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Abstract: Existing concrete random aggregate modeling methods (CRAMMs) have deficiencies in
in the parameterization of the mesoscale pore structure. A novel CRAMM is proposed, whose pore
structure is determined by the pore gradation, total porosity, sub-porosity, and pore size of each pore
gradation segment. To study the influence of pore structure on the mechanical properties of concrete,
25 mesoscopic concrete specimens with the same aggregate structure but different meso-scale pore
structures are constructed and subjected to uniaxial compression tests. For the first time, the influence
of sub-porosity of each pore gradation segment, average pore radius (APR), pore specific surface area
(PSSA), and total porosity on concrete failure process, compressive strength, peak strain, and elastic
modulus were quantitatively and qualitatively analyzed. Results indicate that the pore structure
makes the germination and propagation of the damage in cement mortar show obvious locality
and affects the formation and expansion of macroscopic cracks. However, it does not accelerate
the propagation of the damage in cement mortar from the periphery to the center of the specimen,
nor does it change the phenomenon that the ITZ is more damaged than other meso-components
of concrete before peak stress. Macroscopic cracks occur in the descending section of the stress–
strain curve, and the sudden drops in the descending section of the stress–strain curve are often
accompanied by the generation and expansion of macroscopic cracks. The quadratic polynomial,
exponential, and power functions can well fit the relationship between total porosity and compressive
strength and the relationship between PSSA and compressive strength. The linear, exponential, and
power functions can well reflect the relationship between total porosity and compressive modulus and
the relationship between compressive modulus and PSSA. For concrete specimens with the same total
porosity, the elastic modulus and strength show randomness with the increase in the sub-porosity of
macropores and are basically not affected by the APR. Based on the grey relational analysis, the effects
of pore structure parameters on the elastic modulus and compressive strength are in the same order:
total porosity > T [k1,k2] > T [k2,k3] > T [k3,k4] > T [k4,k5] > AVR > PSSA. The order of influence of
the pore structure parameters on the peak strain is: T [k2,k3] > T [k1,k2] > T [k3,k4] > T [k4,k5] > APR
> PSSA > total porosity.

Keywords: meso-pore structure; concrete mesoscopic model; compressive elastic modulus; compres-
sive strength

1. Introduction

Based on the analytic hierarchy process (AHP), the research level of concrete structures
is classified into three levels: micro-scale (10−6~10−3 mm), meso-scale (10−3~100 mm), and
macro-scale (3~4 times the maximum aggregate size) [1]. Concrete is a typical porous mate-
rial with pores spanning the above three levels [2]. Statistics [3] show that the sub-porosity
of pores with radii between 26.5 nm and 53 nm is about 1% in ordinary concrete, and the
total porosity is generally greater than 8%. Total porosity represents the ratio of the volume
of all pores in concrete to the volume of the concrete. The sub-porosity of the pores in
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a certain pore size range represents the ratio of the volume of the pores in the pore size
range to the volume of the concrete [4]. Pore size is an indication of the size of a pore. For
spherical pores, the pore size is usually expressed in radius or diameter. At present, there
are mainly three ways to explore the effects of meso-scale pore structure on the mechanical
behavior of concrete. The first is the theoretical analysis method. In recent years, many
researchers have studied the effective mechanical properties of porous materials from the
perspective of micromechanics of composite materials, and a variety of prediction models
(Kemeny [5], Park [6], Feng XQ [7], and Spatschek [8]) have been proposed to analyze and
calculate the effective modulus and effective strength. Mackenzie [9] used the isolated pore
theory to calculate the analytical expressions of the effective shear modulus and bulk mod-
ulus of low-porosity materials, which did not consider the interaction among pores. The
methods considering the interaction among pores include the self-consistent method [10],
Mori–Tanaka method [11], etc. Du et al. [2] used a three-phase sphere model and a hollow
cylindrical rod model to derive the relationship between effective strength and porosity
and the relationship between effective peak strain and porosity. According to material
science and the fracture mechanics of concrete, Jin et al. [12] analyzed the influence of pores
on the surface energy and modulus, modified Griffith’s fracture theory, and then set up a
compound–body model of pore structure. The results of the theoretical research need to
be verified by experiments. The second method is the experimental method. Gao et al. [4]
and Du Plessis A [13] measured the sub-porosity of pores of different sizes by an optical
microscope, and studied the effect of sub-porosity on compressive strength. Zhao Jing [14]
and B. Kondraivendhan [15] used the mercury intrusion method to study the effect of pore
distribution and pore size on the strength and durability of concrete. Liu Huawei [16]
applied 3D-printing technology to the study of concrete pore structure. In experimental
research, many scholars [17–20] have tried a variety of innovative experimental methods
and research methods. The research based on the experimental method proves that the use
of total porosity to characterize the influence of meso-scale pore structure on the mechanical
behavior of concrete is unscientific, and the influence of pore size and sub-porosity of pores
in different pore size ranges cannot be ignored. However, the experimental method has an
obvious defect in exploring the influence of pore structure parameters on concrete mechan-
ical behavior; that is, it is difficult to achieve accurate control variables for pore structure
parameters. For example, the current specimen preparation technology often changes
the aggregate structure when changing the pore structure, which leads to changes in the
mechanical behavior of concrete not only caused by changes in pore structure but also by
changes in aggregate structure. The aggregate structure has a great effect on the mechanical
properties of concrete [21,22]. This is an insurmountable defect of using experimental
methods to establish the quantitative relationship between pore structure and concrete
mechanical properties. The third method is the numerical simulation method. There are
two main methods for the establishment of mesoscopic digital concrete: image-based model
construction methods and parametric model construction methods. The former establishes
a model based on the concrete meso-structure images obtained by the detection technology,
which can accurately reflect the structural information of each constituent phase, such as
shape, size, and distribution [23–30]. However, when applied to quantitatively analyze the
influence of pore structure on concrete mechanical behaviors, it has a serious defect, that
is, like the experimental method, it is difficult to change the pore structure parameters on
the premise of keeping the aggregate structure unchanged. Parametric modeling methods
firstly parameterize the meso-structure information of concrete and then build a model
based on these parameters. By changing the structural parameters, concrete models that
satisfy the control variables of the pore structure parameters can be constructed, which
provides a solution to the above problems. The concrete random aggregate modeling
method (CRAMM) is a typical representative of the parametric modeling method and has
been widely used. Most existing CRAMMs model concrete as a two-phase material con-
taining only aggregate and cement mortar or a three-phase material containing aggregate,
cement mortar, and an interfacial transition zone (ITZ) [31–37]. A few CRAMMs take into
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account pores and treat concrete as a four-phase material [38,39]. However, most of them
treat the pore structures simply as a structure composed of some randomly distributed
single-graded oval or circular pores, which is quite different from the internal pore structure
of concrete. Wang et al. [38] and Chen et al. [40] modeled the meso-scale pore structure as
some randomly distributed circular or oval pores with a diameter of 2~4 mm and studied
the influence of total porosity on the mechanical behaviors of concrete. Li et al. [41] modeled
the pore structure in concrete as many randomly distributed circular or oval pores of a
single size. Scholars are trying to explore new methods that can reasonably simulate the
complex pore structure of concrete while taking into account the pore structure parameters
of interest. For example, Zhu et al. [42] established a new pore structure establishment
method based on fractal theory and studied the influence of total porosity on the mechani-
cal behavior of concrete. The CRAMM based on fractal theory constructs the pore structure
by setting the pore fractal dimension, maximum pore size, total porosity, and minimum
pore size [43], so it cannot be applied to study the effects of pore size and sub-porosity of
each graded segment on the mechanical behavior of concrete. There is no report on the
establishment of concrete pore structure based on parameters such as pore gradation, total
porosity, sub-porosity, and pore size of each pore gradation segment. Pore gradation refers
to the combination of pores of different sizes in concrete [44]. However, sub-porosity is an
important factor affecting the mechanical behaviors of concrete [45]. To sum up, the effect
of meso-scale pore structure parameters on the mechanical behaviors of concrete needs to
be further studied, especially the influence of sub-porosity and PSSA under the premise of
scientific simulation of pore structure.

This paper aims to systematically explore the influence of pore structure parameters
such as total porosity, sub-porosity of different graded segments, PSSA, and APR on
the cracking process, peak strain, modulus, and compressive strength of concrete based
on scientifically simulated pore structure. First, a novel CRAMM is established, which
considers pore gradation, sub-porosity, and pore size of different pore gradation segments
to characterize the complex pore structure of concrete. Based on the control variable method
(CVM) and the measured data of pore structure parameters, 25 concrete random aggregate
models (CRAMs) with different pore structures are constructed. Second, to explicitly model
crack initiation and propagation, zero-thickness cohesive interface elements (CIEs) are
inserted within the ITZ and mortar. Finally, these 25 CRAMs are subjected to quasi-static
uniaxial compression experiments, and the influence of total porosity, sub-porosity, PSSA,
and APR on the concrete cracking process, compressive strength, modulus, and peak strain
are comprehensively analyzed.

2. Generation of CRAMs
2.1. Modeling of Aggregates

Studies have shown that concrete designed by Fuller’s ideal gradation curve [46] is
expected to have optimized structural strength and density [47]. Based on the Walraven
formula [48] for the 2D models derived from the Fuller curve, the percent passing the d0
sieve is shown in Equation (1).

P(d < d0) = Pk(1.065d0.5
0 d−0.5

max − 0.053d4
0d−4

max − 0.012d6
0d−6

max

−0.0045d8
0d−8

max − 0.0025d10
0 d−10

max)
(1)

where d is the aggregate size. P(d < d0) is the percent passing the d0 sieve. Pk is the volume
percentage of aggregates, usually taken as 0.75. dmax is the maximum aggregate size.

To simplify the calculation, only the aggregates with a diameter greater than 2.36 mm
are simulated by drawing on the previous research experience [38,49,50], and it is assumed
that smaller particles are mixed into the mortar. The same aggregate size distribution as
Sadjad [51] and Wu et al. [34] is adopted in this paper, as shown in Table 1.
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Table 1. Aggregate size distribution.

Sieve Size (mm) Total Percentage Passing (%)

19.00 100
12.70 97
9.50 61
4.75 10
2.36 1.4

2.2. Pore Size Distribution

Scholars have adopted various methods to test the pore structure of concrete. Qin et al. [52]
used CT scanning technology to test concrete specimens and found that pores are randomly
distributed in concrete, and the pore size is log-normal or extreme value distribution.
Gao et al. [4] used the quantitative stereoscopic image analysis method to measure pore
structure parameters such as pore spatial distribution, total porosity, pore size, and sub-
porosity. Chao et al. [53] and Wei et al. [54] also tested the pore distribution inside the
concrete. With the deepening of the research on the pore structure of concrete, scholars
agree that the influence of pore gradation, pore size, and sub-porosity of different pore
gradation segments on the mechanical behaviors of concrete should not be ignored [12,55].
To realistically simulate the meso-scale pore structure in concrete and realize the research
on the sub-porosity, this paper introduces pore gradation, total porosity, sub-porosity, and
pore size of different pore-gradated segments to construct the pore structure in concrete.
To explore the influence of total porosity on the mechanical behaviors, specimens with
total porosity of 0%, 1%, 2%, 3%, and 4% are constructed in this paper. Pores are classified
into large harmful pores, medium harmful pores, small harmful pores, and harmless pores
according to the weakening degree of pores on the mechanical properties of concrete by
Wu [55]. Concrete strength is mainly affected by large pores (>200 µm), while small pores
(<10 µm) mainly affect the durability and permeability [56,57]. Based on the actual mea-
surement data in references [4,52–54] and Hui Gao’s research experience [4], the radius
of the pores established in this paper ranges from 0.15 mm to 0.8 mm and is divided into
four graded segments, namely [k1,k2] = [0.15,0.25], [k2,k3] = [0.25,0.4], [k3,k4] = [0.4,0.6],
[k4,k5] = [0.6,0.8]. It is assumed that the smaller pores are mixed with the mortar to form
a homogeneous mortar. To study the effect of sub-porosity, the Lar-type specimens with
relatively high macropore content, the Sma-type specimens with relatively high content of
small pores, and the Mid-type specimen with relatively medium content of large and small
pores were established for each total porosity, as shown in Table 2. To ensure the scien-
tificity of the sub-porosity values, the sub-porosity values set in this paper are all within the
range of sub-porosity measured in reference [54]. According to the CVM, specimens with
different pore space distributions but the same total porosity, aggregate structure, pore size,
and sub-porosity of each pore-gradated segments are constructed to explore the effect of
pore space distribution on the mechanical behaviors of concrete. The relevant parameters
of the concrete specimens established in this paper are shown in Table 2. The Specimen
0–1 that does not contain pores with a radius greater than 0.15 mm is considered as the
reference specimen in this paper. The first digit of the sample name in Table 2 represents
the total porosity.



Materials 2022, 15, 4594 5 of 34

Table 2. CRAMs and pore structure parameters.

Sample T [k1,k2]
(%)

T [k2,k3]
(%)

T [k3,k4]
(%)

T [k4,k5]
(%)

Total Porosity
(%) APR (mm) PSSA

(mm−1)

0–1
(reference sample) 0 0 0 0 0 0 0

S-1-1 0.4 0.3 0.14 0.15 1 0.247672 0.0684
S-1-2 0.4 0.3 0.14 0.15 1 0.248598 0.0681
M-1-1 0.305 0.3 0.2 0.195 1 0.266321 0.0615
M-1-2 0.305 0.3 0.2 0.195 1 0.268718 0.0614
L-1-1 0.21 0.3 0.25 0.24 1 0.290971 0.0555
L-1-2 0.21 0.3 0.25 0.24 1 0.288282 0.0565
S-2-1 1.1 0.5 0.28 0.12 2 0.229737 0.1541
S-2-2 1.1 0.5 0.28 0.12 2 0.229149 0.1531
M-2-1 0.965 0.49 0.34 0.205 2 0.237766 0.1439
M-2-2 0.965 0.49 0.34 0.205 2 0.234691 0.1450
L-2-1 0.83 0.48 0.4 0.29 2 0.247249 0.1354
L-2-2 0.83 0.48 0.4 0.29 2 0.244804 0.1359
S-3-1 1.75 0.52 0.42 0.31 3 0.224720 0.2303
S-3-2 1.75 0.52 0.42 0.31 3 0.225388 0.2299
M-3-1 1.655 0.485 0.505 0.355 3 0.227832 0.2243
M-3-2 1.655 0.485 0.505 0.355 3 0.231550 0.2228
L-3-1 1.56 0.45 0.59 0.4 3 0.235400 0.2141
L-3-2 1.56 0.45 0.59 0.4 3 0.231589 0.2176
S-4-1 2.28 0.99 0.49 0.24 4 0.223631 0.3157
S-4-2 2.28 0.99 0.49 0.24 4 0.225920 0.3144
4-1-M 2.135 0.97 0.57 0.325 4 0.227655 0.3060
4-2-M 2.135 0.97 0.57 0.325 4 0.229511 0.3044
L-4-1 1.99 0.95 0.65 0.41 4 0.231597 0.2961
4-2-L 1.99 0.95 0.65 0.41 4 0.234038 0.2951

Note: T [k1,k2]: the sub-porosity of pores in gradation segment [ki,ki+1], I = 1, 2, 3, 4, [k1,k2] = [0.15,0.25],
[k2,k3] = [0.25,0.4], [k3,k4] = [0.4,0.6], [k4,k5] = [0.6,0.8]; S: Sma-type specimen; L: Lar-type specimen; M: Mid-type
specimen.

2.3. Generation of Numerical Concrete Samples

A new aggregate and pore generation algorithm is proposed, which introduces pore
gradation, total porosity, pore size, and sub-porosity of each pore-gradated segments to
characterize the pore structure. The flow chart is shown in Figure 1, in which the aggregate
structure parameters include the aggregate area/volume ratio, aggregate type, aggregate
shape, and the Fuller curve, etc. Pore structure parameters include shape, pore gradation,
pore size, total porosity, and sub-porosity, etc., as described in Section 2.2.

Structural parameters include:

(1) The minimum distance δ1 between sample boundary and pore boundary.
(2) Minimum thickness of cement mortar layer δ2.
(3) The array Aagg has n rows and m columns; where n is the number of aggregates,

m is equal to the number of random numbers of aggregate information. For two-
dimensional circular aggregates, the random numbers for determining aggregate
information include the x coordinate of the aggregate center, the y coordinate of the
aggregate center, and the radius of the aggregate, so m = 3.

(4) The array Kpor has (n + k) rows and m columns, where k is equal to the number of
pores. The first n rows of the array Kpor are equal to the array Aagg.

The Boolean operations—“overlapping” and “subtraction”—are applied to generate
mortar. Keeping the aggregate structure parameters unchanged and changing the pore
structure parameters, concrete specimens with different pore structures and the same
aggregate structure can be generated.
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Figure 1. Flowchart of the aggregate and pore structure generation algorithm.

Aggregates are typically modeled as circles, ovals, or polygons. The mechanical proper-
ties of concrete are affected by aggregate shape, but not significantly [38]. Zhu Liang’s test [42]
shows that the pores in concrete are mostly spherical. Therefore, both pores and ag-
gregates are modeled as circular in this paper. Interactions between pores are ignored.
Using the aggregate structure parameters and pore structure parameters described in
Sections 2.1 and 2.2, where the aggregate area ratio is 45% and δ1 = δ2 = 0.5 mm, 25 CRAMs
with different pore structures are constructed based on the CVM. The size of all specimens
established is 50 mm × 50 mm, and Table 2 shows the pore structure parameters, in which
APR and PSSA are also important pore structure parameters [58–60]. Figure 2 shows some
CRAMs with different sub-porosity but the same total porosity and aggregate structure
where the yellow circles represent aggregate, the green area represents the mortar, and black
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circles represent pores. Figure 3 shows some CRAMs with different spatial distributions
but the same total porosity, sub-porosity, and aggregate structure.

ITZ, which has an important influence on the development of micro-cracks in con-
crete [22,61], has always been a difficult point in simulation due to its small thickness
(10~50 µm) [62]. For the ITZ simulation of mesoscopic concrete, some scholars [29,63] did
not consider it, and some scholars determined it by projection in the background grid [64]
or lattice model [65], but the obtained ITZ scale is in the order of millimeters, which is
quite different from the real ITZ. More scholars [35,38,50,66] have used zero-thickness
cohesive elements to simulate ITZ, which is more realistic and enables the cracks to be
expressed explicitly.

The bilinear traction–separation law is adopted for zero-thickness CIEs:

tn =


t0
n

δ0
n

δn (δn ≤ δ0
n)

t0
n

δ
f
n−δn

δ
f
n−δ0

n
(δn > δ0

n)
tt =


t0
t

δ0
t

δt (δt ≤ δ0
t )

t0
t

δ
f
t −δt

δ
f
t −δ0

t
(δt > δ0

t )
(2)

where tn and tt are the normal traction and tangential traction on adjacent virtual surfaces,
respectively. t0

n and t0
t are the maximum traction values in the normal and tangential

directions, respectively. δn and δt are normal and shear separations, respectively. δ0
n and δ0

t
are the crack interface opening displacement values corresponding to the maximum stress
in the normal and tangential directions, respectively. δ

f
n and δ

f
t are normal and tangential

displacement jump at completion of debonding, respectively.
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The CIEs can be damaged and destroyed by excessive tension, shearing, or a combina-
tion. The quadratic nominal stress law is used to judge damage initiation in this paper. As
the damaged state of the CIEs progresses, the material begins to soften. The scalar damage
variable D is defined to describe the damage evolution process, which monotonically varies
from 0 to 1:

D =

{
δ

f
m(δ

max
m − δ0

m), δmax
m ≥ δ0

m

0, δmax
m ≤ δ0

m
(3)

where δ0
m, δ

f
m and δmax

m are the effective separations at the damage initiation, the effective
separations at the complete failure, and the maximum effective separation obtained during
the loading history.

The traction for the damage state is a function of the traction without damage and the
damage variable:

tn =

{
(1 − D)knδn (tension)

knδn (compression)

tt = (1 − D)ktδt

(4)

where kn and kt are the initial stiffness in the normal direction and the tangential direction.
The pre-processing functionality in ANSYS is used to mesh the aggregate and cement

mortar and the triangular elements are applied to make the cracking path more real. For
the ordinary concrete as the research object of this paper, the aggregates are generally not
destroyed when the concrete is damaged. Therefore, the four-node zero-thickness cohesive
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interface elements (CIEs) are only inserted in the cement mortar (called CIE_mor) and
the ITZ (called CIE_ITZ) by the CIEs insertion scheme, as shown in Figure 4. The CIEs
insertion program is completed collaboratively using ABAQUS and python on the basis of
the relevant literature [61,67] and existing algorithms [68].
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2.4. Numerical Validation

To verify the effectiveness of the CRAMs established in this paper in character-
izing the mechanical behaviors of concrete, based on the real specimens prepared by
Sucor-zewski [69], a 50 mm × 50 mm numerical specimen was established in this paper.
Wu et al. [34] also established some 50 mm × 50 mm numerical specimens based on Su-
corzewski’s specimens. The aggregate size distribution is shown in Table 1. A quasi-static
uniaxial compression experiment was carried out on it. The boundary conditions of the uni-
axial compression experiment are that the lower boundary is fixed in the X and Y directions.
A compressive load with displacement control is applied on the upper boundary, as shown
in Figure 5. The material properties used in this paper are determined by referring to the
relevant literature [34,35,38,70] and extensive trial calculations, as shown in Table 3. The cal-
culated results are compared with the experimental results obtained by Suchorzewski [69]
and the numerical simulation experimental results obtained by Wu et al. [34], as shown in
Figure 6. The experimental stress–strain curves of concrete specimens [69] prepared with
the same material, aggregate gradation, and preparation conditions indicate a big scatter in
the descending section. Three representative stress–strain curves are selected to shown in
Figure 6, namely curve 1 with obvious brittleness, curve 2 with obvious quasi-brittleness,
and curve 3 with moderate quasi-brittleness. All experimental curves in Ref. [69] are
located between curve 1 and curve 2, such as curve 3. Simulation curve 4 and simulation
curve 5 in Figure 6 are the stress–strain curves of two CRAMs with different aggregate
space distribution but the same aggregate gradation and material properties [34]. It can
be seen from Figure 6 that the descending section of the simulation curve 4 shows strong
brittleness, which is close to the experimental curve 1, and the descending section of the
simulation curve 5 shows a strong quasi-brittleness, which is close to the experimental
curve 2. As shown in Figure 6, the stress–displacement curve obtained in this paper has a
good similarity with the experimental curves [69] and simulated curves [34] in the ascend-
ing, softening, and peak segments, and the descending section is located between curve 1
and curve 2. The elastic modulus and strength of these specimens are shown in Table 4, in
which the average value is taken as the calculated value. It can be seen that the simulation
results in this paper are better than the results of Wu et al. [34]; that is, the strength is at the
same error level, and the error of the elastic modulus is smaller.
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Table 3. Mechanical parameters of the CRAMs.

Solid Elements Cohesive Elements
Aggregate Cement Mortar ITZ Cement Mortar

Density (10−9 t/mm3) 2.5 2.2 2.2 2.2
Elastic modulus (GPa) 70 25 / /

Poisson’s ratio 0.2 0.2 / /
Elastic stiffness (MPa/mm) / / 1,100,000 1,100,000

Tensile strength (MPa) / / 3.9 11.7
Fracture energy (N/mm) / / 0.039 0.117
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Table 4. The comparison results.

Modulus (GPa) Error (%) Strength (MPa) Error (%)

Experimental specimens [69] 34.7 31
Numerical specimens [34] 32.4 6.6 31.4 1.3

Specimen in this paper 34.6 0.3 31.6 1.9

As shown in Figure 6, the descending sections of these stress–strain curves exhibit a
large dispersion. The descending section is very sensitive to the aggregate structure [22]
and material properties [35], and it is found that in this paper the pore structure also has
a great influence on it. This may be the reason for the large dispersion of the descending
section. The comparison results indicate that the CRAMs constructed in this paper can well
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simulate the mechanical responses of concrete under uniaxial compressive load with the
calibrated material parameters as listed in Table 3.

3. Numerical Experiments and Analysis of Results

Quasi-state uniaxial compression experiments are performed on 25 mesoscopic speci-
mens with different pore structures, as shown in Table 2.

3.1. Analysis of Cracking Process

Concrete cracking is a process in which microscopic cracks are initiated, expanded,
connected, and finally form macroscopic cracks [71]. Based on previous research expe-
rience [72,73] and the numerical experiment results obtained in this paper, the cracking
process is classified into three levels: the initiation stage of micro-cracks, the stable de-
velopment stage of micro-cracks, and the unstable crack propagation stage. Cracking at
each stage shows different characteristics and is significantly affected by the pore structure.
According to the visual cracking process obtained from the experiments in this paper, the
influence of the pore structure on the concrete failure process is analyzed.

3.1.1. Failure Process of the Concrete Specimen with Porosity of 0%

1. The initiation stage of micro-cracks (σ/σmax < 0.3~0.5);

The damage degree of the CIE_ITZ and CIE_mor characterized by the damage variable
D characterizes the damage degree of the ITZ and cement mortar to a certain extent. From
the visual cracking process, it can be seen that the micro-cracks at this stage first initiate
at the periphery of the specimen and then expand to the center. The damage propagation
of the ITZ from the periphery to the center of the specimen is much faster than that of
cement mortar. The reason may be that the stress concentration at ITZ is serious, and
the strength of the ITZ is about 33~67% of mortar [74]. Most of the damage variables of
CIE_mor in the later stage of this stage are no more than 0.55, which are distributed on
the periphery of the specimen. The distribution of CIEs with D = 0.15 when σ/σmax ≈ 0.3
are shown in Figure 7a where the black line segments represent CIEs. It can be seen that
almost all CIEs with D = 0.15 are distributed in the mortar around the specimen. This
indicates that the damage of the cement mortar during this stage has not extended to the
center of the specimen. Most damage variables for CIE_ITZ are centered between 0.4 and
0.96. Figure 7b shows the distribution of the CIEs with D = 0.89 when σ/σmax ≈ 0.3, from
which it can be seen that all the CIEs with D = 0.89 are distributed in the ITZ. This indicates
that the damage of the ITZ at this stage has extended to the center of the specimen. The
damage of the ITZ in Figure 7b has expanded to the center of the specimen and does not
show the expansion process. Figure 8 shows the CIEs with D = 0.69 and D = 0.55 when
σ/σmax ≈ 0.136, from which it can be seen that CIEs with D = 0.69 are mainly distributed
in zone 1, and CIEs with D = 0.55 are mainly distributed in zone 2. Zone 1 represents the
peripheral area of the specimen, and zone 2 represents the central area of the specimen. In
the stage of damage development, the damage of the first damaged area will continue to
increase with the increase in the load. Therefore, the damage degree of the first damaged
area will be greater than that of the later damaged area. From this, it can be judged that
the damage of the ITZ extends from zone 1 to zone 2, which shows the damage process
extending from the periphery to the center of the specimen.

2. The stable development stage of micro-cracks (0.3~0.5 < σ/σmax < 0.75~0.9);

The internal cracks of the ITZ and cement mortar continue to develop as the load
increases. Figure 9a shows the distribution of the CIEs with D = 0.6 when σ/σmax ≈ 0.81.
Comparing Figures 7a and 9a, it can be found that the damage expansion process from
the periphery to the center of the specimen has been completed during this stage. Most
of the damage variables of CIE_mor are less than 0.987. The CIEs with D = 0.82 when
σ/σmax ≈ 0.81 are shown in Figure 9b. Most damage variables for CIE_ITZ are centered
between 0.95 and 0.998. The CIEs with D = 0.992 are shown in Figure 9c. It can be seen that
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in the later stage of this stage, the damage level of the mortar is still smaller than that of
the ITZ.
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3. The unstable crack propagation stage (σ/σmax > 0.75~0.9);

The CIEs with D = 0.9 when σ/σmax ≈ 0.999 (ε < peak strain εc) are shown in Figure 10a.
Comparing Figures 9b and 10a, it can be seen that the cracks in the mortar greatly increase
under high stress. When approaching the ultimate stress, the maximum damage variable
of CIE_mor reaches about 0.994. The CIE_mor with D = 0.994 when σ/σmax ≈ 0.999 (ε < εc)
are shown in Figure 10b, where the black line segment represents the CIE, and the red line
segment represents the ITZ. It can be seen that almost all the heavily damaged areas in
the mortar are concentrated near the ITZ. Many scholars [72,75] speculate that the severely
damaged areas in the cement mortar are caused by cracks in the ITZ propagating into the
mortar. Most damage variables for CIE_ITZ are centered between 0.995 and 0.9995, and
the maximum has reached about 0.99965. The CIEs with D = 0.999 when σ/σmax ≈ 0.999
(ε < εc) are shown in Figure 10c. It can be seen that almost all CIEs with D = 0.999 are
distributed in the ITZ. From this, it can be inferred that the damage degree of the mortar is
still smaller than that of the ITZ until the ultimate stress is reached.

After reaching the ultimate stress, macroscopic cracks form first in the most severely
damaged area of the ITZ, and quickly penetrate with the surrounding cracks in the ITZ
and cement mortar, as shown in Figure 11a. With the generation of macroscopic cracks,
the stress drops rapidly. The final failure of the specimen is shown in Figure 11b, with the
formation of two intersecting macroscopic cracks.
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3.1.2. Cracking Process of the CRAMs with Pores

Taking specimen L-2-1 as an example, the failure process analysis of the concrete
specimen with pores is illustrated.
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1. The initiation stage of micro-cracks (σ/σmax < 0.3~0.5);

The CIEs with D = 0.27 and D = 0.86 when σ/σmax ≈ 0.36 are shown in Figure 12a,b,
where the black circles represent pores, and the black line segments represent CIEs. As
shown in Figure 12a, for the concrete specimens with pores, the damage in the cement
mortar first occurs in the pore-concentrated area at the periphery of the specimen, which
is caused by the stress concentration in the pore-concentrated area. At this stage, the
failure process of the concrete specimens with pores is basically the same as that of the
concrete specimen without pores. The damage also shows an obvious expansion law from
the periphery to the center of the sample. Later in this stage, the damage of the ITZ has
expanded to the center of the specimen, as shown in Figure 12b, while the damage of the
mortar is still distributed on the periphery of the specimen, as shown in Figure 12a. From
this, the presence of pores does not accelerate the propagation of the damage in the mortar
from the periphery to the center of the specimen.
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2. The stable development stage of micro-cracks (0.3~0.5 < σ/σmax < 0.75~0.9)

The CIEs with D = 0.6 when σ/σmax ≈ 0.84 are shown in Figure 13a. Comparing
Figures 12a and 13a, it can be found that, like the specimen without pores, the damage
in the cement mortar also spreads to the center of the specimen at this stage. Comparing
Figures 9a and 13a, it can be found that the pore structure makes the damage in the mortar
more localized. This may be due to the damage and deformation of the cement mortar
around the pores, releasing the stress of the cement mortar at other locations. The damage
variables of CIE_mor are almost no more than 0.94. Figure 13b shows the CIEs with D = 0.8
when σ/σmax ≈ 0.84, where the red arrow represents the load direction. The severely
damaged areas in the mortar are mainly concentrated on the bearing paths parallel to
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the load direction, as shown in Figure 13b. The damage variables of CIE_ITZ are mainly
distributed in the range of 0.84~0.996. The CIEs with D = 0.98 when σ/σmax ≈ 0.84 are
shown in Figure 13c. It can be seen that even if there are pores, the most severely damaged
area in the concrete specimen remains the ITZ.
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3. The unstable crack propagation stage (σ/σmax > 0.75~0.9).

Damage in ITZ and mortar develops rapidly under high stress. The CIEs for D = 0.83
when σ/σmax ≈ 0.989(ε < εc) are shown in Figure 14a. Comparing Figures 10a and 14a, it
can be seen that the damage of the cement mortar of the specimen with pores still shows
strong localization at this stage. The CIEs with D = 0.99 when σ/σmax ≈ 0.989(ε < εc) are
shown in Figure 14b. It can be seen from Figure 14b that the damage of the mortar is still
smaller than that of the ITZ before reaching the ultimate stress.

Figure 15 shows the final failure of some concrete specimens with different pore
structures but the same aggregate structure, from which it can be found that the macroscopic
cracks are heavily influenced by the pore structure. Combining the process of generation
and development of macroscopic cracks with the stress–strain curve of the specimen, it is
found that the sudden drops in the descending section of the stress–strain curve are often
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accompanied by the generation and expansion of macroscopic cracks. Taking specimen
S-4-1 as an example, Figure 16 shows its stress–strain curve, from which it can be seen
that there are three sudden drops in the descending section. Figure 17 shows the cracks of
the specimen after the first sudden drop (corresponding to point A marked in Figure 16),
from which it can be seen that the first sudden drop is caused by the formation of the
first macroscopic crack marked I in Figure 17. Figure 18 shows the cracks of the specimen
after the second sudden drop in stress (corresponding to point B marked in Figure 16),
from which it can be seen that the second sudden drop is caused by the development of
the first macroscopic crack and the generation of the second macroscopic crack marked II
in Figure 18. Figure 19 shows the cracks of the specimen after the third sudden drop in
stress (corresponding to point C marked in Figure 16), from which it can be seen that the
third sudden drop is caused by the development of the second macroscopic crack and the
generation of the third macroscopic crack marked III in Figure 19. This may be caused by
the sudden reduction in the load-bearing area of the specimen due to the sudden generation
and development of macroscopic cracks.
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Figure 19. Cracks of specimen S-4-1 at point C.

In recent years, more and more attention has been paid to the experimental research
of concrete meso-structure. Using CT technology to observe and study internal cracks
in concrete has gradually become a research hotspot. Dang Fanning et al. [76] used CT
technology to observe the internal cracking process of concrete under uniaxial compressive
load. The scan sequence is shown in Figure 20, and the obtained CT image can been seen
in the reference [76]. It can be seen from the CT images that before the peak stress, no
macroscopic cracks are formed inside the concrete, which is the same as the results in
this paper. The 5th scan after the peak stress shows that the sharp drop in peak stress is
accompanied by the formation of macroscopic cracks. However, due to insufficient stiffness
of the loading equipment, it is difficult to measure the development process of macroscopic
cracks in the descending section of the specimen. In the fifth scan, a number of macroscopic
cracks have been generated, which is equivalent to the state of point C in Figure 16 of the
simulated test in this paper. This not only proves the correctness of the conclusions of this
paper, but also proves the superiority of this study.

The stress–strain curves of the 25 specimens established in this paper are shown
in Figure 21. Combining Figure 21 and Table 5, it can be seen that the peak stress and
modulus decrease with increasing total porosity, indicating that the total porosity has a great
influence on the ascending segment of the stress–strain curve. However, the descending
segments of the stress–strain curves show obvious randomness, even for specimens with
the same total porosity. Visualizing the cracking process shows that after the occurrence of
macroscopic cracks, the load is mainly borne by the concrete in the uncracked area and the
cement mortar and aggregate in the cracked area through mutual friction and occlusion.
Macroscopic cracks will occur soon after the stress–strain curve enters the descending
section, and the generation and development of macroscopic cracks are extremely random,
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which may be the reason for the large difference and significant randomness of the stress–
strain descending section.
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Table 5. Mechanical properties of 25 CRAMs.

Sample Modulus (MPa) Strength (MPa) Peak Strain (µε)

0-1 34,451 26.106 1.272
S-1-1 32,860 23.263 1.174
S-1-2 33,412 23.075 1.076
M-1-1 34,669 23.788 1.139
M-1-2 33,985 22.363 1.018
L-1-1 34,009 22.441 1.170
L-1-2 33,707 23.010 1.078
S-2-1 31,616 19.622 1.109
S-2-2 31,564 19.845 1.017
M-2-1 31,866 19.418 0.958
M-2-2 31,629 20.796 1.139
L-2-1 32,062 19.138 0.901
L-2-2 32,000 19.998 0.957
S-3-1 29,944 18.991 1.139
S-3-2 30,209 18.921 0.958
M-3-1 30,287 18.297 1.018
M-3-2 30,241 18.321 1.018
L-3-1 30,126 18.606 0.929



Materials 2022, 15, 4594 21 of 34

Table 5. Cont.

Sample Modulus (MPa) Strength (MPa) Peak Strain (µε)

L-3-2 30,279 18.499 1.047
S-4-1 28,343 16.788 1.077
S-4-2 28,570 17.104 1.048
4-1-M 28,355 16.673 0.988
4-2-M 28,282 17.611 1.108
L-4-1 28,308 16.808 1.047
4-2-L 28,476 17.129 1.048

3.2. Effect of Pore Structure on Compressive Strength of Concrete

The compressive strength, elastic modulus, and peak strain of the 25 specimens are
shown in Table 5. The secant modulus at 50% of the peak stress in the ascending segment
of the stress–strain curve is regarded as the elastic modulus [72,77], which is about the
working stress of the concrete structure in the service stage [72]. The analysis, discussion,
and conclusions based on the calculation results of this paper all imply a premise, that
is, within the range of parameter values studied in this paper. For example, a conclusion
drawn in this paper is that the quadratic polynomial function can well fit the relationship
between the modulus and the total porosity. The implicit premise is that the applicable
range of this conclusion is that the total porosity is in the range of 0~4%. It is hereby
declared, and no special explanation will be made later.

In existing studies, the relationship between the pore structure and mechanical be-
haviors of concrete is usually described by polynomial relationships [4,57], exponential
relationships [41,78], and power function relationships [2,79]. However, the previous stud-
ies have not achieved control variables for pore structure. Changes in concrete mechanical
behaviors are caused by changes in pore structure and aggregate structure. To verify the
rationality of these three functional relationships in describing the relationships between
concrete mechanical behaviors and pore structure, this paper uses these three functions to
fit the relationships between concrete mechanical parameters and pore structure parameters.
Figure 22 shows the relationship between compressive strength and total porosity. Table 6
shows the fitting results of these three functions, from which it can be seen that all these
three functions fit well. This paper recommends an exponential function. The exponential
function was used to fit Gao Hui’s experimental data [4], and the fitting results are excellent,
as shown in Figure 23. It can be seen that the change in aggregate structure did not change
the exponential function relationship between total porosity and compressive strength.
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Table 6. Fitting results of the relationship between compressive strength and total porosity.

Function Type Fit Function Correlation Coefficient (R2)

Polynomial function y = 0.375x2 − 3.776x + 26.227 0.9635
Exponential function y = 14.04 + 12.39e−x/2.846 0.964

Power function y = 831.54 − 808.61x0.0052 0.959
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As can be seen from Table 5, the maximum change in the compressive strength of
the specimens with different sub-porosities but the same total porosity and aggregate
structure is 1.658 MPa, which occurs in the specimen with total porosity of 2%, accounting
for 8.4% of its compressive strength. The minimum change is 0.02 MPa, which occurs in the
specimen with total porosity of 4%, accounting for 0.12% of its compressive strength. The
maximum change in the compressive strength of the specimens with different pore space
distribution but the same aggregate structure, total porosity, and sub-porosity is 1.378 MPa,
accounting for 6.96% of its compressive strength. The minimum fluctuation amplitude is
0.024 MPa, which occurs between specimens M-3-1 and M-3-2, accounting for 0.13% of its
compressive strength.

Figure 24 shows the compressive strength of three types of concrete established in this
paper. For samples with the same volume and total porosity, the greater the sub-porosity
of macropores, the smaller the number of pores contained in the specimen. Macropores
tend to weaken the strength of the specimen, but a decrease in the number of pores tends
to strengthen the specimen. Concrete strength is affected by a combination of these two
factors, neither of which dominates, and the strength exhibits strong randomness, as shown
in Figure 24.
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Figure 25 shows the relationship between PSSA and compressive strength. The fitting
results of polynomial, exponential, and power functions are shown in Table 7, from which
it can be found that all these three functions can fit well. This paper recommends a power
function. It can be found from Figure 25 that for the specimens with the same aggregate
structure and total porosity, the effect of PSSA on compressive strength does not show
regularity. Related studies [80–82] concluded that the strength of concrete decreases with
increasing PSSA, which is the same as the results of this paper. However, they did not study
according to the control variable method, and the conclusions reached stayed on qualitative
analysis rather than quantitative analysis. The research on the relationship between PSSA
and concrete strength based on the control variable method has not been reported yet.
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Figure 25. Compressive strength of three types of specimens.

Table 7. Fitting results of the relationship between PSSA and compressive strength.

Function Type Fit Function Correlation Coefficient (R2)

Polynomial function y = 25.38 − 44.56x2 + 57.39x 0.942
Exponential function y = 15.08 + 10.944e−x/0.1835 0.945

Power function y = 41.42 − 29.73x0.1698 0.946

Figure 26 shows the relationship between the APR and the compressive strength. It
can be found that the APR decreases as the total porosity increases. For specimens with
the same volume and total porosity, the higher the macropore content, the larger the APR.
With the increase in the APR, the compressive strength tends to increase, but this is due to
a decrease in the total porosity. For specimens with the same aggregate structure and total
porosity, the compressive strength is largely unaffected by APR, as shown in Figure 26,
which is consistent with Du Xiuli’s findings [2].
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3.3. Effect of Pore Structure on the Compressive Elastic Modulus

The experimental study [78] and numerical simulation experimental studies [41,83]
found that the exponential and linear functions can well describe the relationship between
modulus and total porosity. However, in these experiments, both the total porosity and
aggregate structure changed. The relationship between compressive elastic modulus and
total porosity for samples with different total porosity but the same aggregate structure is
shown in Figure 27. The fitting results of exponential function, linear function and power
function are shown in Table 8. It can be found that all these three types of functions can well
fit the relationship between the compressive modulus and the total porosity. Considering
the simplicity of the functional relationship, this paper recommends a linear function. This
is consistent with Xiao’s findings [84] and Zhu’s findings [83]. It can be seen that the
linear function relationship between compressive modulus and total porosity is basically
unaffected by aggregate distribution.
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Table 8. Fitting results of the relationship between compressive modulus and total porosity.

Function Type Fit Function Correlation Coefficient (R2)

Linear function y = 35,269 − 1708.1x 0.970
Exponential function y = 54,731 − 19,701ex/13.706 0.972

Power function y = 36,091 − 2336x0.858 0.976

As can be seen from Table 5, the maximum and minimum fluctuation amplitudes of the
compressive modulus of the specimens with different sub-porosities but the same aggregate
structure and total porosity are 1809 MPa and 288 MPa, respectively. The maximum occurs
in the specimen with total porosity of 1%, accounting for 5% of its compressive elastic
modulus. The fluctuation amplitude tends to decrease with the increase in the total porosity.
The minimum occurs in the specimen with total porosity of 4%, accounting for 1% of its
compressive modulus. The maximum change in the compressive modulus of the specimens
with different pore space distribution but the same aggregate structure, total porosity, and
sub-porosity is 648 MPa, which occurs between specimens M-1-1 and M-1-2, accounting
for 2% of its compressive modulus.

The moduli of the three types of specimens are shown in Figure 28. The greater the
sub-porosity of macropores of the samples with the same volume and total porosity, the
lower the number of pores. Macropores in the specimen tend to lower the elastic modulus
of the specimen, while a reduction in the number of pores tends to increase the elastic
modulus. The elastic modulus is affected by a combination of these two factors, neither
of which dominates, and the elastic modulus exhibits strong randomness, as shown in
Figure 28.
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Figure 29 shows the relationship between APR and modulus, and Figure 30 shows
the relationship between modulus and PSSA. It can be found from Figure 29 that for the
specimens with the same aggregate structure and total porosity, the modulus is basically
unaffected by the APR, which is the same as Du Xiuli’s research results [2]. The linear,
exponential, and power functions are used to fit the relationship between PSSA and
compressive elastic modulus, and the results are shown in Table 9. It can be found that all
these three types of functions can well fit the relationship between PSSA and compressive
modulus. Considering the simplicity of the functional relationship, this paper recommends
a linear function.

Figure 29. Compressive moduli of three types of specimens.
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Table 9. Fitting results of the relationship between PSSA and compressive modulus.

Function Type Fit Function Correlation Coefficient (R2)

Linear function y = 3506 − 21,942x 0.979
Exponential function y = 8259 + 27,089e−x/1.036 0.980

Power function y = 35,720 − 19,509x0.830 0.980

3.4. Effect of Pore Structure on Peak Strain of Concrete

The relationship between peak strain and total porosity are shown in Figure 31. Taking
the average value as the calculated value of the mechanical parameters, the peak strains
of the specimens with different total porosity are shown in Table 10. It can be seen from
Table 10 that when the total porosity changes by 1%, the maximum change in peak strain
is 0.163 µε, and the minimum change is 0.0047 µε. It can be seen from Table 5 that
the maximum fluctuation amplitude of peak strain of the specimens with different sub-
porosities but the same aggregate structure and total porosity is 0.238 µε, which occurs
between specimens M-2-2 and L-2-1, accounting for 23.5% of its peak strain. The maximum
fluctuation amplitude of peak strain of the specimens with different pore space distribution
but the same total porosity and sub-porosity is 0.181 µε, which occurs between specimens
M-2-1 and M-2-2, accounting for 17.3% of its peak strain. From this, it can be judged
that sub-porosity and pore space distribution have stronger effects on peak strain than
total porosity.
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Table 10. The peak strains of the specimens with different total porosity.

Total Porosity 0% 1% 2% 3% 4%

Peak strain 1.2720 1.1092 1.0135 1.0182 1.0527

Figure 32 shows the peak strain of three types of concrete. It can be seen from Figure 32
that the peak strain of the Sma-type specimen is larger than that of the Mid-type specimen.
For specimens with the same total porosity, the Sma-type specimens have more small pores,
fewer macropores, and higher compactness than the Mid-type specimens. This may be the
reason why the Sma-type specimen is more ductile than the Mid-type specimen, i.e., the
peak strain is larger. However, the Lar-type specimen does not continue this trend. It can
be seen from Figure 32 that the peak strain of the Sma-type specimen and the Mid-type
specimen is basically not affected by the total porosity, while the peak strain of the Lar-type
specimen fluctuates greatly with the change in the total porosity. The peak strain of the
Lar-type specimen with total porosity = 1% is large enough to be comparable to that of the
Sma-type specimen, and then decreases sharply as the total porosity becomes 2%. It can be
seen from Table 5 that the peak strain of the specimen L-1-1 is 1.170 × 10−3, which is close
to the maximum value of the peak strain of all specimens. This is why the peak strain of the
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Lar-type specimen with total porosity = 1% is comparable to that of the Sma-type specimen.
The peak strain of the specimen L-2-1 is 0.901 × 10−3, which is the minimum value of the
peak strain of all specimens. This is why the Lar-type specimen with total porosity = 2%
drops sharply. By studying the visual cracking process of the specimen L-1-1 and the
specimen L-2-1, it is found that the peak strain is closely related to the morphology of the
first macroscopic crack of the specimen. After the specimen reaches peak strain, the first
macroscopic crack germinates in the most damaged areas in the cement mortar. Therefore,
the morphology of the first macroscopic crack can reflect the damage of the specimen when
it is under peak stress to a certain extent. If the first macroscopic crack passes through
the middle of the specimen and has a long length, the specimen often exhibits strong
ductility and has a large peak strain, such as the L-1-1 specimen. We call this morphology
of the first macroscopic crack Mode 1. Figure 33 shows the first macroscopic crack of
the specimen L-1-1, marked as a. If the first macroscopic crack appears at the end of the
specimen and penetrates the specimen with a short length, the specimen is prone to brittle
failure and has a small peak strain, such as the specimen L-2-1. We call this morphology
of the first macroscopic crack Mode 2. Figure 34 shows the first macroscopic crack of the
specimen L-2-1, marked as b. Similar patterns were found in the peak strain and failure
of other specimens such as Specimen S-3-1 and Specimen S-3-2. Figure 35 show the first
macroscopic cracks of Specimen S-3-1 and Specimen S-3-2, marked as c and d, respectively.
Specimen S-3-2 and Specimen S-3-1 have the same aggregate structure, total porosity, and
sub-porosity but different pore spatial distributions. Specimen S-3-1 belongs to Mode 1
with a large peak strain of 1.139 × 10−3. Specimen S-3-2 belongs to Mode 2 with a small
peak strain of 0.958 × 10−3, which is 0.181 × 10−3 less than that of the S-3-1 specimen. The
peak strain and the morphology of the first macroscopic crack are affected by many factors,
such as porosity, pore spatial distribution, and aggregate structure. As can been seen from
the large difference between the peak strains of specimen L-3-1 and specimen L-3-2, the
influence of pore spatial distribution on the peak strain cannot be ignored.

The relationship between peak strain and PSSA are shown in Figure 36, and the
relationship between APR and peak strain are shown in Figure 37. It can be found that the
PSSA and APR have no regular effect on peak strain (Figure 38).
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operating mechanism, and sparse behavior data. GRA is used to explore the effect of pore
structure on the concrete mechanical behavior under uniaxial compressive loading, and the
total porosity, sub-porosity of each pore gradation segment, APR, and PSSA are taken as
the comparison columns. Compressive strength, peak strain, and modulus are used as the
reference columns, respectively. The specific calculation process is shown in Reference [85]
and the calculated relational grades are shown in Table 11.

Table 11. Relational grades.

Project Total Porosity T [k1,k2] T [k2,k3] T [k3,k4] T [k4,k5] APR PSSA

Elastic
modulus 0.999873 0.999847 0.999832 0.999829 0.999826 0.999825 0.999824

Strength 0.8501 0.81425 0.79458 0.79041 0.7869 0.78596 0.7849
Peak strain 0.72243 0.81349 0.8259 0.7939 0.76944 0.7661 0.75169

It can be found from Table 11 that the descending order of the relational grades
between pore structure parameters and compressive strength is: total porosity > T [k1,k2]
> T [k2,k3] > T [k3,k4] > T [k4,k5] > APR > PSSA. For pores with a diameter of 0.3~1.6
mm, the larger the pore size, the smaller the effect of its content on the compressive
strength. Compressive strength is most affected by total porosity. The pore structure
parameters studied in this paper have the same sequential effect on the elastic modulus
and compressive strength of concrete. The descending order of influence of pore structure
parameters on peak strain is: T [k2,k3] > T [k1,k2] > T [k3,k4] > T [k4,k5] > APR > PSSA
> total porosity. Among the pore structure parameters studied, total porosity is the least
important factor affecting peak strain, but the most important factor affecting compressive
strength and modulus. Peak strain is most affected by sub-porosity of pores with radii in
the range of 0.25~0.4 mm. Among the pore structure parameters considered in this paper,
PSSA has the least influence on the compressive strength and modulus. However, from the
analysis in Sections 3.2 and 3.3, it can be seen that there are obvious functional relationships
between modulus and PSSA, and between compressive strength and PSSA, which is of
great significance for quantitative analysis of the effect of pore structure on elastic modulus
and strength. Furthermore, the influence of total porosity on peak strain is smaller than
that of PSSA. Therefore, it is necessary to use PSSA as a parameter to describe the pore
structure and explore the effect of pore structure on the mechanical behavior of concrete.

4. Conclusions

A novel CRAMM is proposed to model the pore structure by parameters such as pore
gradation, total porosity, pore size, and sub-porosity of each pore gradation. To study the
effect of pore structure on the mechanical behavior of concrete, 25 mesoscopic concrete
specimens with different pore structures but the same aggregate structure are established
and subjected to uniaxial compression tests. The effects of total porosity, sub-porosity of
each pore gradation, PSSA, and APR on the concrete cracking process, modulus, peak
strain, and compressive strength are investigated.

(1) Under uniaxial compressive loading, the cracking process of specimens with pores
and specimens without pores is very similar. The damage first germinates at the
periphery of the sample and then expands toward the center. The damage of the ITZ
spreads to the center of the specimen in the relatively stable stage of the micro-cracks,
which is faster than that of cement mortar. The damage of cement mortar spreads
toward the center of the sample in the stable development stage of the micro-cracks.

(2) The presence of the pore structure does not accelerate this expansion process, nor does
it change the phenomenon that the most damaged area in the concrete before peak
stress is the ITZ. However, the pore structure makes the germination and propagation
of the damage in cement mortar show obvious locality. The initiation and propagation
of macroscopic cracks are greatly affected by the pore structure.



Materials 2022, 15, 4594 31 of 34

(3) The sudden drops in the descending section of the stress–strain curve are often
accompanied by the generation and expansion of macroscopic cracks.

(4) The quadratic polynomial, exponential, and power functions can well fit the relation-
ship between total porosity and compressive strength and the relationship between
PSSA and compressive strength.

(5) The linear, exponential, and power functions can well characterize the relationship
between compressive modulus and total porosity and the relationship between PSSA
and compressive modulus.

(6) For the concrete specimens with the same aggregate structure and total porosity,
the modulus and compressive strength show randomness with the increase in the
sub-porosity of macropores, and the APR has little effect on compressive strength
and modulus.

(7) The influence of pore space distribution and sub-porosity on peak strain is greater
than that of total porosity on peak strain. The effects of PSSA and APR on peak strain
do not show obvious regularity.

(8) According to the GRA, the pore structure parameters considered in this paper have
the same order of influence on the modulus and compressive strength of concrete,
which is different from the order of influence on the peak strain. Total porosity has the
least effect on peak strain but the largest effect on compressive strength and modulus.
For pores with a diameter of 0.3~1.6 mm, the larger the pore size, the smaller the
effect of its content on the modulus and compressive strength. The peak strain is most
affected by the sub-porosity of pores with radii in the range of 0.25~0.4 mm.
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