeled structure is also related to its equivalent
thermal conductivity. The Au nanochain aggregate structure allows for efficient optical
absorption and fast heat dissipation. Meanwhile, the Cr nanoaggregate structure
allows for efficient energy capture and accumulation.

(5) Finally, the visible-range absorptivity of the modeled structure is quadratically related
to its equivalent volumetric heat capacity. The Al nanoaggregate structure is more
suitable as an optical absorber with a low volumetric heat capacity and high-sensitivity
time-domain temperature response.

Actual nanochain aggregate samples were fabricated by reducing the kinetic energy of
the deposited Al nanoparticle clusters. The visible-range spectral absorption curves of the
fabricated samples were measured using a Fourier spectrometer. The Spearman correlation
coefficients for the calculated spectral absorption curves and those measured experimentally
were higher than 0.82; this confirmed the accuracy of the model. In addition, the relative
errors between the calculated visible-range absorptivities and the measured values were
less than 0.3%; this confirmed that the model is suitable for calculating the absorptivity.
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