
Citation: Nie, H.; Gu, S.; Mao, H.

Analytical Model of Piezoresistivity

for an Inner-Adhesive-Type Carbon

Fibre Reinforced Plastic Tunnel

Reinforcement. Materials 2022, 15,

4602. https://doi.org/10.3390/

ma15134602

Academic Editors: Ştefan Ţǎlu and
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Abstract: Cracks in a tunnel lining often emerge under the coupling action of earth and water
pressures in a complex stratum environment, and accidents often occur in the process of repairing
cracks. In this study, we used the force-sensitive properties of embedded carbon fibre to conduct
early-warning research on lining reinforcement to prevent secondary damage during tunnel lining
reinforcement. According to the earth load characteristics, a bond stress–slip model of the embedded
carbon fibre under bidirectional earth pressure was established on the basis of the thick-walled
cylinder theory and the semi-inverse method in elastic theory. The length change of a single fibre was
obtained on the basis of the principle that the volume of a single carbon fibre is constant during the
deformation process. The resistance and strain model of the single carbon fibre under the action of
an external force was then established following the relationship between the resistance, the length
change and the volume change of the single carbon fibre. The resistance of carbon fibre composite
materials, according to their production technology and unidirectional force properties, was assumed
to be a mixture of the series and parallel resistances of the single carbon fibre, and a piezoresistive
model of carbon fibre composite materials was formed by using the multidimensional Taylor series
expansion and the idea of the average equivalent. The comparison between the theoretical and
monitoring values of the piezoresistive model in a tunnel project in Tibet, China revealed that the
resistance of various types of carbon fibres increases with the radius of the lining reinforcement and
earth pressure and decreases with an increase in the lining reinforcement thickness. Meanwhile, the
angles at different positions of the lining reinforcement also have certain effects on the resistance
value of the carbon fibre. The variation curve of the piezoresistive model was exponential in both
deeply and shallowly buried tunnels, which verifies the rationality of the model.

Keywords: warning system; surrounding rock pressure; carbon fibre reinforced plastics (CFRP);
piezoresistive model; electron tunnelling effect; internode length

1. Introduction

In tunnel construction, cracks often occur in the tunnel lining due to geological activ-
ities, formation pressure, groundwater and other factors. Two methods are mainly used
to prevent and control lining cracks [1–3]. The two prevention methods are as follows:
one is to set up a telescopic lining according to the size of the formation pressure to fa-
cilitate the adaptability of the lining and the formation pressure and the other is to add
large-deformation fibre materials to the lining and change the lining stiffness to prevent the
generation of cracks [4]. Engineers lack the concept of preventing and controlling cracks
and limiting cost; thus, most lining cracks are often controlled using methods such as
building a cover arch [5], pouring concrete after planting reinforcement [6] and bonding
polymeric plates [7]. The technology of pouring concrete after planting reinforcement is
relatively mature; however, this technology destroys the lining structure. Destroying the
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structure twice before reinforcement is dangerous. The method of using a cover arch is
simple and fast, but it occupies considerable space inside the tunnel and affects the normal
operation and working space of equipment. The method of bonding the polymeric plate is
widely used due to its convenient construction, the preservation of damaged structures
and the high strength of the polymer plate. However, in the process of repairing lining
cracks, accidents caused by secondary cracking in the lining often occur, which seriously
endangers the lives of engineers and technicians [8]. Therefore, scholars at home and
abroad have studied this phenomenon and proposed a series of early-warning systems
mainly through data acquisition, transmission, extraction and analysis [9–11]. Accidents are
inevitable, despite the role of lining crack repair [4,12]. Investigation and statistics reveal
that data transmission and platform establishment have become advanced after years of
development, and research focuses on data acquisition accuracy [13] and the self-sensing
properties of cracks over the entire lining [14].

Carbon fibre reinforced polymers (CFRP) are used as a sensing material on account of
the electrically conductive carbon fibres and insulating adhesive. The relationship between
mechanical deformation and electrical resistance is determined using the iteration model
of tandem queues for the internal defect position and size [15]. The coupling capacitance
on the adhesive matrix between the fibres is determined through the experimental method
of a resistance matrix model [16]. The complete electrode model (CEM) is applied to test
the coupling capacitance between the domain and the finite-sized electrodes, but it is
not capable of providing electrical conductivity information when the medium possesses
highly anisotropic electrical conductivity [17]. The tunnelling effect model, which allows
electrons to pass through thin layers of CFRP materials, is developed through the resistance
series model [18], and the electrical contact resistance of the interface can be estimated by
the generalized Simmons formula [19]. The basic model of carbon fibre and internode resis-
tances in series was proposed on the basis of the microscopic analysis of the test results [20].
The electrical grids in the CFRP were investigated using the MATLAB PDE solver for the
conservation law [21]. According to classical physics, the percolation threshold of electri-
cal resistance is below that of percolative-type behaviour. To form conductive concrete,
conductive materials including carbon fibre, carbon nanotubes, carbon nanofibres, carbon
black, graphite and graphene can be added to the mixture. Through microscopic analysis,
it can be seen that the conductive mechanism is mainly due to the change in resistance
caused by unidirectional rate sensitivity under the action of external forces [22]. The length
and radius of the fibre and the temperature, humidity and other external environmental
factors all have a certain influence on the resistance [23]. Carbon fibre test blocks were
placed in an electromagnetic coil to measure the electric flux, and related results revealed
that the anisotropy of the carbon fibre mixed with concrete results in a defect-self-sensing
material prepared using carbon fibre and concrete [24–26].

The above research leads to the following observations. (1) The structure perception
is that the conductive material is added into the structure, and the structure is cracked
by an external force, resulting in the change in resistance and then initiating the percep-
tion function. (2) To some extent, the piezoresistive model was established through the
experimental fitting method, which lacks theoretical support and guidance for engineering
applications. The average resistance of the CFRP was tested via series, parallel and mixed
models to confirm the inner defect, but the conductive mechanism of the carbon fibre
was not studied. (3) The disadvantage of the conductive concrete lies in the anisotropy of
the intelligent materials after their addition to the structure, which is manifested in poor
resistance perception, low sensitivity and difficulty in determining the resistance threshold.

In this paper, we propose that highly-conductive fibres can be bonded onto the inner
surface of the tunnel lining in the form of fabric to reinforce cracks, in order to overcome
the disadvantages of anisotropy. Based on the piezoresistive characteristics of the single
fibre and the internode characteristics of CFRP, a piezoresistive theoretical model was
established to provide warning of the secondary cracking of the lining reinforcement. The
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relationship between the model and the parameters was analysed, and the feasibility of the
model was verified through a comparison with the actual engineering monitoring values.

2. Model Establishment

A traditional tunnel generally uses a compound lining, which mainly comprises the
primary support made of shotcrete and a secondary lining structure made of reinforced
concrete. Terzaghi’s consolidation theory of the surrounding rock pressure for a tunnel
indicates that vertical gravity pressure will be generated in the overlying rock after the
tunnel is excavated, and the horizontal deformation of the soil layer will produce a certain
pressure due to the vertical pressure. After the tunnel is supported by the lining, lining
cracks occur under the bidirectional action of vertical and horizontal deformation pressures.
The embedded carbon fibre fabric is bonded onto the inner-diameter surface of the lining
to form lining reinforcement, to prevent the damage caused by secondary cracking. The
mechanical model is shown in Figure 1.
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Figure 1. The inner-adhesive-type CFRP for tunnel reinforcement.

3. Determination of Pressure Stress of Lining Reinforcement

The triangular force relationship of the lining reinforcement was extracted in accor-
dance with elastic theory, as shown in Figure 1.

The force balance Equation in polar coordinates is given in Equation (1).

∑ Fr = 0 σrds− (σhds cos θ) cos θ − (σvds sin θ) sin θ = 0
∑ Fθ = 0 σθds + (σhds cos θ) sin θ − (σvds sin θ) cos θ = 0

(1)

The external load on the lining reinforcement under the bidirectional formation pres-
sure load after sorting is shown in Equation (2),

σr |r=r1 = 1
2 (σh + σv) +

1
2 (σh − σv) cos 2θ

σθ |r=r1 = 0− 1
2 sin(2θ)(σh − σv)

(2)

where r represents the distance from the centre of the tunnel circle to any point of the
lining and the variation range of r is [r2,r1]. In addition, r1 represents the external radius of
the lining reinforcement and r2 represents the internal radius of the lining reinforcement.
Assuming that the thickness of the lining reinforcement is t, σr represents the radial stress,
σθ is the tangential stress, σv represents the vertical stress, σh represents the horizontal load
and θ represents the angles at different positions of the lining reinforcement.

The external load of the lining reinforcement in Equation (2) can be divided into uni-
formly distributed confining pressure and confining pressure using trigonometric functions,
as shown in Figure 2.
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According to the thick-walled cylinder theory in elastic theory, the stress of the lining
reinforcement when subjected to the uniformly distributed confining pressure shown in
Figure 2a is as shown in Equation (3). σr =

r1
2

r1
2−r2

2
(σv+σh)

2

(
1−

( r2
r
)2
)

σθ = r1
2

r1
2−r2

2
(σv+σh)

2

(
1 +

( r2
r
)2
) (3)

Figure 2b shows that the trigonometric function for the surrounding rock is solved in
accordance with the semi-inverse method of elastic theory [7]. The expression for radial
and tangential stresses for external loads contains a trigonometric function; thus, the stress
function can be assumed to be as in Equation (4),

φ = f (x) cos 2θ (4)

where φ is the stress function, f (x) is the inclusion function of the stress function and θ is
the angle at different positions of the lining reinforcement, which rotates clockwise along
the positive direction of the X-axis (Figure 1).

Stress can be expressed by the stress function, as shown in Equation (5).

σr =
∂2φ

∂y2 = 1
r

∂φ
r + 1

r2
∂2φ

∂θ2

σθ = ∂2φ

∂r2

(5)

This function satisfies the compatibility equation, as shown in Equation (6).

∇2∇2φ = 0 (6)

The function can be divided into Equation (7) as follows:

d4 f
dr4 +

2
r

d3 f
dr3 −

9
r2

d2 f
dr2 +

9
r3

d f
dr

= 0 (7)

Let r = et, t = ln(r), as shown in Equation (8).

d4 f
dt4 + 4

d3 f
dt3 − 4

d2 f
dt2 + 16

d f
dt

= 0 (8)

The general solutions from the characteristic Equation d f
dr are 0, −2, 2 and 4.
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Then, the expression of the solution is as shown in Equation (9).

f (x) = Ar2 + Br4 + C
1
r2 + D (9)

Equation (9) is substituted into Equation (4) to obtain the stress function, as shown in
Equation (10).

φ = (Ar2 + Br4 + C
1
r2 + D) cos 2θ (10)

The stress function is substituted into Equation (5) to obtain the stress of the lining
reinforcement, as shown in Equation (11).{

σr = −(2A + 6C
r4 + 4D

r2 ) cos(2θ)

σθ = (2A + 12Br2 + 6C
r4 ) cos(2θ)

(11)

The boundary condition of the pressure combination trigonometric function when the
lining reinforcement material is subjected to bidirectional pressures is shown in Equation (12).

r = r1

{
σr =

1
2 (σh − σv) cos(2θ)

σθ = − 1
2 (σh − σv) sin(2θ)

r = r2

{
σr = 0
σθ = 0

(12)

Equation (12) is substituted into Equation (11), and the relationships of the undeter-
mined coefficients of the stress function can be obtained, as shown in Equation (13).

2A + 6C
r2

4 +
4D
r2

2 = 1
2 (σh − σv)

2A + 6Br2
2 − 6C

r2
4 − 2D

r2
2 = − 1

2 (σh − σv)

2A + 6C
r1

4 +
4D
r1

2 = 0

2A + 6Br1
2 − 6C

r1
4 − 2D

r1
2 = 0

(13)

These equations are then solved simultaneously, and the values of the coefficients to
be calculated can be seen in Equation (14).{

A = − 1
4 (σv + σh) B = 0

C = − 1
4 r1

4(σh − σv) D = r1
2

2 (σh − σv)
(14)

Equation (14) is substituted into Equation (11), and the lining stress for the compression–
shear combination under bidirectional substitution can be obtained, as shown in Equation (15). σr =

1
2 (σh − σv)

(
1 + 3

( r2
r
)4 − 4

( r2
r
)2
)

cos(2θ)

σθ = − 1
2 (σh − σv)

(
1 + 3

( r2
r
)4
)

cos(2θ)
(15)

Equations (3) and (15) are combined, and the stress of the lining reinforcement can be
obtained, as shown in Equation (16), σr =

r1
2

r1
2−r2

2
(σv+σh)

2

[
1−

( r2
r
)2
]
− 1

2 (σh − σv)
(

1 + 3
( r2

r
)4 − 4

( r2
r
)2
)

cos(2θ)

σθ = r1
2

r1
2−r2

2
(σv+σh)

2

[
1 +

( r2
r
)2
]
− 1

2 (σh − σv)
[
1 + 3

( r2
r
)4
]

cos(2θ)
(16)

where r1
2

r1
2−r2

2 is the influence coefficient of the geometrical dimensions of the lining rein-
forcement, which is related to its thickness and radius.
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4. Piezoresistive Model of Single Carbon Fibre

Assuming that the volume does not change when a single carbon fibre is deformed
when subjected to external forces, the length change and cross-section of the fibre are shown
in Equation (17),

∆rc f

rc f
= 1 +

1√
∆lc f
lc f

+ 1
(17)

where ∆rc f is the radius change of a single CFRP, rc f is the radius of a single CFRP, ∆lc f is
the length change of a single CFRP and lc f is the length of a single CFRP.

The deformation of a single fibre is a small change, ∆lc f ≈ dlc f . Similarly, in
Equation (17), the section coefficient νc is introduced to realise an integrable implicit func-
tion to represent the function relationship between the rates of length and radius changes.

With νc, Equation (17) can be converted into Equation (18) of the integrable function,

dlc f

lc f
= νc

drc f

rc f
(18)

where νc is the parameter related to the length and section.
Equation (19) can be obtained by solving the following differential equation,

r = e
ln(l)−Ci

ν (19)

where Ci is the integral constant.
The rate of volume change under the unidirectional tensile stress of the inner CFRP is

shown in Equation (20),
dVc f

Vc f
= (1− 2uc f )εc f (20)

where Vc f is the volume of a single fibre, uc f is Poisson’s ratio and εc f is the strain of a
single carbon fibre under unidirectional stress εc f =

∆l
l .

Assume that the relationship between the electrical resistivity and the rate of volume
change is shown in Equation (21),

dρc f

ρc f
= αc f

dVc f

Vc f
(21)

where αc f is the parameter of the electrical resistivity and the rate of volume change.
Equation (22) is obtained in accordance with the rate of the resistance change.

dRc f

Rc f
=

dρc f

ρc f
+

dlc f

lc f
−

2drc f

rc f
(22)

Equations (18) and (20)–(22) are combined to obtain the general solution of the resis-
tance and strain of a single fibre,

Rc f = e[1−(uc f−νc f )]εc f
2+Cc f (23)

where Cc f is the integral constant of the carbon fibre, which can be written down to facilitate
subsequent calculation.

5. Piezoresistive Model of Embedded Carbon Fibre

Compared with the radius of the tunnel, the embedded CFRP is much thinner, with
negligible thickness. The stress condition of the carbon fibre is r = r2, based on the
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stress Equation (Equation (16)) of the lining reinforcement, and the stress Equation can be
obtained as shown in Equation (24).{

σr = 0

σθ = r1
2

r1
2−r2

2 (σv + σh) + 2(σv − σh) cos(2θ)
(24)

According to Equation (24), the CFRP is subjected to a tangential, single-direction
tensile stress, and the relationship between the stress and strain of the carbon fibre is
expressed by Hooke’s Law, as shown in Equation (25).

σθc f = Eεθc f (25)

The CFRP is bonded to the inner wall of the tunnel using adhesive, according to the
reinforcement specifications. Figure 3 shows the carbon fibre reinforcement diagram for
repairing cracks in the Sichuan–Tibet Railway Tunnel. The adhesive is brushed onto the
damaged part of the structure with a wooden brush, pasted with CFRP and then repeatedly
rolled until the surface of the CFRP sheet is completely wrapped in adhesive, as shown in
Figure 3a. The carbon fibre is wrapped in adhesive (an insulating material), according to
the microscopic analysis of the carbon fibre composite material performed by Hou Xiangchi.
The fibres along the bonding direction of the CFRP are connected in series, as shown in
Figure 3b. Meanwhile, the fibres along the vertical and bonding directions are completely
wrapped in and separated by adhesive; that is, the fibres are insulated. The vertically
oriented fibres in this state are connected in parallel with other fibres, as shown in Figure 3c.
The resistance model of the embedded CFRP according to the bonding characteristics
of fibres along the length and vertical directions is shown in Figure 4. The equivalent
resistance is shown in Equation (26) which has been shown in Appendix A for detailed
solution process.

Rc f r =
1[ 1

Rc f z11+Rc f z12+Rc f z13+···+Rc f z1j
+ 1

Rc f z21+Rc f z22+Rc f z23+···+Rc f z2j
+ · · ·+ 1

Rc f zi1+Rc f zi2+Rc f zi3+···+Rc f zij
+

· · ·+ 1
Rc f zn1+Rc f zn2+Rc f zn3+···+Rc f znm
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where Rc f r is the average resistance of the embedded CFRP.

In Equation (27), the Taylor series e[1−(uc f−νc f )][
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Equation (29) is substituted into Equation (27) to obtain Equation (30).
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Equation (30) is expanded by the Taylor series twice according to the form of 1
1−x , to

obtain Equation (31).
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Fibres are evenly distributed in the embedded carbon fibre sheet. In a certain small
range, a minimal difference is observed in the strain between fibres. The strain of a single
fibre can be replaced by the average strain at a certain point, as shown in Equation (32).

ε jir ≈ ε ji (32)

The average strain at a certain point is calculated in Equation (33),

ε jir =
∆lθ
lθ

(33)

where ∆lθ represents the length variation of carbon fibre along the tunnel section, lθ
represents the length of the carbon fibre along the direction of a section within a certain
range and θ represents the angle value of the lining at different positions.

According to the average strain equations of the fibre at a certain point, that is, Equa-
tions (33), (24) and (25), the relationship between the strain of the embedded carbon fibres
and the external load of the tunnel lining is shown in the equation.

The piezoresistive model of the embedded carbon fibres is obtained by combining
Equations (23) and (33), as shown in Equation (34).

ε jir =

r1
2

r1
2−r2

2 (σv + σh) + 2(σv − σh) cos(2θ)

E
(34)

The piezoresistive model of the embedded carbon fibres is obtained by combining
Equations (31) and (34), as shown in Equation (35), where m represents the assumed
number of resistance nodes along the vertical direction of the carbon fibre, k represents the
expansion coefficient of the Taylor series, n represents the assumed number of resistance
nodes along the length direction of the carbon fibre, and i and j represent the process
coefficients of the internode resistance. In addition, l represents the process coefficient of
the Taylor series and Cc f ji represents the integral constant.

Rc f r = 1 +
k

∑
l=1


m +

m

∑
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∑
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
n +

n
∑

i=1

[
1−

(
uc f − νc f

)]l n
∑

i=1

k
∑

l=1

1
l!

 r1
2

r1
2−r2

2 (σv+σh) +2(σv−σh) cos(2θ)

E

2l

+
n
∑

i=1
Cc f ji + 1



l

+ 1



l

(35)

According to Equation (35), the change in the resistance value of the embedded carbon
fibre is related to parameters such as the integral constant, the cross-section coefficient of a
single carbon fibre, Poisson’s ratio and the elastic modulus, as well as external factors such
as vertical and horizontal formation pressure loads and the angles at different positions of
the lining reinforcement.

6. Parameter Analysis of the Piezoresistive Model
6.1. Correlation Analysis of the Cross-Section Coefficient of the Carbon Fibre

Under the action of radial stress, the carbon fibre will be elongated, and its diameter
will change correspondingly. This is related to the preparation technology and cross-section
coefficient of the carbon fibre. Table 1 shows that the carbon fibres used in the building
structure mainly comprise polyacrylonitrile based on dry and wet preparation processes,
which can be divided into high-strength and high-modulus carbon fibres. The cross-section
coefficient and integral constant of the carbon fibre are calculated by taking 10 mm as an
example. The cross-section coefficient is related to the deformation of the carbon fibre and
can be expressed by the deformation modulus, which can be calculated using Equation (19).
The calculation results are shown in Table 1 and Figure 5. The analysis revealed that the
cross-section and integral coefficients of the different fibres gradually decrease with an
increase in radius.
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Table 1. Statistics of geometrical parameters of different types of carbon fibre.

Fibre Type Tensile
Strength/MPa

Tensile
Modulus/GPa

Ultimate
Strain Diameter/µm Length/mm Section

Coefficient/105
Integration

Coefficient/106 REMARKS

T300 3500 230 0.015 7 10 3.188 1.581 Common
T600 4570 270 0.0016 8 10 2.346 1.133 High strength

T800 A 5638 295 0.019 5.6 10 2.747 1.424 High strength
T800 S 6061 292 0.020 6.1 10 2.601 1.326 High strength
M40J 3880 380 0.012 6 10 4.980 2.548 High modulus
M50J 4120 480 0.014 5 10 6.290 3.128 High modulus
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The relationship between the radius and length of different fibres can be obtained
by substituting the cross-section coefficient and integral constant into Equation (20). The
fibre with a length of 20 mm is taken as an example, in order to analyse the relationship
between length and radius, as shown in Figure 6. Figure 6 indicates that the radius changes
exponentially, and the change is fairly small when the fibre length changes from 0 mm
to 20 mm. The radius changes slightly, and an extreme value is observed, when the fibre
length increases to a certain extent. Some differences are found amongst fibres of different
types with different properties, but the index variation trend is consistent.
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6.2. Analysis of External Load Influence on the Piezoresistive Model

Owing to the tunnel construction, the overlying strata produce vertical pressure, and
the soil layer also generates a corresponding horizontal pressure under the action of the
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vertical pressure. The ratio of vertical to horizontal pressure is called the lateral pressure
coefficient, and the radial tensile stress can be expressed as in Equation (36),

σθ = σv
r1

2

r1
2 − r22 (1 + λ) + 2σv(1− λ) cos(2θ) (36)

where λ is the lateral pressure coefficient and r1
2

r1
2−r2

2 is the section coefficient.
Equation (36) shows that the radial stress is related to vertical load, lateral pressure

coefficient, geometrical relationship and angles at different positions of the lining reinforce-
ment.

The geometric relationship coefficient is related to the radius and thickness of the
lining reinforcement, and the analysis is based on the external radius of the lining rein-
forcement. When the thickness is fixed at 0.5 m, the relationship between the geometric
relationship coefficient and the radius can be expressed as the relationship between the
geometric relationship coefficient and the external radius, as shown in Figure 7. Figure 7
shows that the geometric parameters increase linearly with the radius. However, the
geometric coefficient rapidly decreases with an increase in the thickness of the lining re-
inforcement, and the geometric coefficient does not decrease and gradually approaches
a value of 1 when the thickness of the lining reinforcement is increased to 4 m (where
the external radius is 11 m). Therefore, the thickness should be between 0.5 and 1 m in
the actual engineering environment, when calculating the preliminary stress of the lining
reinforcement (Equation 3), and a certain error exists in calculating the stress of the lining
reinforcement using the thick-walled cylinder theory in elastic theory. The error in the
stress calculation disappears only when the thickness of the lining reinforcement is larger
than 4 m.
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When other geometric parameters remain unchanged and are positive, the following
assumptions are required regarding the influence of geometrical parameters on resistance:
the expansion coefficient k in Taylor’s formula is 3; the length of the fibre sheet is 14 m and
the width is 0.5 m; the number of fibre internodes along the bonding direction n is set to
200,000; the vertical direction is set to 10,000; the lateral pressure coefficient is set to 0.401;
the vertical earth pressure is set to 200 kPa; and Poisson’s ratio is set to 0.307. T300 carbon
fibre was then taken as an example, and the section coefficient and integral constant were
adopted. Maple software was used to assist the calculation. The resistance value of the
embedded carbon fibre changes with the radius and thickness of the tunnel, as shown in
Figures 8 and 9, respectively.
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of the tunnel.

Figure 8 shows the relationship between resistance and radius under the influence of
the angles at different positions of the lining reinforcement. The resistance value slightly
changes and rapidly increases when the radius changes up to 25 m and exceeds 25 m,
respectively. In the process of increasing the radius, the resistance value is affected by the
angle at different positions of the lining reinforcement, presenting a triangular function
distribution. Figure 9 shows the relationship between resistance and thickness. Resistance
increases with the thickness when the thickness changes from 0.5 m to 1 m at the beginning.
Then, the thickness has minimal influence on resistance despite its continued increase.

When the vertical pressure is taken as the parameter, the lining thickness is set to 0.5 m,
the inner diameter is set to 7 m, the outer diameter is set to 7.5 mm and the lateral pressure
coefficient is set to 0.401. The vertical pressure is set to 200 kPa when the lateral pressure
coefficient is taken as the parameter. The influence of the vertical and lateral pressure
coefficients on the resistance of the carbon fibre can be obtained through calculation, as
shown in Figures 10 and 11, respectively. Figure 10 reveals that the resistance value does
not substantially change when the vertical pressure is small but varies significantly when
the vertical pressure is larger than 200 kPa, and the influence of angles at different positions
of the lining reinforcement also changes significantly. Figure 11 shows that when the
lateral pressure coefficient is small, the influence on the resistance value is also small, when
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the lateral pressure coefficient is larger than 0.4 to 0.8 the resistance value increases with
the lateral pressure coefficient and when the resistance value continues to increase, the
angles at different positions of the tunnel have a substantial influence on the increase in
the resistance value. When the lateral pressure coefficient is larger than 0.8, the resistance
value rapidly increases and has a linear relationship with the lateral pressure coefficient,
which is unaffected by the angles at different positions of the lining reinforcement.
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7. Application of the Piezoresistive Model in Engineering

During the construction of the Lhasa–Nyingchi Railway tunnel group in China’s Tibet
Autonomous Region, part of the lining cracked, and some water seeped through the cracks.
Figure 12 shows the location and direction of the cracks. This figure indicates that cracks
can be mainly divided into the following types according to their trends: horizontal cracks
along the axial direction of the tunnel, circumferential cracks and inclined cracking along
the vertical section of the tunnel. The lining has a compound circular lining structure,
with the outer diameter set to 5.6 m, the inner diameter set to 5.1 m and the thickness set
to 0.5 m. T300 carbon fibre was used to repair the cracks. The mechanical parameters
of T300 carbon fibre are shown in Table 2. Construction was performed in accordance
with the reinforcement specifications and the Toray carbon fibre manual. Firstly, resin was
brushed onto the cracks as the bottom glue to fill the cracks and level the structural plane. A
special adhesive was then brushed onto the cracks to level the structural plane and provide
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bonding for the CFRP. Finally, the CFRP was pasted and repeatedly rolled with a circular
stick. This process induces the oozing of adhesive from the surface of the carbon fibre until
the adhesive completely immerses the CFRP, thus creating the lining reinforcement. The
initial resistance value was measured using the copper rod method when the adhesive had
solidified after 24 h. Figure 13 shows the lining structure and the resistance test result for
the lining reinforcement.
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Table 2. Mechanical properties of T300 carbon fibre.

Type of
Single
Fibre

Single
Fibre

Tensile
Strength/MPa

Tensile
Modulus/GPa

Elongation
Rate/%

Poisson’s
Ratio

Density/
(g/cm3)

T300 1000 3.530 230 1.5 0.37 1.76
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Figure 13. Crack warning method for CFRP reinforced tunnel lining.

The pressure of the soil layer around the tunnel is monitored via a pressure box.
Pressure boxes are arranged in five measuring positions in the tunnel, including the vault,
spandrel and sidewall, to accurately measure and monitor the earth pressure. The vertical
and horizontal pressures are represented by the pressures from the tunnel vault and the
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sidewall, respectively. The tunnel is subjected to different pressures under the action of
different strata. The pressure values of the two lining cracks are shown in Figures 14 and 15.
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Figures 14 and 15 show that the earth pressure varies with different buried depths, and
a certain difference is observed between the horizontal pressure on both sides. Figure 14
shows the earth pressure monitoring value during the construction of deeply buried
tunnels. On this basis, the earth pressure increases as the tunnel is deepened. When the
earth pressure is redistributed and the tunnel is supported by the lining, the earth pressure
is stabilized; the vertical top pressure is as high as 327 kPa, the horizontal pressures on both
sides of the soil are similar and small (with an average value of approximately 92 kPa) and
the lateral pressure coefficient is 0.281. Figure 15 shows the rock pressure monitoring values
for a shallowly buried tunnel. When the vault pressure reaches 110 kPa, the monitoring
values tend to converge, when the horizontal pressure of the left wall reaches 30 kPa the
monitoring value stabilizes and when the horizontal pressure of right wall 2 reaches 9 kPa,
the monitoring value stabilizes and the horizontal pressure difference of the formation
reaches 21 kPa. Geological exploration revealed that the horizontal pressure difference was
mainly due to a certain inclination angle of the stratum and a certain impact pressure on
the lining.

The number of internodes n along the fibre length was determined as 2 × 107, ac-
cording to the length, and the number of internodes n along the vertical fibre bonding
direction was set to 10,000. In the deeply buried tunnel, the lateral pressure coefficient was
set to 0.281, and the vertical earth pressure was set to 327 kPa. In the shallowly buried
tunnels, the vertical pressure was set to 110 kPa, and the lateral pressure coefficient varied
from 0.082 to 0.273. The influence of the angles at different positions of the tunnel lining
reinforcement was ignored. The tunnel top was taken as an example, and the angle was set
to 90◦. Under the action of the formation pressure for deeply and shallowly buried tunnels,
the relationship between the pressure of the carbon fibre lining reinforcement monitoring
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value and the theoretically calculated value of the resistance is shown in Figure 16. The
analysis of Figure 16 indicates that the resistance and load curves for deeply and shallowly
buried tunnels are exponentially distributed. Compared with the shallowly buried tunnel,
the piezoresistive curve for a deeply buried tunnel reaches the theoretical extreme value
based on resistance theory earlier than for a shallowly buried tunnel. As the lateral pressure
coefficient of the shallowly buried tunnel decreases, the piezoresistive theoretical curve
becomes increasingly gentle, with a calculated value close to the monitoring value for the
shallowly buried tunnels. Regardless of the depth, the theoretical value deviates from the
calculated value, and the monitoring value does not reach the theoretical extreme value.
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8. Conclusions

Intelligent early warning in carbon fibre reinforcement construction was studied on
the basis of changes in resistance and pressure in the cracks of the CFRP reinforced lining.
The following conclusions can be drawn:

(1) An exponential relationship is observed between the length and radius of a single
fibre for different types of fibres.

(2) The resistance value of the lining reinforcement increases with the radius and de-
creases with an increase in thickness. The influence of angles at different positions of
the lining reinforcement can be observed under substantial changes in resistance.

(3) The vertical load of the soil layer affects the lining reinforcement. The resistance
value varies with the lateral pressure coefficient when the lateral pressure coefficient
fluctuates between 0.4 and 0.8.

(4) The monitoring and theoretical calculation of the resistance and pressure of the carbon
fibre reinforced lining in the deeply and shallowly buried sections of the tunnel
revealed that the piezoresistive models are exponential in these tunnels, and the
resistance monitoring value does not reach the theoretical extreme value.
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Appendix A

The parallel resistance and the piezoresistive model of the single fibre are expressed in
Equations (A1) and (A2), respectively.

n

∑
i=1

Rc f zij = Rc f z1j + Rc f zj2j + Rc f z3j + · · ·Rc f zij + · · ·+ Rc f z nj (A1)

Rc f z = e[1−(uc f−νc f )]εc f z
2
+ Cc f z (A2)

The exponential function is expanded by the Taylor series, as shown in Equation (A3).

ex = 1 + x +
x2

2!
+ · · ·+ xl

l!
+

xl

n!
(A3)

Combining Equations (23) and (33), the exponential function can be expressed as in
Equation (A4), after connecting resistances in series.

n

∑
i=1

e[1−(uc f−νc f )][
ε ji
E ]

2

= e[1−(uc f−νc f )][
ε j1
E ]

2

+ e[1−(uc f−νc f )][
ε j2
E ]

2

+ · · ·e[1−(uc f−νc f )][
ε ji
E ]

2

+ · · ·+ e[1−(uc f−νc f )][
ε jn
E ]

2

(A4)

The exponential function in Equation (A4) is expanded by Equation (A3) (refer to
Equation (A5)).

e[1−(uc f−νc f )][
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2
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(A5)

Equation (A6) can be obtained as shown below after all the indices in Equation (A4) are
expressed in accordance with Equation (A5).

n
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(A6)

The function 1
1−x can be expressed by the Taylor series as in Equation (A7).

1
1− x

= 1 + x + x2 + · · ·+ xl + · · ·xk (A7)

Equation (A6) is then expanded by Equation (A7), and the function can be expressed
as in Equation (A8).



Materials 2022, 15, 4602 18 of 19

1

n+
n
∑

i=1
[1−(uc f−νc f )]

l n
∑

i=1

k
∑

l=1

1
l!

[ ε ji
E

]2l
+

n
∑

i=1
Cc f ji

=

−1

1−
{

n+
n
∑

i=1
[1−(uc f−νc f )]

l n
∑

i=1

k
∑

l=1

1
l!

[ ε ji
E

]2l
+

n
∑

i=1
Cc f ji+1

}

= −1−


n +

n
∑

i=1

[
1−

(
uc f − νc f

)]l n
∑

i=1

k
∑

l=1

1
l!

[
ε ji
E

]2l

+
n
∑

i=1
Cc f ji + 1

−


n +
n
∑

i=1

[
1−

(
uc f − νc f

)]l n
∑

i=1

k
∑

l=1

1
l!

[
ε ji
E

]2l
+

n
∑

i=1
Cc f ji + 1


2

−

· · · −


n +

n
∑

i=1

[
1−

(
uc f − νc f

)]l n
∑

i=1

k
∑

l=1

1
l!

[
ε ji
E

]2l

+
n
∑

i=1
Cc f ji + 1


l

−


n +

n
∑

i=1

[
1−

(
uc f − νc f

)]l n
∑

i=1

k
∑

l=1

1
l!

[
ε ji
E

]2l

+
n
∑

i=1
Cc f ji + 1


k

= −1−
k
∑

l=1

{
n +

n
∑

i=1

[
1−

(
uc f − νc f

)]l n
∑

i=1

k
∑

l=1

1
l!

[
ε ji
E

]2l
+

n
∑

i=1
Cc f ji + 1

}l

(A8)

The sum of Equation (A8) can be expressed as in Equation (A9).
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The Equation is continuously expanded in accordance with the 1
1−x Taylor series, and

Equation (A10) is obtained.
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