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Abstract: To reduce the global emissions of CO2, the aviation industry largely relies on new light
weight materials, which require multifunctional coatings. Graphene and its derivatives are partic-
ularly promising for combining light weight applications with functional coatings. Although they
have proven to have outstanding properties, graphene and its precursor graphene oxide (GO) remain
far from application at the industrial scale since a comprehensive protocol for mass production is still
lacking. In this work, we develop and systematically describe a sustainable up-scaling process for the
production of GO based on a three-step electrochemical exfoliation method. Surface characterization
techniques (XRD, XPS and Raman) allow the understanding of the fast exfoliation rates obtained,
and of high conductivities that are up to four orders of magnitude higher compared to GO produced
via the commonly used modified Hummers method. Furthermore, we show that a newly developed
mild thermal reduction at 250 °C is sufficient to increase conductivity by another order of magnitude,
while limiting energy requirements. The proposed GO powder protocol suggests an up-scaling
linear relation between the amount of educt surface and volume of electrolyte. This may support the
mass production of GO-based coatings for the aviation industry, and address challenges such as low
weight, fire, de-icing and lightning strike protection.

Keywords: graphene oxide; reduced graphene oxide; up-scaling; thermal reduction; aeronautical
application; polymer filler

1. Introduction

At the end of 2019 the European Union presented the European Green Deal as a
counteraction to the ramping climate crisis [1]. The document addressed the challenges
for the aviation industry in the CORSIA (Carbon Offsetting and Reduction Scheme for
International Aviation) program [2]. In order to reduce their CO2 emissions, aviation
industries started to explore novel light composite materials. Eventually, it became clear
that the composites require fillers and coatings to enhance the adaptability of the aircraft
parts to external factors. For instance, while being light, the composite parts need to show
resistance to corrosion, to water uptake and to fire, and sufficient conductivity for lightning
strike protection. At the same time, it would be ideal to implement thermoelectrical de-icing
properties in these composites to avoid the formation of ice clusters on the wing, which
may compromise flight safety. Novel materials, e.g., graphene, offer possibilities to obtain
such functionalities and preserve the advantage of low composite mass [3].
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Graphene is a two-dimensional, atomically thin carbon film, revealing a hexagonal
honeycomb structure with sp2 binding orbitals. Graphene layers stacked together inter-
act via Van der Waals forces to form graphite. Since its discovery in 2004, graphene has
shown outstanding electrical, thermal and mechanical properties, and bio-compatibility.
Consequently, many projects aim to implement various graphene-based technologies [4].
On the one hand, fundamental research has proven graphene applications in the fields
of nano-electronics and opto-electronics [5], fuel cells [6], energy storage [7], water treat-
ment and decontamination [8,9], lithium-ion batteries [10], super capacitors [11], quantum
computers [12], drug delivery [13] and medical applications [14].

On the other hand, research on graphene applied to industrial sectors has found many
challenges related to up-scaling and cost in the production of graphene-based materials. In
the specific example of the aviation industry, graphene could reduce aircraft weight by 1%,
which results in savings of about 1 billion US dollars in terms of reduced fuel consumption
and CO2 emissions [15]. Moreover, graphene-based coatings with specific electronic fea-
tures could electrically generate heat and transmit it to the external surface (for de-icing
applications), or to enhance conductivity and electromagnetic shielding for lightning strike
protection [3,15]. Irrespective of these exciting application potentials, the introduction of
large scale graphene-based products into the market remains challenging [3].

Graphene oxide (GO) is a very promising precursor for graphene: it is soluble in
water as well as easy to functionalize and to process [16]. GO is mainly synthesized via
chemical oxidation of natural graphite, and one of the most used methods was developed by
Hummers in 1958. In that work, NaNO3 and KMnO4 were dissolved in concentrated H2SO4
to oxidize graphite into graphene oxide flakes [17]. This method was extensively used in the
past, but the reaction produces toxic gases such as NO2 and N2O4. [18] On the other hand,
modified Hummers method chemical exfoliation can be executed at larger scales. Still, a
scaling analysis has not been clarified that might bring to real large scale production [19].
Indeed, chemical production often bears the disadvantage of toxic chemicals and longer
reaction time [20], which is why alternative routes are preferential. For instance, improved
Hummers methods were presented in the literature [20–22] together with alternative green
electrochemical multi-step GO production strategies, including ultrasonication [23,24].
The latter often presents an asymmetric electrochemical configuration, where a graphite
rod as the working electrode is facing a platinum rod as a counter electrode [25], or
alternatively a symmetric configuration with two graphite rods for mass production of
GO as inexpensive alternatives. A similar arrangement is used in this work as shown
in Figure 1a [26–28]. Furthermore, various electrochemical exfoliation methods were
investigated with different strategies in terms of intercalation agents aiming to facilitate the
process. Sulfate ions, perchlorate ions, alkaline solutions, ionic liquids or even tap water
are some application examples [28,29]. Intercalation of species with ionic radii smaller
than the graphite interlayer spacing, such as alkali ions, ammonia ions and hydroxide
ions, weakens the interlayer bonding of graphite, allowing its structure to swell without
major exfoliation during the process [30,31]. Electrochemical exfoliation is assumed to be a
reasonable choice for large scale production, but the lack of a standardized upscaling leads
to mediocre products/hour rates that can be improved [32,33].

In this paper we provide an upscaling protocol for the production of GO that is, to the
best of our knowledge, the highest value per hour presented in the scientific community.

For electrical application, increased conductivity is achieved by reduction of the oxidic
groups. Reduction routes such as chemical reduction with hydrazine or ascorbic acid,
photocatalytic reduction, or thermal reduction have been reported in the literature [34].
Advantageous due to the easy process setup and high throughput, thermal reduction is
often executed at temperatures of 800 °C and higher, with the downside of high energy con-
sumption.

In this work, we further investigate how to produce reduced graphene oxide as a pre-
cursor for aeronautical coatings expressing specific conductivity values. For that purpose,
it is essential to maintain significant conductive properties, focusing on thermal reduction
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at lower temperatures for minimal environmental impact. In detail, we present the elec-
trochemical exfoliation of graphene oxide, where anodic pretreatment based on NaOH
is exploited to distance the atomic layers in the graphite rods and facilitate exfoliation
(Figure 1b). We qualitatively discuss this swelling process and whether the proposed proto-
col can be promoted to the up-scaling level, highlighting the effective yield. We characterize
the produced GO powder with several techniques and study its functionalities. Finally, we
thermally reduce the obtained powder to decrease the functional groups and compare the
powder conductivity with respect to what is usually produced via the Hummers methods.
Our final product maintains its properties throughput different volumina, confirming the
upscalability of the process, which quantitatively performed well as it produced 20 g of
GO per hour, outperforming the most recent works in this field [32,33].

Figure 1. (a) Front (left) and top (right) sides of the electrochemical exfoliation set-up. The lateral
view shows the cooling system and the power supply while the top view pictures the electrodes’
position in the electrochemical reactor. The dimensions refer to a 1600 mL reactor. (b) Production
protocol for the up-scaling process with anodic pretreatment in 1 M NaOH. (c) Cyclic voltammetry
applied to a graphite rod in 1 M NaOH (scan rate 10 mV/s; 6 cycles: dark green to light green).
(d) Cyclic voltammetry applied to a graphite rod in 1 M H2SO4 (scan rate 10 mV/s; 6 cycles: dark
color to light color). Red indicates an untreated graphite rod and blue a graphite rod pretreated
anodically in 1 M NaOH for 10 min.
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2. Materials and Methods
2.1. Materials

All chemicals were used as purchased without further purification. Graphite rods
(99% (metals basis)) and KBr (spectroscopy grade, ultrapure) were purchased from Alfa
Aesar, NaOH (≥99% ) and KOH (min. 85%) from Carl Roth, H2SO4 (≥98% Emsure)
and Li2SO4·H2O (p.a.) from Merck, Nitrogen (Alphagaz® 99.999%) and Nitrogen with
5 V% Hydrogen addition (Arcal®) from Air Liquide, NH4OH solution (25%) from VWR,
and LiOH·H2O (ACS reagent, min. 98%) from Fluka.

2.2. Electrochemical Graphene Oxide Preparation

The setup for the electrochemical preparation of graphene oxide (GO) is shown in
Figure 1a. It consists of a graphite working electrode, two graphite counter electrodes,
a power supply, a double-walled reactor, a cooling unit and a mechanical stirrer. The
arrangement of the electrodes in an equilateral triangle in the system is shown as a top
view in the inset of Figure 1a. Mechanical stirring is positioned in the center of the system
to ensure sufficient homogenization and efficient cooling of the electrolyte. The up-scaling
protocol is established by testing different volume size reactors (500, 1000 and 1600 mL)
with the graphite rods volume increasingly immersed (from 7.9 to 19.0 cm3). The ratio
of the electrode volume to the reactor volume (see Table 1) is thereby almost constant,
resulting in a near-linear up-scaling of the process. In detail, the production protocol went
as follow:

First, we treated the working electrode using one of the following electrolytes. Ca-
thodic pretreatment was executed in 1 M LiOH, NaOH, KOH or NH4OH or anodic pre-
treatment in 1 M NaOH. Second, we applied an anodic exfoliation step in 1 M H2SO4
on the electrode. An additional exfoliation experiment in 1 M H2SO4 and 0.1 M Li2SO4
was executed to evaluate the effect of adding Li+ to the exfoliation electrolyte. Third, we
moved the product to an ultrasonication bath for 2 h to further promote the exfoliation.
Fourth, we performed vacuum filtration followed by washing with deionized water to
remove electrolyte residuals. Fifth, we dried the resulting powder at 50 °C and 10 mbar
for 24 h before further processing. Figure 1b summarizes the process steps with an anodic
pretreatment in 1 M NaOH, subsequent exfoliation and ultrasonication post-treatment.

Table 1. Reactor volume, immersed working electrode volume and electrolyte volume to graphite
working electrode volume ratio during the three different stages of up-scaling.

Reactor Volume [mL] Immersed Working
Electrode Volume [cm3]

Electrode Volume/Reactor
Volume [cm3/L]

500 7.9 13.9
1000 12.7 12.7
1600 19.0 11.9

2.3. Thermal Reduction of Graphene Oxide

For the thermal reduction of 1 g GO powder, we positioned the material in a quartz
boat and placed it in a push type tube furnace. An inert (N2) or reducing (N2 + 5 V% H2)
atmosphere was set by passing gas through the furnace. We applied a heating rate of
20 °C/min to reach the targeted reduction temperature. The temperature was kept constant
for the targeted reduction time under gas flow. We further analyzed the powder once the
furnace came back to room temperature. To determine the effects of temperature, time
and atmosphere on the resulting reduced graphene oxide (rGO) powder, we utilized the
software Design expert® 12 by Stat-Ease® to establish a two-factorial model with single
repetition and two center points and calculated the influence of each parameter in play.
Table 2 summarizes the chosen design limits for each parameter (reduction temperature TR,
time t and H2 addition VH2 ). To prevent possible deviations due to the educt material, we
used powder produced from the same exfoliation batch.
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Table 2. Parameter limits of the thermal reduction 2-factorial screening design.

Parameter Lower Limit Upper Limit

Reduction temperature TR [°C] 350 600
Time t [min] 30 180

H2 addition VH2 [V%] 0 5

2.4. Powder Conductivity Measurement

As a starting point, we grated the obtained powders to avoid any agglomerations
influencing the conductivity measurement. Then, we placed a teflon matrix on a copper
base and a 100 mg powder sample into the matrix. We used an additional copper piston
to confine the powder sample from the top. We applied a load of 500 N on the piston,
corresponding to a pressure of 4.42 MPa. The pressure was controlled with a Sauter FH
500 and a Sauter wheel test manual stand. We recorded the resistance of the powder
sample under pressure using a micro-ohmmeter (ndp technologies DRM-10A) with the
four-point method connected to the copper pistons. We measured the pellet thickness via
the dissection of the piston. The resistance of the copper matrix was not influencing the
overall resistance, which was confirmed by blank measurements showing a resistance value
lower by at least two orders of magnitude. Then, we polished the contacts of the copper
matrix after each measurement to avoid systematic errors due to an oxidic layer between
the sample and the matrix. The measurement of σ was executed three times per sample to
ensure reproducibility.

The powder conductivity σPellet was calculated using Equation (1), where dPellet de-
scribes the pellet thickness under pressure, APellet complies with the area of the pellet
(=1.13 cm2) and R is the measured resistance.

σpowder =
dPellet
APellet

· 1
R

[S/m] (1)

A similar test strategy for measurements of the conductivity of carbonaceous powders
was already reported by Celzard et al. [35] and Marinho et al. [36].

2.5. X-ray Diffraction (XRD)

We performed X-ray diffraction (XRD) employing a PANanalytical Empyrean set-up
(Malvern Pananalytical Ltd., Malvern, UK) to determine the crystal structure, number of
layers and purity of the produced powder. We prepared the dried powder on a Si wafer
measuring in the range 5–90°. To calculate the distribution of n in the product, the (002)
reflex was fitted by three gaussian functions to determine the amount of few-layered
(<10 layers), multi-layered (10–25 layers) and graphitic (>25 layers) parts in the powder.
Using the fit data, the interlayer space was calculated via Bragg’s law (Equation (2)) with
the diffraction angle θ and the wavelength of the X-ray λ (0.15406 nm). Using Scherrer’s
equation (Equation (3)) crystallite size in z-direction was calculated using the full width at
half maximum β of the (002) reflex fitted curves, the Scherrer form factor K (0.89) and the
wavelength of the X-ray λ (0.15406 nm). This resulted in an interlayer spacing d (nm) and a
crystallite thickness T (nm) for the parts of the graphene oxide powder. By dividing T by
the interlayer space d added to the thickness of an atomic layer a (0.1 nm), the approximate
number of layers was calculated by Equation (4). The area fitted from the gaussian curves
corresponds to the amount of few-layered (<10 layers), multi-layered (10–25 layers) and
graphitic (>25 layers) parts in the powder.

Similar approaches for the determination of various graphene oxide powders were
already described by Huh [37], Andonovic et al. [38] and Sharma et al. [39].

d =
λ

2 · sinθ
[nm] (2)
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T =
K · λ

β · cosθ
[nm] (3)

n =
T

d + a
(4)

2.6. Characterization

Additionally to the XRD measurements mentioned above, materials were charac-
terized via cyclic voltammetry (CV), Raman spectrometry (Raman), X-ray photoelectron
spectroscopy (XPS) and infrared spectroscopy (IR). We recorded CV data with a Biologic
SP-240 potentiostat (Bio-Logic Science Instruments Ltd, Seyssinet-Pariset, France) in three
electrode cell configuration to determine electrochemical reactions of the graphite educt ma-
terial. Specifically, we used Ag/AgCl in 3 M KCl for measurements in NaOH or Hg/HgSO4
in saturated K2SO4 for measurements in H2SO4 as reference electrodes. We utilized a con-
focal Raman spectrometer with a 50 µm confocal pinhole (DXRxi from Thermo Fisher
Scientific Ltd, Loughborough, UK) to record Raman spectra in the range of 50–3400 cm−1

of GO powders and graphite educt to evaluate the respective defects in the powders. Dur-
ing the measurements, we applied an intensity of 7 mW for 532 nm green laser, and an
integration time of 4000 ms and 15 scans averaged per measurement. We executed XPS
measurements with a Thetaprobe XPS system from Thermo Scientific (Thermo Fisher Scien-
tific Ltd, Loughborough, UK) to determine oxygen content and ratio of oxygen containing
groups in the GO product. Finally, we measured IR-spectra on a Tensor 27 Hyperion
(Bruker Corporation, Billerica, United States) using the KBr pellet method to determine the
presence of functional groups in the powder.

3. Results and Discussion

First, we verified the upscaling using three increasing batch sizes with linearly scal-
ing electrode volume to reactor volume ratios. We checked the product quality with
electrochemical measurements of the graphite educt. Second, we characterized the layer
distribution, the defect density of the GO powder, and the amount of oxidic groups using
XRD, Raman spectroscopy and XPS, respectively, and we assessed their potential to serve
as in-line quality controls of an industrial scale production process. Third, we evaluated
the powder conductivity to show the advantages of the mild electrochemical oxidation
compared to typically applied (modified) Hummers methods. Finally, we applied subse-
quent thermal treatment to further reduce the powder and restore the aromatic backbone,
improving the conductivity.

3.1. Cyclic Voltammetry

Figure 1c,d shows cyclic voltammetric measurements of graphite educt rods in 1 M
NaOH and 1 M H2SO4. Both measurements led to a visible evolution of hydrogen on the
cathodic side and oxygen on the anodic side due to the electrolysis of water. In 1 M NaOH
a hysteresis appeared in the first scan on the anodic side between 1 and 2 V, as shown in the
inset in Figure 1c. This corresponds to the intercalation of hydroxyl anions into the graphite
lattice resulting in a swelling of the graphite rod. This intercalation weakens the interactions
between the graphite layers, but does not lead to exfoliation. The absence of major peaks
in the negative scan direction indicates only minor oxidation of the graphite rod during
treatment in 1 M NaOH. Besides intercalation, the electrode surface was roughened due
to the formation of oxygen in the positive scan direction. Loose particles on the surface
were removed resulting in a bigger active surface area and increased currents during
the subsequent cycles. Figure 1d presents the CV measurement of an untreated graphite
rod (in red) and an anodically pretreated graphite rod (in blue; further details on the
pretreatment in the material section) in 1 M H2SO4 as the electrolyte. One can observe two
peaks between −1 and 2 V. They are attributed to the reduction of oxidic groups previously
formed in the positive scan direction and intercalated sulfate ions being released again in
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the negative scan direction. These peaks are prominent in the pretreated sample indicating
more oxidation and intercalation in the positive scan direction. Pretreatment led to the
removal of loosely bound particles from the surface due to the evolution of oxygen on the
working electrode, resulting in a surface roughening (see detailed picture in Figure S1 in
the Supplementary Materials).This minor amount of particles is visible in the pretreatment
electrolyte as a sediment. Roughening produced a more accessible active area for electrolyte
oxidation during the positive scan direction and improved the interaction between graphite
and electrolyte, leading to higher currents.

3.2. XRD and Raman Analysis

Figure 2a compares XRD measurements on the graphite educt (red) and GO produced
with anodic pretreatment in 1 M NaOH during up-scaling at the reactor volumes of
500 mL (blue), 1000 mL (yellow) and 1600 mL (green). The most prominent peak in the
diffractogram is the (002) reflex at 26.62°. This peak position indicates a predominant low
oxidation degree of the product. [20] The educt graphite shows a very sharp peak structure
indicating crystallites comprising a vast number of layers. The inset in Figure 2a displays
an asymmetric profile in the (002) reflex. The latter indicates a distribution of different layer
numbers n present in the powder due to peak broadening with lower layer numbers [38].
Increased interlayer spacing after the exfoliation and oxidation process caused the slight
shift in maximum for both few-layered and multi-layered powder parts to lower diffraction
angles leading to asymmetry in the lower diffraction angle direction. The peak structure
and its asymmetric profile are in accordance with the literature [38].

For comparison, we also performed the same analysis on powders with different
cathodic and anodic pretreatment steps and Li+ addition to the exfoliation electrolyte
to test ion-specific effects. (Data shown in Supplementary Materials, Figure S2a). All
powders showed a similar broadened reflex structure compared to the graphite educt,
again confirming the importance of hydroxide intercalation. Interestingly, the powder with
the Li2SO4 addition appears to have a narrower (002) reflex suggesting that the co-ion
also plays a role during exfoliation. As such, the choice of the co-ion may offer a future
optimization path.

To further elucidate the nature of our GO powder, we applied Gaussian fit analysis
to calculate the number of layers n, as discussed in the methods section. Figure 2b shows
the distribution of different layer numbers n in the graphite educt and produced graphene
oxides with anodic pretreatment in 1 M NaOH solution during up-scaling. The educt
consists solely of materials comprising more than 25 layers. The electrochemical graphene
oxide shows a distribution of different layer numbers as follows: About 60% of the fitted
XRD data show n < 10 for each up-scaling process, confirming a positive performance
of the GO powder comprising only few layers. The other parts are: 23% of multi-layered
grains with n from 10 to 25 layers, and graphitic residues are similar to the educt material.
The latter, to our understanding, may be related to exfoliation errors such as loss of electrical
contact during polarization (e.g., flake off) [29,32]. Finally, the data show that the number
of layers n does not vary when using different electrolytes, except when adding Li2SO4 to
the exfoliation electrolyte, as previously mentioned. In that case, about 70% of the material
revealed n > 25 (data shown in Supplementary Materials, see Figure S2b).

Figure 2c shows the Raman spectra of the graphitic educt (red) and the GO powders
during up-scaling at the following volumes: 500 mL (blue), 1000 mL (yellow) and 1600 mL
(green). The educt shows the D band at 1350 cm−1, the G band at 1576 cm−1, the D’ band
at 1615 cm−1 and the 2D band at 2700 cm−1. The GO powders also show these bands with
additional interbands in the first-order region (1100–1800 cm−1). These defect-induced
bands are the D* band at 1150–1200 cm−1, the D” band at 1510 cm−1 and the D’ band at
1615 cm−1. In the second-order region (2400–3300 cm−1) also additional bands beside the
2D band appeared after the exfoliation. These are the G* band at 2490 cm−1, the D + D’ band
at 2940 cm−1 and the 2D’ band at 3200 cm−1. Exfoliation led to activation of first-order
defect bands and increased the intensity of the D band. Additionally, one can observe a
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slight shift of the G band to higher wave numbers (1585 cm−1). These effects are attributed
to introducing oxidic groups into the aromatic graphite lattice [40]. In the second-order
region the intensity of the 2D band significantly decreased due to exfoliation; thus, other
overtones appeared [40,41]. To further investigate the Raman spectra, the first-order region
was fitted according to López-Díaz et al. [40] with two Gaussian functions (D* and D”)
and three Voigt functions (D, G, D’). The fitted data were used to calculate the intensities
I of the defect bands normalized to the G band. Figure 2d summarizes the results. The
graphite educt showed an ID/IG ratio of about 0.2 and additionally an ID’/IG ratio of
about 0.05. The other defect bands were not activated, as the powder was not oxidized
yet. On the contrary, the produced GO powder during up-scaling exhibited an ID/IG ratio
of about 1.25–1.35, as well as an ID*/IG ratio of about 0.03–0.04, an ID”/IG ratio of about
0.14–0.2 and an ID’/IG ratio of about 0.37–0.46. These ratios are comparable during linear
up-scaling, indicating no significant deviation in product properties as a function of larger
volumes. The ratios of the defect bands are lower compared to GO powders produced
by chemical exfoliation methods, [40] indicating lower oxidation of the graphite during
exfoliation resulting in superior electrical properties. Moreover, the Raman data highlight
that the quality of our up-scalable GO powder is in the range of investigated commercially
available powders [42].

Figure 2. (a) XRD diffractogram of graphite educt (red) and electrochemically produced graphene
oxide powders at different up-scaling stages (500 mL reactor (blue), 1000 mL reactor (yellow)
and 1600 mL reactor (green)); (b) distribution of layer numbers calculated from the (002) reflex
of the respective XRD measurement; (c) Raman spectra of graphite educt (red) and graphene oxide
powders at different up-scaling stages (500 mL reactor (blue), 1000 mL reactor (yellow) and 1600 mL
reactor (green)); (d) calculated Intensity ratio to the G band I/IG of first-order defect bands (D* red,
D blue, D” yellow, D’ green).
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Measuring graphene oxide produced in other electrolytes (Figure S2d)), shown in
Supplementary Materials, reveals an ID/IG ratio ranging from 1.15 to 1.5. Only the powder
produced through cathodic pretreatment in 1 M NH4OH shows significantly lower ratios
attributed to different functionalization (e.g., ammonia groups) or a cation-related effect
during that process, which again demonstrates that anodic OH- intercalation is essential.
Additionally to the Raman spectra, the electrical conductivities σ of these powders were
measured (Table S1 in Supplementary Materials). Powders produced without pretreatment
and with anodic pretreatment in 1 M NaOH exhibited better conductivity than the others.
We attribute this behavior to the weaker deterioration of the conductive aromatic network in
these samples by oxidation. The conductivity of the powder produced without pretreatment
was highest and more comparable to the educt due to lower defect density. The benefits
of anodic pretreatment are activation of the surface, and the resulting faster kinetics of
the exfoliation. It approximately takes 20–30% less time to exfoliate the same amount of
materials after anodic pretreatment.

3.3. Electrical Conductivity and XPS Measurements

Figure 3a displays XPS spectra of GO powder produced in a 1600 mL reactor (batch I).
The spectra exhibits a complex C1s peak (292–284 eV) with multiple peaks and a broad
O1s peak (533 eV), which can be fit with a single component. We further analyzed the
respective oxygen functional groups on carbon by fitting the C1s spectra according to the
literature [20,43]. Good fitting was achieved with six gaussian functions, indicating C-C/C-
H, C-OH, C-O-C, O-C-O/C=O, O=C-O and pi-pi* carbon species. Figure 3b summarizes the
deconvoluted XPS data of a graphene oxide powder produced in a 500 mL reactor and three
graphene oxide powders produced in a 1600 mL reactor. Figure S3 in the Supplementary
Materials depicts the fitted data of the respective C1s peaks for all materials.

In detail, the XPS measurements showed a C/O ratio of about 4/1 (20 at%). The low
oxidation degree corresponds to the position of the (002) diffraction reflex at about 26°.
The differences in oxygen content during up-scaling of the process appear negligible and
are attributed to minor deviations in other process parameters. The Pi-Pi* shake-up at
291.3 eV confirms the presence of a conductive aromatic backbone with double-bonded
sp2 carbon being the major species in the powder. This is in line with the mild oxidation
and reasonable conductivity of the product. The remaining carbon appears in different
oxidic functional groups with the majority related to ether groups (≈18 at%), indicating a
functionalization of the aromatic graphene backbone.

Beside the ether groups, also hydroxylic groups (≈8 at%) situated in-plane and at the
edges, and carbonylic (≈6 at%) and carboxylic groups (≈4 at%) situated at the edges were
present in the powder, as shown in Figure 3.

Overall the dominating presence of ether groups indicates higher in-plane functional-
ization compared to edge functionalization. Pretreatment generates oxidic groups through
the reaction of graphite with intercalating hydroxide ions leading to swelling. Subsequently,
graphite is oxidized out during exfoliation due to the reaction with sulfuric acid and oxy-
gen formed at the working electrode. On the one hand, the oxidic groups’ presence can
reduce the aromaticity, thus impacting powder conductivity. On the other hand, they
prevent restacking of layers and offer the possibility of further chemical functionalization.
Compared to GO powders produced via chemical exfoliation (e.g., modified Hummers
method) with an oxygen content of 30–50 at%, the presented electrochemical protocol
achieves milder oxidation and therefore, lower oxygen content of about 20 at%.

In Table 3 we report the conductivity σ (S/m) for the graphite educt and six different
batches produced according to the final up-scaled protocol in the 1600 mL reactor with
anodic pretreatment in 1 M NaOH. Due to oxidation during the exfoliation process, the con-
ductivity of the resulting graphene oxide powder is about an order of magnitude lower
than in the graphite educt.



Materials 2022, 15, 4639 10 of 15

Figure 3. (a) XPS spectra of the GO powder produced in a 1600 mL reactor (Batch I) with the
deconvolution of the C1s peak (raw data (red), C-C/C-H (blue), C-OH (yellow), C-O-C (green), O-C-
O/C=O (violet), O=C-O (grey), pi-pi* (salmon)) and O1s peak (raw data (dark blue), fit (turquoise));
(b) deconvoluted XPS data showing the amount of functional groups in electrochemically produced
graphene oxide powders in a 500 mL reactor (red) and three different batches produced in a 1600 mL
reactor (Batch I blue, Batch II yellow, Batch III green).

Table 3. Powder conductivity σ measured for the graphite educt, graphene oxide powders of different
batches in the up-scaled 1600 mL reactor and comparable graphene oxide produced by Hummer’s
method according to Xu et al. [44].

Sample Powder Conductivity σ [S/m]

Graphite educt 3.37 × 103

GO—1600 mL batch I 3.89 × 102

GO—1600 mL batch II 3.26 × 102

GO—1600 mL batch III 7.26 × 102

GO—1600 mL batch IV 4.91 × 102

GO—1600 mL batch V 3.96 × 102

GO—1600 mL batch VI 4.83 × 102

GO—Average 4.68 × 102

GO—Hummer’s method [44] 1.56 × 10−2

This is attributed to defects introduced via oxidic groups and ultrasonication. Mi-
nor deviations of powder conductivity relate to fluctuations in reactor temperature and
variations of the educt material. The final value obtained with the proposed method is
notably higher by about four orders of magnitude compared to powder produced via the
modified Hummers method (1.56 × 10−2 S/m) [44] confirming the viability of our up-
scaling protocol. As a comparison, e.g., Marinho et al. [36] reported powder conductivity
(2.62 × 102 S/m), similar to our product, for a commercial graphene powder, produced by
harsh chemical graphite oxidation and subsequent thermal exfoliation [45], with 15 at%
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and a single-layer content of at least 50%. This highlights the commercial viability and
sustainability of this newly proposed strategy based on electrochemical exfoliation and
thermal post-treatment involving environmentally benign chemicals.

3.4. Thermal Reduction

Although the conductivity measured is higher than the one from modified Hummer
methods, a further increment is demanded for electricity-based aeronautical applications
such as de-icing and lightning strike protection. To achieve higher electrical conductivity,
we proceeded with thermal reduction (TR) to generate reduced graphene oxide (rGO).
In the ideal case, full reduction would remove all functional groups from the graphene
layer, as represented in the Supplementary Materials, Figure S4. In reality, it is not easy
to obtain a completely reduced layer. Our strategy is to apply thermal annealing in inert
(N2) or a reducing (N2 + H2) atmosphere to induce removal of oxidic groups and increase
conductivity by restoring aromatic systems.

A two-factor model varying reduction temperature TR, time t and H2 addition VH2

was applied to investigate the influence on the resulting powder conductivity σ (see the
materials section for further details). Table S2 in the Supplementary Materials summa-
rizes the runs and respective σ. A Pareto-chart (Figure S5 in Supplementary Materials)
suggests that TR is the only parameter having significant influence on the resulting powder
conductivity. Reduction time and H2 addition to the process gas, as well as parameter
combination factors are below the significance limit (t-value) and therefore irrelevant within
the design limits. This indicates that adding hydrogen does not lead to increased reduction
of functional groups or improved restoration of the aromatic backbone. This is in line with
XPS data and suggests that in-plane ether groups can be split thermally from the material,
while the edge groups are likely stronger bound.

To understand the reduction mechanism in more detail, we further varied the temper-
ature (Run 21–26; Table S2 in Supplementary Materials) to verify the dependence on TR.
The goal was finding a mild temperature window where powder conductivity is in a range
that is of interest in industrial applications, while reducing the energy consumption.

Figure 4 displays powder conductivity and mass loss of GO as a function of the
reduction temperature TR. While the temperature increases, GO is reduced and functional
groups start to decompose, enhancing powder conductivity. In detail, the first jump in σ
appears at about 200–250 °C after reduction of about half of the functional groups (about
12.5 w%). This indicates that decomposition of functional groups (e.g., ethers) restores
the aromatic backbone and significantly elevates conductivity. Reduction until 600 °C
results in a smaller increase in conductivity despite decomposition of an additional 5 w%.
A further increase of the reduction temperature results in a second step in conductivity.
The increase in mass loss during the final step is smaller (about 2.5 w%). It corresponds to
the reduction of the last functional groups deteriorating the conductivity of the powder,
achieving almost full reduction at 20 w% mass loss. Hence, in summary, the thermal
reduction proceeds initially via ether groups, and then it continues via edge groups with
increasing temperature. The overall mass loss is in full agreement with the oxygen content
measured with XPS.

Reference measurements of σ after wet chemical ascorbic acid reduction (1.47 × 103 S/m)
and hydroiodic acid reduction (2.11 × 103 S/m) indicate similar conductivities compared
to the thermal reduction protocol. This suggests that thermal reduction may be a viable
alternative to wet chemical reduction.

Electrical conductivity after thermal reduction of GO produced via a modified Hum-
mer’s method showed initially lower conductivity after reduction at similar temperatures
by a factor of at least 2–3 during a mild reduction at 250–300 °C. A further increase of the
reduction temperature to 600–700 °C is necessary to receive similar conductivity with chem-
ically exfoliated starting material. With reduction temperatures of 800 °C corresponding to
a near full reduction, the conductivity values strongly resemble each other [46,47]. This
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shows a clear advantage of our electrochemical starting material with a lower degree of
oxidation compared to GO produced using Hummer’s method.

Figure 4. The graph shows on the left axis (in black) the powder conductivity σ and on the right axis
(in blue) the reduction mass loss mL, both as a function of the reduction temperature TR.

We further selected samples of rGO powders at different TR and characterized them
with Raman and IR spectroscopy. First, for the Raman spectra, we analyzed three different
spots per sample. The first-order region (1000–1800 cm−1) was fitted as mentioned above
according to López-Díaz et al. [40] with two Gaussian functions (D* and D”) and three Voigt
functions (D, G, D’) to deconvolute the defect bands and the G band. The resulting intensity
ratios to the G band (Figure S6 in Supplementary Materials) show a steady decrease of
defected band intensity. The ID/IG value is stable at about 1.35–1.45, until the last reduction
step at 800 °C, where a second strong increase in conductivity and a decrease in the D band
intensity occurs. Thus, the highly oxidized groups attributed to the D band decompose at
temperatures between 600 and 800 °C. The intensities of the D’ and D” bands show similar
behavior during thermal reduction. The finding confirms that conductivity increases due
to oxidic groups’ decomposition, causing an increase in crystallinity of the material, which
results in weaker defect band intensity. By contrast, the intensity of the D* band remains
stable during the reduction process. Second, we recorded IR spectra of rGO samples
after seven different reduction temperatures (Figure S7 in Supplementary Materials). The
electrochemically produced educt GO powder showed significant IR bands at 3434 cm−1

(O–H stretching), 1723 cm−1 (C=O stretching), 1578 cm−1 (C=C stretching), 1385 cm−1

(C–O stretching of carboxylic group), 1214 cm−1 (C–O–C stretching) and 1124 cm−1 (C–OH
stretching) [48,49].

These bands are in agreement with XPS results indicating the presence of ether, hy-
droxyl, carbonylic and carboxyl groups in the educt powder. Until a reduction temperature
of 250 °C, one cannot observe any major differences in the IR spectra. Band intensities
related to oxygen-containing groups steadily decrease with higher reduction temperatures.
After reduction at 800 °C the bands of the O–H stretching vibration (3434 cm−1), C=C
stretching vibration (1578 cm−1) and C–O–C stretching vibration (1214 cm−1) are observed
indicating a nearly complete decomposition of the oxidic groups.

These results confirm that oxidic groups decompose gradually during thermal anneal-
ing, in agreement with Raman spectroscopy and the mass loss during reduction. Although
some defects are still present, the conductive aromatic backbone basically gets restored.

4. Conclusions

In the present work we investigated a new protocol to produce graphene oxide (GO)
powder for industrial up-scaling in a sustainable manner. We tested the method for three
different volume to area ratios for electrolyte and graphite precursors. Our data indicate
near linear scaling, confirming that this method allows for cheap large scale production up
to the kg level. Powder characterization methods (XRD, XPS, Raman) revealed consistent
features as a function of the production scale. XRD measurements supported that about
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60 % of the powder presents less than ten layers, while XPS data indicated that the oxygen
content in the produced GO powder is lower compared to products obtained via (modified)
Hummers methods, preserving four order of magnitude higher conductivity. XRD and
Raman are viable options for in-line quality measurement systems regarding an industrial
application of the proposed protocol.

Furthermore, the obtained conductivity σ could be enhanced by a factor of 4 after
mild thermal reduction at TR = 250 °C, saving considerable energy compared to classical
reduced GO production processes. The proposed strategy thus paves the way to various
industrial applications of graphene-based materials for future usage where the cost and
environmental impact are design parameters. As an outlook, we aim to explore our
GO powder for the next generation of multifunctional coatings in the aviation industry,
including de-icing, lightning strike protection, corrosion resistance and/or water uptake.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15134639/s1, Figure S1: Optical micrographs of (a) an untreated
graphite rod; (b) a graphite rod pretreated anodically in 1 M NaOH for 10 min; Figure S2: Comparison
of different electrolytes used during pretreatment: (a) XRD diffractograms; (b) calculated distribution
of layers according to the fitting of the (002) reflex; (c) Raman spectra; (d) calculated Intensity ratio
to the G band I/IG of 1st order defect bands; Figure S3: Fitted C1s peak in the XPS spectra of the
GO powder produced; Figure S4: Scheme of thermal reduction; Figure S5: Pareto chart of thermal
reduction screening design showing the standardized effect of each parameter and the combination
of parameters (AB, AC, BC, ABC) on the resulting powder conductivity σ; Figure S6: Fitted Raman
results of thermal reduction samples reduced at increasing reduction temperature; Figure S7: IR
spectra of thermally reduced graphene oxide powders after reduction at different temperatures TR in
inert atmosphere for 30 min; Table S1: Powder conductivity σ of the graphite educt and graphene
oxide powders with different pretreatment steps; Table S2: Set of parameters and measured powder
conductivity for the individual runs of the 2-factorial screening design of the thermal reduction (Runs
1–20) and additional runs for determination of the reduction temperature influence (Runs 21–26).
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