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Abstract: In this work, silicon carbide layers containing silicon vacancies are grown by the Method of
Coordinated Substitution of Atoms (MCSA). The main idea of this fundamentally new method is that
silicon vacancies are first created in silicon, which is much simpler, and only then is silicon converted
into silicon carbide by chemical reaction with carbon monoxide. The dielectric function of silicon
carbide containing silicon vacancies, grown on both n- and p-type silicon substrates, is measured for
the first time. The density functional method in the spin-polarized approximation is used to calculate
the dielectric function of silicon carbide containing silicon vacancies. It is shown that the influence of
the magnetic moment of vacancies on the dielectric function is decisive. Qualitative correspondence
of the computational model to the obtained experimental data is demonstrated. It is discovered that
silicon vacancies make silicon carbide much less transparent. It is shown that the imaginary part of
the dielectric function is described as a sum of oscillatory peaks in the form of the Gaussian functions.
Vacancies lead, as a rule, to one or two additional peaks. According to the amplitude and position
of the additional peaks, it is possible to qualitatively estimate the concentration of vacancies and
their charge.

Keywords: silicon carbide; spin polarization; dielectric function; half-metallic ferromagnet; density-
functional theory

1. Introduction

In recent years, a great interest has begun to appear in the development of semiconduc-
tor devices that use for their work the spin of charge carriers and not the charge itself [1],
including spin-polarized light-emitting diodes, spin field-effect transistors, single-photon
detectors, single-photon emitters, and quantum bits. Therefore, the development of new
semiconductor materials with a magnetic moment and the property of spin polarization
is a very relevant task [1–3]. Moreover, for scaling and providing the interconnection
between the elements, it is desirable that these materials combine well with the available
materials of microelectronics, such as silicon Si, silicon carbide SiC, and semiconductor
compounds A3B5 [4].

Previously, the magnetic properties of materials were associated only with d- and
f-orbitals of electrons in transition or rare-earth elements. Thus, magnetic semiconductors
used to be produced by doping optically transparent semiconductors with transition
metals. Eventually, it has become clear that even more efficient spintronic properties can
be obtained with p-electrons by using point defects in semiconductors [3,4]. In particular,
the most studied solid-state spin is the negatively charged nitrogen-vacancy center (NV−)
in diamond [3]. Recently, similar NV centers in SiC have started to be actively studied [5].
Studies have shown that silicon vacancies VSi in silicon carbide also provide effective
spintronic properties [6]. That is why SiC with various point defects based on VSi is now
considered as one of the most promising materials for spintronics [1,2,5,6].

It is quite difficult to obtain silicon vacancies VSi in SiC, because the energy of their
formation is very high; in particular, it is approximately equal to 8 eV in cubic 3C–SiC [7].

Materials 2022, 15, 4653. https://doi.org/10.3390/ma15134653 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15134653
https://doi.org/10.3390/ma15134653
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-2973-8645
https://orcid.org/0000-0002-2911-7806
https://doi.org/10.3390/ma15134653
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15134653?type=check_update&version=2


Materials 2022, 15, 4653 2 of 13

Therefore, to create them, high-energy beams of electrons, as well as ions, are usually
used [8]. As not only VSi but also other defects are formed in this case, the quality of SiC
with VSi is not very high upon irradiation. Recently, in the work [9], a much simpler and
more reliable method for obtaining silicon vacancies in SiC was proposed and implemented,
based on the fact that the formation energy of VSi in silicon Si is much lower (∼3.3 eV)
than in SiC. Initially, vacancies are created in Si thermally (i.e., by heating in vacuum to
a temperature of T∼1340 ÷ 1380 ◦C). Then, Si is converted into SiC by the method of
coordinated substitution of atoms (MCSA) by the chemical reaction [10–13]

2Si(crystal) + CO(gas) = SiC(crystal) + SiO(gas) ↑ . (1)

Therewith, some vacancies in Si simply transform into silicon vacancies in SiC [13].
Another part of VSi disappears when Si collapses into SiC with a twofold decrease in the
volume of the material [10,11]. The term “coordinated” means that new SiC chemical
bonds are created simultaneously with the destruction of former Si-Si chemical bonds in the
process of the chemical reaction [10,11]. The overall diamond-like bond structure does not
change in this case, which makes it possible to obtain high-quality layers of cubic 3C–SiC
containing VSi by this method. The concentration of VSi in SiC is determined by the time of
preliminary annealing of Si in vacuum [9,12,13]. The longer the annealing, the greater the
amount of VSi.

In the review [10], a sequential thermodynamic and kinetic theory of Si transformation
into SiC in the course of chemical reaction (1) was constructed. It was shown that the process
of transformation of Si into SiC consists of two stages. In the first stage of reaction (1),
the CO molecule interacts with the surface of the silicon substrate. The oxygen atom
reacts chemically with the Si atom to produce SiO gas. This reaction proceeds through the
formation of an intermediate Si–O–C complex forming an almost equilateral triangle [14].
In fact, the oxygen atom plays the role of a reaction catalyst, without which reaction (1)
is impossible. Then, the SiO gas is removed from the system, and a silicon vacancy Vsi
is formed in place of the substrate silicon atom that turned into SiO gas. As this is the
first kind of phase transition, it occurs with the formation of a new phase nucleation. In
this case, this nucleus is a complex formation consisting of the SiC itself, the pore under
its surface, and the surrounding shrinkage pores. An image of such a nucleus is given in
the review [11]. For the thermodynamic and kinetic description of this kind of nucleation,
the equations of the standard nucleation theory had to be significantly modified. The
derivation and solution of these equations are given in the review [10]. In the same work, a
theory of the formation of such nuclei on vicinal surfaces of Si crystals deviated by a small
angle from planes (111) was also constructed.

The Density Functional Theory (DFT) studies [7,15,16] show that many properties
of SiC containing VSi, including the electric charge localized near VSi, are determined
by the position of the Fermi level. This is especially important for SiC layers grown on
a Si substrate by MCSA, as the substrate can be doped with atoms of boron B, as well
as phosphorus P or antimony Sb. In the first case, the Fermi level of Si shifts to the
bottom of the valence band; in the second case, it shifts to the top of the conduction
band. The DFT calculations show that VSi in SiC contacting doped Si acquires an electrical
charge. If Si is doped with B, then VSi receives a positive charge of either +e or +2e
depending on the position of the Fermi level, i.e., concentration of B in Si [15]. As a rule,
the concentration of boron in silicon is low and provides a conductivity of the order of
50÷ 1000 (O hm · cm)−1, so the case of +e is more likely. If Si is doped with P or Sb, then
VSi receives an opposite charge of either −e or −2e, also depending on the position of the
Fermi level [7,15,16]. It is very important to point out that if SiC is grown from Si doped
with B, then at temperatures > 1200 ◦C, a carbon atom C closest to VSi leaps to the place of
VSi, which leads to a significant decrease in the total energy [15]. Therewith, four carbon
atoms form an almost flat cluster, while a void with a diameter of 2.1 is formed under
it at a distance of 1.8 [9]. Without a charge or with a charge of +e, this formation has a
magnetic moment equal to the Bohr magneton µB due to the unpaired p-electron of the C
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atom located in the center of the cluster at the site of VSi [9]. As the magnetic and electrical
properties of such a system are very similar to the NV− center in diamond, this formation
is named the C4V center in the work [9]. If Si is doped with P or Sb, then such a leap of
the C atom to the place of VSi is energetically unfavorable due to the received negative
charge. Studies carried out in this work have shown that SiC has an even larger magnetic
moment in this case, which leads to a spin polarization of SiC, which, in turn, affects the
dielectric function and many other properties of SiC. Experimental data show that the
dielectric function of SiC grown by the MCSA always differs from the dielectric function of
SiC grown, for example, by the modified Lely method [17]. SiC grown by MCSA is always
less transparent in the range of 0.5÷ 5 eV; moreover, an increased absorption of light is
often observed in the range of 1.0÷ 2.5 eV. Notably, small differences in the conditions
of the SiC growth can lead to significant differences in the dielectric function. From the
results of [9], it becomes clear that the reason for this is that SiC obtained by MCSA always
contains VSi that were originally in Si, while SiC obtained by any other method does not
contain VSi.

Up to the present time, all the features of the measured dependences of the dielectric
function of SiC on the photon energy have been explained using Bruggeman’s model
of the effective-medium approximation (EMA), which mixes SiC with crystalline carbon
and pores [18]. This is because the dielectric function of crystalline carbon successfully
exhibits the necessary behavioral features at both low and high photon energies. At low
concentrations of VSi (up to about 1%), the EMA model works quite well, but with an
increase in the time of pre-annealing of Si in vacuum to 1 min or more at a temperature
of 1350 ◦C or more (which leads to an increase in the concentration of VSi up to several
percent), the EMA model ceases working, especially at low photon energies of 0.5÷ 2.5 eV.
Therefore, the purpose of this work is to study the dependence of the dielectric function of
SiC containing VSi on the photon energy by the DFT method and compare the obtained
theoretical results with the experimental ones. As all the obtained results are determined
by the magnetic moment of SiC, the band structure of SiC is also determined according
to spin.

2. Materials, Methods and Measurement Results

To measure the dielectric function of 3C–SiC containing silicon vacancies at different
positions of the Fermi level, two samples with different concentrations of defects were
grown by the MCSA. One sample was grown on a Si(111) substrate doped with Sb (the
electrical conductivity of the substrate material was ∼5 (Ohm · cm)−1) and the second
sample was grown on a Si(111) substrate doped with B (the conductivity of the substrate
material was ∼50 (Ohm · cm)−1). Before the synthesis, both substrates had been cleaned
of oxides in a mixture of NH4OH and NH4F, which additionally ensured the passivation
of the Si(111) surface by hydrogen atoms [19]. The substrates were then annealed in
vacuum to create vacancies, and then 3C–SiC layers were grown on the substrates by the
MCSA using the chemical reaction with CO (1). For the Si(111) substrate doped with Sb,
the pre-annealing time was 0.5 min, the growth time in CO atmosphere at the pressure
pCO = 300 Pa was 5 min, and the temperature of annealing and growth was 1340 ◦C. For
the Si(111) substrate doped with B, the pre-annealing time was 5 min, the growth time in
CO atmosphere at a pressure of 300 Pa was 15 min, and the temperature of annealing and
growth was 1380 ◦C, which provided a higher concentration of vacancies compared to the
first case. The produced 3C–SiC layers with silicon vacancies were examined in the photon
energy range of 0.5÷ 9.3 eV with the J.A. Woollam VUV-VASE ultraviolet ellipsometer
with a rotating analyzer.

The measured dependence of the pseudodielectric function ε on the photon energy E
for the first sample, i.e., for the n-type substrate (Si doped with Sb), is shown in Figure 1a.
To analyze this dependence, we used the previously proposed two-layer ellipsometric
model [18] consisting of a substrate containing Si, SiC and pores, a buffer layer with a
thickness of ∼2 nm (layer No. 1), a SiC layer (layer No. 2), and roughness on its surface.
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Approximating the imaginary and real parts of the dielectric function of a SiC layer in
the form of splines, one can extract them from the experimental data. Minimization of
the difference between the theoretical and experimental dependences ε(E) with respect to
given parameters [20] makes it possible to determine the thickness of a SiC film and the
dielectric function of SiC. In the present case, the thickness of the SiC layer with silicon
vacancies turned out to be 120 nm (with the contributions of the buffer layer and roughness).
The dielectric function of SiC with silicon vacancies for this sample is shown in Figure 1b.
In accordance with the classical theory of light dispersion [20], the imaginary part of the
dielectric function can be represented as a sum of oscillators (there are 4 of them in the
present case). Their shape is best described by the Gaussian function:

ε2(E) =
n

∑
i=1

Aie
−( E−Ei

σi
)

2

(2)
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Figure 1. Pseudodielectric function of a 3C–SiC sample grown by MCSA on the n-type Si(111), as
measured with the VUV-VASE ellipsometer (a), and dielectric function of the sample, as extracted
from the measured data (b). ε1 is the real part and ε2 is the imaginary part; the dashed lines show the
positions of the peaks of the ε2 function.

The energies of these oscillators are 0.75 eV, 5.95 eV, 6.95 eV, and 9.2 eV and are
marked by dashed lines in Figure 1b. The real part of the dielectric function ε1(E) was
calculated using the Kramers–Kronig relation [17,20]. The measured dependence ε2(E)
of 3C–SiC containing silicon vacancies differs from ε2(E) of an ideal 3C–SiC primarily
in the appearance of a new oscillatory peak with an energy of 0.75 eV, which makes
SiC less transparent. Another important difference is that the energies of the main SiC
peaks decrease by about 0.3 eV, which also makes SiC less transparent. In addition, the
amplitudes of the main peaks decrease.

The measured dependence of the pseudodielectric function ε on the photon energy E
for the second sample, i.e., for the p-type substrate (Si doped with B), is shown in Figure 2a.
To analyze the obtained dependence, the previously proposed two-layer ellipsometric
model [18] was used as well. The thickness of the SiC layer in this case is 480 nm, meaning
that vacancies strongly stimulate the synthesis of 3C–SiC. In both cases, the film thicknesses
obtained by ellipsometry coincide with those observed by scanning electron microscopy
(SEM) (see Figure 3). Without the pre-annealing step, the thickness of the SiC layer would
have been about 70–100 nm under the same growth conditions. The imaginary part of the
dielectric function of SiC with silicon vacancies for this sample is shown in Figure 2b. It
is represented as a sum of 5 oscillators having the form of the Gaussian function (2). The
energies of these oscillators are 1.6 eV, 2.6 eV, 6.2 eV, 7.6 eV, and 9.6 eV and are marked
by dashed lines in Figure 2b. In this case, already two new oscillatory peaks with energies
of 1.6 eV and 2.6 eV appear, making SiC much less transparent. This is what leads to
a very strong decrease in the amplitude of the interference peaks in the ellipsometric
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spectrum in the range of 2–5 eV (Figure 2a), as the intensity of the light reflected from the
bottom of the SiC layer is now significantly lower in this range of photon energies. An
even greater decrease in the amplitudes of the three main oscillatory peaks should also be
noted (Figure 2b).
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Figure 3. SEM images of 3C–SiC samples containing silicon vacancies grown on Si of n-type (a) and
p-type (b).

The XRD (X-ray diffraction) spectra of two 3C–SiC/Si(111) samples containing silicon
vacancies are shown in Figure 4. Both spectra are very similar to each other. It can be
seen that there are only peaks corresponding to the <111> direction, which indicates the
crystalline perfection of 3C–SiC in both cases. Figure 5 shows the RHEED (reflected high-
energy electron diffraction) patterns of the two samples after cooling, obtained on the
EMR-100 electron diffractometer with an electron energy of 50 keV. At such an energy
of electrons, the depth of their penetration into the sample does not exceed ∼100 nm;
therefore, this diffraction pattern corresponds only to the upper layer of epitaxial SiC. It can
be seen that there is only a diffraction pattern corresponding to a smooth epitaxial layer.
Patterns corresponding to a polycrystalline or amorphous structure are completely absent.
This also indicates the epitaxial quality of 3C–SiC samples containing silicon vacancies for
both the n-type and p-type substrates.
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3. Modeling Results

In this work, to model the properties of SiC containing VSi, we used the DFT methods
implemented in the MedeA VASP software [21]. Periodic boundary conditions in all three
dimensions, as well as the spin-polarized approach [22], were used in all the calculations,
which makes it possible to adequately describe the magnetic moment in SiC. In calculating
the energy of the system and optimizing its geometry, the exchange-correlation contribution
was computed using the PBE-GGA functional [23], which is better than the others for
calculating the magnetic moment in such systems. The exchange-correlation interaction in
calculations of the dielectric function and band structure was calculated using the mBJ-LDA
meta-GGA functional [24], which provides high accuracy in calculating the bandgap (the
error is ∼1% for pure 3C–SiC), as well as acceptable accuracy in calculating the magnetic
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moment. For integrating over the Brillouin zone, we used a grid of k-points generated
according to the Monkhorst–Pack scheme, where the distance between them was no more
than 0.25 −1. In all the calculations, the projector augmented-wave (PAW) method [21] was
used, and the cutoff energy of the plane waves was 400 eV.

First, it is necessary to find the minimum-energy configuration of atoms of the cubic
3C–SiC polytype (as it is this polytype that grows from Si by the MCSA) containing VSi.
The key question here is in which cases is it beneficial for the C atom closest to VSi to leap
to the place of VSi, and in which cases is it not. The silicon vacancy VSi in 3C–SiC is shown
in Figure 6a as a void with a diameter of 3.0 . Four C atoms that had been bonded with the
removed Si atom are marked in blue there. The p-electrons of just these atoms provide SiC
with a magnetic moment. Following the work [9], we call the point defect formed after the
leap of the C atom to the place of the silicon vacancy as the C4V center by analogy with
the NV center in diamond. The C4V center in 3C–SiC, consisting of an almost flat cluster
of four C atoms with a bond length of 1.56 and a void with a diameter of 2.1 located at a
distance of 1.8 Å below the cluster, is shown in Figure 6b. The central atom of the cluster,
the p-electrons of which provide a magnetic moment of SiC, is marked in blue.
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Figure 6. 3C–SiC with the silicon vacancy VSi (a) or C4V center formed by a leap of the C atom from
the bottom upward to the place of the vacancy (b). Semitransparent spheres denote voids; blue color
marks C atoms having dangling bonds and a magnetic moment.

For these two systems C4V and VSi, the configurations of atoms corresponding to the
minimum energies EC4V and EVSi of the systems without additional charge, as well as in
the presence of localized charges +e, −e, and −2e, were calculated by the DFT method.
Along with that, the magnetic moment µ of a system and the magnetic energy EM, i.e., the
difference in the energy of a system without a magnetic field and with a magnetic field (the
energy is always lower in the latter case), were calculated. The results of the calculations
for a 3C–SiC supercell consisting of 47 Si atoms and 48 C atoms and having a size of
12.33× 12.33× 7.55 3 with the P3m1 symmetry (Figure 6) are presented in Table 1 (the leap
of the C atom does not change the P3m1 symmetry). The energy EVSi of the system with the
vacancy was taken as a reference point to calculate the value of EC4V ; the magnetic moment
is expressed in units of the Bohr magneton µB.

Table 1. Characteristics of the most favorable configurations of atoms at different values of vacancy
charges q.

Parameter The Case q=+1e The Case q=0 The Case q=−1e The Case q=−2e

EC4V , eV −2.6 −1.3 0.3 1.0

µC4V , µB 1.0 1.0 0.5 0.0

EM, C4V , eV 0.05 0.07 0.01 0.00

µVSi , µB 1.0 2.0 3.0 2.0

EM,VSi , eV 0.06 0.12 0.46 0.21
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From the data given in Table 1, it can be seen that the C4V configuration is most
energetically favorable in the absence of charge, as well as at q = +e, whereas the VSi
configuration is more favorable at q = −e, q = −2e. In all cases, the most favorable
configuration has a magnetic moment. The largest magnetic moment µ = 3µB and the
largest magnetic energy 0.46 eV correspond to the silicon vacancy VSi in the presence of the
charge −e. In this case, only the magnetic moment keeps the C atom from leaping into VSi
because EM,VSi > EC4V . The above calculations describe the leap of the C atom under the
condition that the charge q localized near the defect is conserved. However, in the general
case, the leap can be accompanied by a change in the charge. In this case, it is necessary to
calculate the configuration energy of each system for all q in dependence on the position of
the Fermi level, as the energy of an electron (or hole) localized near the defect is equal to
the Fermi energy, and then to compare all energies with each other, choosing the minimum
one. The results of calculations performed in various approximations and for various SiC
polytypes [7,15,16] generally agree with the results of the above calculations for 3C–SiC and
constant q. Namely, the case with no charge q = 0 is either never realized, or it happens in a
very narrow range of the Fermi level. If SiC has the p-type conductivity, or SiC is in contact
with Si of the p-type conductivity (i.e., doped with boron B), then the case of q = +e or
q = +2e is realized. In all these cases, the C atom leaps to the site of VSi and the C4V center
is formed. If the level of doping with B is not very high, then the C4V centers donate one
electron (possibly, two electrons sometimes) to B atoms located in the Si sites of 3C–SiC or
Si, as it is energetically favorable. In this case, the magnetic moment of the each C4V center
with q = +e (as well as q = 0) is equal to the Bohr magneton. The difference in the density
of electrons with spin “up” and “down” is shown in Figure 7. The semitransparent blue
surface corresponds to a difference of 0.05 e/3. It can be seen that in the case of the C4V
center, the main contribution to the magnetic moment is made by the unpaired p-electron of
the C atom located in the center of the cluster and therefore having only 3 bonds (Figure 7b).
The p-electrons of three Si atoms with dangling bonds also make a small contribution. In
the case of the vacancy VSi, the main contribution to the magnetic moment comes from the
unpaired p-electrons of four C atoms with dangling bonds (Figure 7a).
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Figure 7. Difference in the density of electrons with spin “up” and “down”, corresponding to the
value of 0.05 e/3 for the systems with VSi (a) and C4V (b). Cases (a,b) are specific to SiC grown on Si
of p- and n-type, respectively.

In order to investigate the dependence of the dielectric constant of SiC on the con-
centration of silicon vacancies, three atomic configurations of different sizes have been
studied. The first configuration consists of 26 Si atoms and 27 C atoms and has cell sizes
a = b = 9.25 and c = 7.55 ; the second system consists of 47 Si atoms and 48 C atoms
(a = b = 12.33 and c = 7.55 ) (see Figures 6 and 7); the third system consists of 95 Si atoms
and 96 C atoms (a = b = 12.33 and c = 15.10 ). In all the cases, α = β = 90◦ and γ = 120◦,
and the symmetry corresponds to the trigonal group P3m1. These three systems correspond
to three concentrations of silicon vacancies nVsi = 1/27 ≈ 3.7%, nVsi = 1/48 ≈ 2.1%, and
nVsi = 1/96 ≈ 1.04%, respectively. First, for each of the 4 charge values of the system
(q = +e, q = 0, q = −e, and q = −2e), the atomic configuration corresponding to the mini-
mum of the energy in the spin-polarized approximation, taking into account the magnetic



Materials 2022, 15, 4653 9 of 13

moment of the system, was found. At that, the cases q = +e and q = 0 corresponded to the
configuration with C4V (Figure 6b), whereas the cases q = −e and q = −2e corresponded
to the configuration with VSi (Figure 6a). Then, for each case, the band structure and dielec-
tric function were calculated in the spin-polarized approximation. For this, the mBJ-LDA
meta-GGA functional [24], which provides the highest accuracy in the calculation of the
bandgap, was used. As this system has a solid-state spin, the behavior of the energy bands
with spin “up” is very different from that of the energy bands with spin “down”.

The calculation of the band structure of silicon carbide containing silicon vacancies
showed the following. For electrons with spin “up” (to be definite), 3C–SiC remains an
indirect-bandgap semiconductor with a bandgap of ∼2.3 eV , as before. Only the bandgap
width slightly decreases with the increase in the concentration of silicon vacancies, whereas
for electrons with the opposite spin, i.e., with spin “down”, the band structure changes
dramatically. The bandgap decreases very strongly due to unpaired p-electrons of carbon
atoms with three bonds (Figures 6 and 7). As a rule, at a low concentration of silicon
vacancies nVSi . 2% and a small charge q = +e, q = 0, and q = −e, 3C–SiC remains a
semiconductor with a bandgap width of ∼0.5 ÷ 1.0 eV (the exact value of the bandgap
width depends on the symmetry group, i.e., on the relative positions of vacancies). With an
increase in the concentration nVSi or an increase in charge to q = −2e, 3C–SiC can turn into
a magnetic semimetal, i.e., the bandgap can decrease to zero for spin-down electrons. As a
typical example, Figure 8 shows the calculated band structure for the VSi system consisting
of 26 Si atoms and 27 C atoms with the P3m1 symmetry group at charges q = +e, q = −e,
and q = −2e, as well as for the supercell of an ideal 3C–SiC consisting of 27 Si atoms and
27 C atoms (the symmetry group, of course, changes in this case and corresponds to P1).
Bands for spin-up electrons are shown in red, and those for spin-down electrons are shown
in blue. In particular, at q = −e, the bandgap for spin-up electrons is approximately 2.0 eV,
whereas the bandgap for spin-down electrons is almost direct and has a width of 0.9 eV
(Figure 8c). This means that spin-down electrons, which are responsible for the appearance
of new bands near the Fermi level, will intensely absorb photons with an energy of the
order of ∼1.0 eV. The total number of such electrons is not very large and is proportional
to the number of silicon vacancies in 3C–SiC. At q = −2e, this system turns into a magnetic
semimetal and absorbs light of about 1 eV even more intensely. At q = +e, an additional
band appears for spin-down electrons just below the Fermi level, which also leads to
additional absorption of light (Figure 8b). The results of calculating the band structure of
systems with q = +e for the P31m and Pm symmetries are given in the work [9].

Thus, the magnetic moment of silicon vacancies in SiC leads to the appearance of
additional peaks in the imaginary part ε2 of the dielectric function. The real part ε1 of the
dielectric function behaves in accordance with the Kramers–Kronig dispersion relation [17].
Figure 9 shows the results of the calculations of the dielectric function for the above-
mentioned systems with the P3m1 symmetry group and different concentrations of silicon
vacancies at different q from +1e to −2e.

The general trend is as follows. When silicon vacancies appear, silicon carbide becomes
less transparent. For q = +e and q = 0, i.e., for the C4V structure, the imaginary part ε2
of the dielectric function, related to the absorption of light, acquires additional peaks in
the range of ∼0.5 ÷ 2.5 eV . When the concentration of vacancies is over 2.5÷ 3%, several
peaks may appear. The function ε(E) at q = 0 is very close to ε(E) at q = +e and is not
shown in Figure 5. At q = −e and q = −2e (i.e., for the VSi structure), ε2 acquires additional
peaks in the range of ∼0.5 ÷ 2.5 eV, and their amplitude is somewhat higher than in the
case of the C4V structure. When the concentration of vacancies is over 2.5÷ 3%, several
peaks may appear as well, and they can merge together. It should be emphasized that
the specific type of function strongly depends not only on the concentration of vacancies
and the vacancy charge q, but also on the relative position of vacancies, i.e., symmetry
groups of the system. The calculations have shown that the additional peaks of the function
ε2 are best described by a sum of the Gaussian functions (2). The function ε2(E) for an
ideal 3C–SiC that does not contain vacancies, in the range of 0.5÷ 9.3 eV corresponding
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to the energy range of the ultraviolet ellipsometer, is described by the sum of 3 Gaussian
functions with maxima E1 = 6.2 eV, E2 = 7.3 eV, and E3 = 9.5 eV. The presence of silicon
vacancies slightly changes these 3 peaks and leads to an appearance of new peaks, usually
one or two. At a concentration of silicon vacancies . 3%, it is usually sufficient to introduce
one additional Gaussian function. We also note that the main peaks can be described by
the Tauc–Lorentz functions [17], while the additional peaks are described by the Gaussian
functions (2).
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4. Discussion

Overall, the obtained theoretical results are in complete agreement with the experimen-
tal data. The presence of silicon vacancies in 3C–SiC makes this material less transparent
and turns it into a magnetic semiconductor. For the spin-up case, the bandgap decreases
slightly, approximately by 0.3 eV for a 2% share of silicon vacancies. For the spin-down
case, the bandgap decreases significantly, to a value of ∼1 eV for the vacancy charges
q = +e, q = 0, and q = −e and to a value of 0÷ 0.5 eV for the vacancy charge q = −2e.
The p-electrons of carbon atoms with dangling bonds are responsible for this (Figure 6).
The greater the concentration of silicon vacancies, the greater the number of these electrons
and the greater the amplitude of the oscillatory peak (or several peaks) of the ε2 function,
associated with the vacancies. The qualitative dependence of the dielectric function ε on
the photon energy E can be seen in Figure 9 at various q and concentrations of VSi. In
particular, with the help of Figure 9, from the amplitude and location of the new peaks,
one can qualitatively estimate the concentration of vacancies for the two 3C–SiC/Si(111)
samples studied above, namely nVSi ∼ 0.5÷ 1.5%, q = −2e for the first sample grown on
n-type Si (Figure 1b), and nVSi ∼ 3÷ 5%, q = +e for the second sample grown on p-type
Si (Figure 2b). More accurately, the function ε(E) can be calculated by the DFT method
if positions of vacancies relative to each other, i.e., symmetry groups of the system, are
known. At the same concentration of vacancies, SiC grown on p-type Si is somewhat more
transparent than SiC grown on n-type Si, which may be due to the fact that only one carbon
atom has dangling bonds in this case, and not three (Figures 6 and 7). Therefore, the density
of the spin-down electrons at new levels near the Fermi level is a bit less than in the case
of n-type.
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5. Conclusions

In summary, in this work, the dielectric function of 3C–SiC containing silicon vacancies
has been calculated by the DFT method. It has been shown that the dependence of the
dielectric function ε on the photon energy E is completely determined by the magnetic
properties of silicon vacancies in 3C–SiC, which, in turn, are determined by the doping
material in silicon. When silicon is doped with boron, the charge of the vacancy becomes
positive, and the carbon atom leaps to the place of the silicon vacancy. The magnetic
moment of this C4V structure is equal to µB (see Table 1), and the imaginary part of the
dielectric function acquires an additional oscillatory peak in the range of 2÷ 4 eV. With
an increase in the concentration of the vacancies, more peaks may appear, and they can
merge with each other (Figure 9), because there are more additional energy bands near
the Fermi level. When silicon is doped with phosphorus or antimony, the vacancy charge
becomes negative, and the magnetic moment reaches up to 3µB (see Table 1). At q = −e, it
is the magnetic field that keeps the carbon atom from leaping to the place of the missing
silicon atom. In this case, the imaginary part of the dielectric function also acquires an
additional oscillatory peak in the range of 0.5÷ 2.5 eV. Again, with an increase in the
concentration of the vacancies, more peaks may appear, and they can merge with each
other (Figure 9). It has been shown that the imaginary part of the dielectric function of
3C–SiC containing silicon vacancies can be represented with high accuracy as a sum of
several (mostly 4÷ 5) peaks in the form of the Gaussian functions (2). An increase in the
concentration of vacancies leads to an appearance of additional peaks, a shift to the left of
the main peaks, and also to a decrease in the amplitude of the main peaks. The performed
experiments have shown a qualitative agreement between the theoretical and experimental
results. It has been shown that the pre-annealing of silicon in vacuum within the period of
0.5÷ 15 min at a temperature of 1340÷ 1380 ◦C leads to a concentration of the vacancies in
silicon carbide of the order of 0.5÷ 5%.

Studies performed as a result of this work and earlier work [25] have shown that
SiC grown on Si by the MCSA method is a very promising material for use in spintronics
and the creation of new types of electronic devices based on it. In this sense, silicon
carbide obtained using the method of pre-annealing Si in vacuum is especially interesting,
because in this case, SiC is maximally saturated with silicon vacancies, which provide a
SiC magnetic moment. A study of the magnetic properties of SiC films on Si performed on
SiC obtained by the MCSA method without silicon pre-annealing [25] can serve as a proof
of this. This SiC contains a much lower vacancy density than the SiC obtained with the
pre-annealing. In addition, nevertheless, strong magnetic susceptibility was experimentally
detected in the samples of this silicon carbide [25]. Obviously, in SiC samples with a high
vacancy content, this effect will only increase, which we hope will be damaged in the near
future by our experiments.
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