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Abstract: In this study, a thick hollow axisymmetric functionally graded (FG) cylinder is investigated
for steady-state elastic stresses using an iteration technique and the finite element method. Here, we
have considered a functionally graded cylinder tailored with the material property, namely, Young’s
modulus, varying in an exponential form from the inner to outer radius of the cylinder. A mathe-
matical formulation for stress analysis of functionally graded cylinder under internal and external
pressure conditions is developed using constitutive relations for stress–strain, strain–displacement
relations and the equation of equilibrium. The effect of the in-homogeneity parameter on radial
displacement, radial and tangential stresses in a functionally graded cylinder made up of a High
Carbon Steel (HCS) metal matrix, reinforced with Magnesium Oxide (MgO) ceramic is analyzed. The
iterative method implemented is fast and converges to the solution which can be further improved by
considering a higher number of iterations. This is depicted graphically by using radial displacement
and stresses in a pressurized functionally graded cylinder obtained for the first two iterations. An
iterative solution for non-FGM (or homogeneous material) is validated using the finite element
method. The mechanical responses of the functionally graded cylinder obtained from the iterative
method and the finite element method are then compared and found to be in good agreement. Results
are presented in graphical and tabular form along with their interpretations.

Keywords: functionally graded material (FGM); pressure vessel; Young’s modulus; finite element
method (FEM); stress–strain

1. Introduction

Functionally graded materials (FGMs) are a new class of advanced and innovative
materials and are usually made up of metals and ceramics. There are several structural
components with a cylindrical shape, which are commonly used in many engineering
applications such as pressure vessels, submarine, boiler, gun pipe, drive shaft, CNG
storage cylinder etc. Due to the sharp interface in the traditional composite material a
serious drawback of delamination was observed by Japanese material scientists during
the aerospace project in 1984 [1]. This material failure was one of the major causes that
led to the development of functionally graded materials (FGMs). Basically, functionally
graded materials are non-homogeneous engineering materials in which a sharp interface
can be changed with a smooth transitioning interface that reduces stress concentration
at the interface and avoid the occurrence of material failure. The study on the dynamic
behavior of a viscoelastic hollow FGM cylinder under thermomechanical loads is done
using the local Petrov–Galerkin method by Akbari et al. [2]. Azad et al. [3] investigated non-
linear higher order differential equation using a new technique combining the perturbation
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and harmonic balance methods, and obtained good results even in strong non-linearity.
Two rotating FG axisymmetric disks are discussed; one with uniform thickness and the
other following a hyperbolic or parabolic convergent profile for thickness. The mechanical
responses for both disks are compared by Bayat et al. [4]. The authors indicate that the
thickness profile along parabolic or hyperbolic convergent modes is more efficient than
uniform thickness in the designing application of rotary disks. The numerical solution for a
disk made of metal matrix composite such as Al-SiC is carried out using ANSYS® and the
results are compared with an analytical solution by Bektaş and Akça [5]. Two-dimensional
finite element and generalized differential quadrature methods are used to study the
response of free vibration in FGM plates and cylinders and the result is compared with
three dimensional analytical solutions by Brischetto et al. [6]. Chauhan and Srivastava [7]
have discussed iterative schemes for several types of Runge–Kutta methods to find the
numerical solution of ordinary differential equations. Wave propagation for a functionally
graded (FG) circular cylinder made of Ni and Al2O3 is discretized using the finite difference
method (FDM) under dynamic loads and the power law material variation in a radial
direction [8]. Ebrahimi and Najafizadeh [9] have worked on the free vibration analysis of a
2D FG cylindrical shell where boundary conditions and spatial derivatives are discretized
using generalized integral quadrature and generalized differential quadrature methods.
An exponentially graded rotating thick cylinder is investigated for elastic analysis using
the Frobenius method by Gharibi et al. [10]. Using the homotopy perturbation method, an
FGM annular rotating disk is investigated for elasticity and plasticity analysis under plane
stress conditions where the thickness of the disk and densities are varying in the radial
direction [11]. Applying 3D finite element analysis by using commercial software ABAQUS,
the influence of material parameters on the response of composite steel-concrete beam is
studied by Jaafer and Kareem [12]. An axisymmetric elastic stress analysis is performed
for a functionally graded spinning disk where thickness and material properties of the
rotary disk vary along the power law function, and the numerical solution is obtained by
applying the finite difference method under clamped-clamped, clamped-free, and free-free
boundary conditions [13]. Kacar [14] has derived an elastic analytical solution for an FGM
disk, cylinder and sphere, where material changes by power law in the radial direction.
Using the energy principle and Lagrange equations, a dynamic model of structure is
investigated assuming combined dynamic properties to obtain an optimum design [15].
Researchers [16,17] have analysed thermo-mechanical stresses in a functionally graded
rotating disk and it is observed that a disk made up of functionally graded material is
a better option than composite materials. An FGM hollow cylinder formed of alumina
(ceramic) and nickel (metal) is studied as an unsteady state thermo-mechanical problem
due to the change in point heat source subjected to convective heat transfer [18]. The
optimization of several functionally graded structures, such as rotating disk, tubes, plates,
spheres and cylinders, are discussed by Nikbakht et al. [19]. The authors of [20–22] have
studied 2D mechanical problems for functionally graded materials with cylindrical and
spherical geometry. The outcome of these investigations helps in understanding and
tailoring the design parameters of functionally graded materials. Singh and Sahni [23]
have carried out an analytical solution for the displacement and stresses of innovative
composite material made of FGM where material gradation and thickness change along the
radial dimension. Zafarmand and Hassani [24] have used the graded finite element method
to solve displacement and stress equations in radial and axial directions for solid and
annular disks whereas Emilio Martínez-Pañeda [25] studied the performance of functionally
graded properties using FEM. The elastic properties at macroscopic variation, inherent to
functionally graded materials (FGMs), were introduced at the element level by means of
nodal based gradation, often via an auxiliary (non-physical) temperature-dependence and
a Gauss integration point based gradation. Sahni et al. [1] presented a secondary creep
stress–strain analysis of a pressurized cylinder made up of FGM and demonstrated the
effect of varying the volume reinforcement of ceramic in a metal matrix on creep stresses
and strains in a functionally graded rotating cylinder. In this study, an axisymmetric thick
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hollow FGM cylinder is considered, which is made up of High Carbon Steel (HCS) as the
inner, and magnesium oxide (MgO) as the outer, material. The Poisson’s ratio is invariant
and Young’s modulus varies with the exponential law along the radial direction. This work
is based on steady state and plain strain conditions under uniform internal and external
pressure conditions. The results for displacement and stresses are carried out by a simple
iterative technique and are then compared with the results obtained by the finite element
method. A good agreement is found between these two methods with a small acceptable
error. A solution for stresses and displacement can be improved by considering a greater
number of iterations.

2. Mathematical Formulation of Stress Analysis

In this problem, an axisymmetric thick hollow cylinder, presented in Figure 1, is
considered under a steady state plane strain condition with inner and outer radii as a and b
respectively. Uniform internal and external pressures at the inner and outer surfaces of the
cylinder are denoted by Pa and Pb, respectively. Poisson’s ratio ν is kept constant and the
modulus of elasticity E(r) varies along the radial direction that follows exponential law,
given as [26]:

E(r) = Eaem(r−a), (1)

where m = 1
b−a log

(
E(b)
E(a)

)
. Here, E(a) and E(b) are constants of Young’s modulus at inner

and outer radii, respectively, and m is the material gradation parameter.

Figure 1. Axisymmetric functionally graded cylinder with inner radius a, outer radius b and under
internal and external pressure, Pa and Pb, respectively.

Figure 2 presents the variation of Young’s modulus in FGM and non-FGM cylinders.
The Young’s modulus for the FGM cylinder is continuously increasing under an exponential
profile given by Equation (1).

Using Navier’s equation in the radial direction for an axisymmetric functionally
graded cylinder can be given as [5]:

dσr

dr
+

σr − σθ

r
= 0, (2)
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where σr and σθ are radial and tangential stresses, respectively. From Hooke’s law for
isotropic material [10], we have:

σr = E(r)
(

λ
du
dr

+ δ
u
r

)
and σθ = E(r)

(
δ

du
dr

+ λ
u
r

)
, (3)

where radial displacement u is the function of radius, r. Lame’s parameters, δ and λ, can
be given [26] as:

λ =
(1 − ν)

(1 + ν)(1 − 2ν)
and δ =

ν

(1 + ν)(1 − 2ν)
. (4)

Under the plane strain condition, strain–displacement relation [26] can be given as:

εr =
du
dr

and εθ =
u
r

. (5)

The pressure boundary conditions prescribed at inner and outer radii are defined as:

σr(a) = −Pa and σr(b) = −Pb. (6)

Using Equations (1)–(5), Navier’s equation can be expressed in radial displacement as:

r2 d2u
dr2 + r

du
dr

− u = −mr2 du
dr

− mν

1 − ν
ru. (7)

Figure 2. Variation of Young’s modulus along the radius of the cylinder.

Iterative Solution Technique

Applying a simple iterative method [26] on Equation (7), the governing differential
equation can be written as:

r2 d2un+1

dr2 + r
dun+1

dr
− un+1 = −mr2 dun

dr
− mν

1 − ν
run , where n = 0, 1, 2, . . . . . . (8)
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The linear and non-linear parts from Equation (8) can be written as:

L(un(r)) = r2 d2un

dr2 + r
dun

dr
− un and N(un(r)) = −mr2 dun

dr
− mν

1 − ν
run. (9)

The initial solution can be obtained by solving Equation (9) as:

L(uo(r)) = 0 with B.C:
(

λ
duo

dr
+ δ

uo

r

)
a
= − Pa

E(a)
and

(
λ

duo

dr
+ δ

uo

r

)
b
= − Pb

E(b)
. (10)

The general solution of Equation (10) can be expressed as:

uo(r) =
C1

r
+ C2r. (11)

On applying boundary conditions using Equation (10) on Equation (11), we obtain
constants of integration, namely C1 and C2 given as:

C1 =
(Pbe−m(b−a)−Pa)a2b2

Ea(δ−λ)(b2−a2)
and C2 = − 1

Ea(λ+δ)

(
Pa +

(Pbe−m(b−a)−Pa)b2

(b2−a2)

)
.

The first iteration can be obtained by solving Equation (8) for n = 0 as:

r2 d2u1

dr2 + r
du1

dr
− u1 = −mr2 du0

dr
− mν

1 − ν
ru0, (12)

with boundary conditions given as:

E(a)
(

λ

(
du1

dr

)
a
+ δ
(u1

r

)
a

)
= −Pa and E(b)

(
λ

(
du1

dr

)
b
+ δ
(u1

r

)
b

)
= −Pb. (13)

Solving Equation (12), we get the solution for first iteration u1 as:

u1 =
C3

r
+ C4r − m(1 − 2ν)

(1 − ν)
C1 −

m
3(1 − ν)

C2r2. (14)

Applying boundary condition (13) on Equation (14), we get constants of integration
C3 and C4 as:

C3 =
a2b2

(δ − λ)(a + b)

(
−2λmC2

3(1 − ν)
− mδC2

3(1 − ν)
+

δmC1(1 − 2ν)

ab(1 − ν)
+

Pbem(b−a) − Pa

Ea(b − a)

)
(15)

and

C4 =
1

(λ + δ)

[
2λmbC2

3(1 − ν)
+

mbδC2

3(1 − ν)
+

m(1 − 2ν)C1

b(1 − ν)
− Pbe−m(b−a)

Ea

− a2

a + b

(
−2mλC2

3(1 − ν)
− mδC2

3(1 − ν)
+

mδ(1 − 2ν)C1

ab(1 − ν)
+

Pbe−m(b−a) − Pa

Ea(b − a)

)]
.

(16)

On repeating the above process on Equation (8) for n = 1, i.e.:

r2 d2u2

dr2 + r
du2

dr
− u2 = −mr2 du1

dr
− mν

1 − ν
ru1 (17)

and considering the boundary condition given as:

E(a)
(

λ

(
du2

dr

)
a
+ δ
(u2

r

)
a

)
= −Pa and E(b)

(
λ

(
du2

dr

)
b
+ δ
(u2

r

)
b

)
= −Pb, (18)
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we get the second iteration u2 as:

u2 = C6r +
C5

r
− mC4

3(1 − ν)
r2 +

m(2ν − 1)C3

(1 − ν)
− m2(ν − 2)C2

24(1 − ν)2 r3 +
νm2(1 − 2ν)C1

2(1 − ν)2 r log(r), (19)

where constants of integration C5 and C6 are obtained by using Equation (18) for the
boundary condition. Thus, C5 and C6 are evaluated as:

C5 = a2b2

(a+b)(δ−λ)

[
−m(2λ+δ)C4

3(1−ν)
− m2(3λ+δ)(a+b)(ν−2)C2

24(1−ν)2 − mδ(2ν−1)C3
ab(1−ν)

+ m2ν(λ+δ)(1−2ν)C1

2(b−a)(1−ν)2 log
(

b
a

)
+ Pbe−m(b−a)−Pa

Ea(b−a)

] (20)

and

C6 = 1
(δ+λ)

[
2λmbC4
3(1−ν)

+ λb2m2(ν−2)C2

8(1−ν)2 − m2λν(1−2ν)C1

2(1−ν)2 (1 + log b)

− δm(2ν−1)C3
b(1−ν)

+ δb2m2(ν−2)C2

24(1−ν)2 + δmbC4
3(1−ν)

− δνm2(1−2ν)C1

2(1−ν)2 log b − Pbe−m(b−a)

Ea

+ a2

a+b

(
m(2λ+δ)C4

3(1+ν)
+ m2(3λ+δ)(a+b)(ν−2)C2

24(1−ν)2 + mδ(2ν−1)C3
ab(1−ν)

− (λ+δ)m2ν(1−2ν)C1

2(b−a)(1−ν)2 log
(

b
a

)
− Pbe−m(b−a)−Pa

Ea(b−a)

)]
(21)

Since the remaining terms are too long to present here, we stop at this point. However,
by considering a greater number of iterations, the accuracy of the solution can be further
improved. Considering u2(r) as a second iteration in the displacement and substituting
u(r) = u2(r) in Equations (3) and (5), we obtain stresses along radial direction as:

σr(r) =
Eaem(r−a)

(1 + ν)(1 − 2ν)

[
(1 − ν)

(
−C5

r2 + C6 −
2mC4

3(1 − ν)
r − m2(ν − 2)C2

8(1 − ν)2 r2

+
νm2(1 − 2ν)C1

2(1 − ν)2 (1 + log(r))

)
+ ν

C5

r2 + νC6 +
νm(2ν − 1)C3

(1 − ν)r
− νmC4

3(1 − ν)
r

+
νm2(ν − 2)C2

24(1 − ν)2 r2 +
ν2m2(1 − 2ν)C1

2(1 − ν)2 log(r)

] (22)

and

σθ(r) =
Eaem(r−a)

(1 + ν)(1 − 2ν)

[
ν

(
−C5

r2 + C6 −
2mC4

3(1 − ν)
r − m2(ν − 2)C2

8(1 − ν)2 r2

+
νm2(1 − 2ν)C1

2(1 − ν)2 (1 + log(r))

)
+ (1 − ν)

(
C5

r2 + C6

)
+ (1 − ν)(

m(2ν − 1)C3

(1 − ν)r
− mC4

3(1 − ν)
r − m2(ν − 2)C2

24(1 − ν)2 r2 +
νm2(1 − 2ν)C1

2(1 − ν)2 log(r)

)]
.

(23)

Using Equations (5) and (19), radial and tangential strains can also be obtained.

3. Results and Discussion

We consider an axisymmetric functionally graded thick hollow cylindrical pressure
vessel with inner radius a = 0.4 m and outer radius b = 0.6 m under pressure condi-
tions of high internal–low external pressure (20–50 MPa) and low internal–high external
(20–50 MPa) pressure. Here, Poisson’s ratios νM = 0.295 and νC = 0.17 are considered
for inner (metal) and outer (ceramic) materials respectively. Poisson’s ratio ν for the FGM
cylinder is kept constant and is considered an average of νM and νC. The pressure vessel is
made up of High Carbon Steel (HCS) as the inner material and magnesium oxide (MgO)
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as the outer material [27]. Young’s modulus at the inner radius is E(a) = 207.5 GPa and at
the outer radius is E(b) = 317 GPa.

Numerical Computation

In this study, results for radial stress, tangential stress and displacement are obtained
numerically by using the FEM based solver COMSOL Multiphysics (5.4). The governing
differential equation as given by Equation (3), under the prescribed boundary conditions
given by Equation (8), is solved by using a solid mechanics module and axisymmetric
geometric conditions. Using the global analytical function, Young’s modulus is defined
over the domain of an axisymmetric functionally graded cylinder. As depicted in Figure 3,
the domain of the cylinder is discretized with triangular elements into an extremely fine
mesh by considering 5034 domain elements and 240 boundary elements. The model is then
solved using a linear direct PARDISO solver and results for radial stress, tangential stress
and displacement are obtained for a functionally graded cylinder with a relative tolerance
of 10−5. Computation of stresses and displacement is also carried out for non-FGM material
using a parametric sweep. The numerical solution obtained is then compared with an
iterative solution for both FGM and non-FGM materials. Radial displacement and stresses
have been solved up to two iterations using the iterative technique. After two iterations, a
good agreement can be observed between the results obtained from iterative technique and
FEM, which can further be improved by considering a greater number of iterations.

Figure 3. Finite element meshing of cross-section for an axisymmetric functionally graded cylinder.

In Table 1, a comparison of the radial displacement in the FGM cylinder by FEM and
iterative methods is shown, where the values in both methods are decreasing from the
inner to the outer radius. Minimum and maximum absolute percentage errors of 2.82% and
4.03% occur at internal and external radii respectively. In Table 2, a comparison of radial
stress in the FGM cylinder obtained by FEM and iterative methods is shown for different
radial points. This table shows that radial stress decreases along the radius of the cylinder.
At the internal radius, the absolute error is 0.04% and at the outer radius, an absolute error
of 0.03 is observed; overall, % error along the radius of the cylinder is less than 1. Maximum
error can be seen at radius r = 0.525 which is 0.84%. Derived values of tangential stress
for the FGM cylinder by FEM and iterative methods are shown for different radial points
in Table 3. Tangential stress is decreasing from the inner to the outer radius of the FGM
cylinder. From Table 3, we can observe that the propagation of error has a decreasing trend
from inner to outer radial points. Maximum absolute error is obtained at the internal radius
as 3.98% and the minimum error at the external radius is 1.93%.

Figures 4–9 present stresses and displacement in FGM and non-FGM cylinders under
internal/external pressure conditions obtained using the iterative technique. Figure 4
shows radial stress under internal pressure, Pa = 50 MPa. Under the effect of internal
pressure, radial stress in the FGM cylinder is higher in magnitude as compared to non-FGM.
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It can be observed due to higher internal pressure and increasing elasticity modulus from
inner to outer radii of the FGM cylinder. It can be noted from Figure 4 that radial stress is
on the higher side at the internal radial points of the cylinder due to low elasticity modulus
at the inner radial points as compared to the outer radial points. Iterative radial stress
in the cylinder under external pressure Pb = 50 MPa is depicted in Figure 5. It can be
observed that the magnitude of radial stress is lower in the FGM cylinder as compared to
the non-FGM cylinder.

Table 1. Comparison of radial displacement in FGM cylinder using iterative technique and FEM
under internal pressure, Pa = 50 MPa and external pressure, Pb = 20 MPa.

Radial Points Iterative Radial
Displacement

FEM Radial
Displacement Relative Error%

0.4 0.000111702 0.0001148556 2.82
0.425 0.000104959 0.0001080531 2.95
0.45 0.0000991793 0.0001022370 3.08
0.475 0.0000942017 0.0000972353 3.22

0.5 0.0000898958 0.0000929170 3.36
0.525 0.0000861567 0.0000891788 3.51
0.55 0.0000828990 0.0000859378 3.67
0.575 0.0000800525 0.0000831264 3.84

0.6 0.0000775589 0.0000806862 4.03

Table 2. Comparison of radial stress in FGM cylinder using iterative technique and FEM under
internal pressure, Pa = 50 MPa and external pressure, Pb = 20 MPa.

Radial Points Iterative Radial Stress FEM Radial Stress Relative Error%

0.4 −50 −49.98033938 0.04
0.425 −44.4208 −44.39839306 0.05
0.45 −39.5811 −39.63147769 0.13

0.475 −35.3391 −35.49674154 0.45
0.5 −31.5859 −31.80130361 0.68

0.525 −28.2363 −28.47351941 0.84
0.55 −25.2232 −25.4098732 0.74

0.575 −22.4924 −22.58186799 0.40
0.6 −20 −19.99327262 0.03

Table 3. Comparison of tangential stress in FGM cylinder using iterative technique and FEM under
internal pressure, Pa = 50 MPa and external pressure, Pb = 20 MPa.

Radial Points Iterative Tangential Stress FEM Tangential Stress Relative Error%

0.4 46.1103 47.9471693 3.98
0.425 43.6634 45.30832273 3.77
0.45 41.7588 43.18937037 3.43
0.475 40.2903 41.54299728 3.11

0.5 39.1781 40.26203588 2.77
0.525 38.361 39.31751127 2.49
0.55 37.792 38.64074181 2.25
0.575 37.4346 38.21511989 2.09

0.6 37.2599 37.97738751 1.93
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Figure 4. Radial Stress along the radius of the cylinder under internal pressure, Pa = 50 MPa.

Figure 5. Radial Stress along the radius of the cylinder under external pressure, Pb = 50 MPa.

Figure 6 presents tangential stress in the cylinder under the influence of internal
pressure Pa = 50 MPa. As seen from Figure 6, tangential stress under internal pressure
is tensile throughout the radius of the cylinder whereas from Figure 7, tangential stress
under the effect of external pressure is found to be compressive throughout the radius of
the cylinder. Moreover, under the internal pressure, the magnitude of tangential stress is
found to decrease from inner to outer radii of the cylinder.

Tangential stress under internal pressure is on the higher side in the non-FGM cylinder
but at outer radial points it is found to be higher for the FGM cylinder. Under the effect of
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external pressure, tangential stress in the FGM cylinder increases in magnitude towards the
outer radius of the cylinder whereas in the non-FGM cylinder, tangential stress becomes
less compressive as it moves along the outer radius of the cylinder.

Figure 6. Tangential stress along the radius of the cylinder under internal pressure, Pa = 50 MPa.

Figure 7. Tangential stress along the radius of the cylinder under external pressure, Pb = 50 MPa.

As seen from Figure 8, radial displacement under the influence of internal pressure has
tensile values for both FGM and non-FGM cylinders whereas radial displacement under the
influence of external pressure exhibits the compressive behaviour, as shown in and Figure 9.
Additionally, the magnitude of radial displacement in the case of the FGM cylinder is lower
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than that of the non-FGM cylinder under both internal and external pressure conditions as
shown in Figures 8 and 9. This behaviour can be attributed to the higher values of Young’s
modulus for the FGM cylinder and the lower values for the non-FGM cylinder.

Figure 8. Radial displacement along the radius of the cylinder under internal pressure, Pa = 50 MPa.

Figure 9. Radial displacement along the radius of the cylinder under external pressure, Pb = 50 MPa.

In Figure 10, it can be observed that under the effect of high internal pressure and low
external pressure, the magnitude of radial stress decreases from inner to outer radial points,
for both FGM and non-FGM cylinders. However, for cylinders made up of High Carbon
Steel–Magnesium Oxide functionally graded material, the magnitude of radial stress is
found to be on the higher side as compared to the non-FGM (High Carbon Steel) cylinder.
This mechanical response of the cylinder under high internal pressure and low external
pressure is due to its material property, namely, Young’s modulus, which increases from
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inner to outer radii, causing a high resisting force due to which the radial stress generated
is of a higher magnitude in comparison to the non-FGM cylinder.

Figure 10. Radial Stress along the radius of the cylinder under internal pressure, Pa = 50 MPa and
external pressure, Pb = 20 MPa.

As seen from Figure 11, under high external pressure and low internal pressure, radial
stress for the FG cylinder is less as compared to the non-FGM cylinder, from internal to
external radii of the cylinder. Hence, the amount of pressure required to move points from
its original location is less for the FG cylinder. As the slope of radial stress decreases from
inner to outer radii, this leads to producing a lower resistive force towards the outer radius
of the functionally graded cylinder. This happens as Young’s modulus increases towards
the outer radius; then the cylinder requires a lower resistive force to counter the external
pressure. Hence, radial stress in the FG cylinder is lower in magnitude as compared to the
non-FGM cylinder due to homogeneous Young’s modulus along the radial points.

As seen from Figure 12, tangential stress from internal to external radii of the cylinder
is found to be decreasing under high internal and low external pressure, but for the FGM
cylinder, the magnitude of tangential stress is on the higher side at outer radial points as
compared to the non-FGM cylinder. Tangential stresses under this case are found to be
elastic throughout the radius of FGM and non-FGM cylinders.

From Figure 13, under low internal and high external pressures, the magnitude of
tangential stress for the FGM cylinder increases from inner to outer radii whereas in the
non-FGM cylinder tangential stress is higher at inner radial points and decreases towards
the outer radius of the cylinder.

It can be observed that the resistance force required by material points to move out
from its external surface is less in the FGM cylinder as compared to the non-FGM cylinder
and, hence, it saves a lot of stress.

From Figure 14, it can be observed that under high internal and low external pressure
conditions, displacement decreases throughout the cylinder and is found to be lowest for
the FGM cylinder. The high internal pressure causes compressive strains with displacement
values decreasing along the radius of the cylinder. Due to graded elasticity in the FGM
cylinder, it has a lower magnitude of stress as compared to the non-FGM cylinder. Moreover,
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displacement in both FGM and non-FGM cylinders is found to be compressive towards the
outer radial points.

Figure 11. Radial Stress along the radius of the cylinder under internal pressure, Pa = 20 MPa and
external pressure, Pb = 50 MPa.

Figure 12. Tangential Stress along the radius of the cylinder under internal pressure, Pa = 50 MPa
and external pressure, Pb = 20 MPa.
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Figure 13. Tangential Stress along the radius of the cylinder under internal pressure, Pa = 20 MPa
and external pressure, Pb = 50 MPa.

Figure 14. Displacement along the radius of the cylinder under internal pressure, Pa = 50 MPa and
external pressure, Pb = 20 MPa.

Under low internal and high external pressure, as shown in Figure 15, displacement
in the non-FGM cylinder has a higher magnitude than in the FGM cylinder and is also
found to be increasing along the radius of the cylinder whereas it decreases in the case of
the FGM cylinder.
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Figure 15. Displacement along the radius of the cylinder under internal pressure, Pa = 20 MPa and
external pressure, Pb = 50 MPa.

Figures 16 and 17 show a good agreement between iterative and finite element meth-
ods for the results of radial stress and tangential stress, respectively, in the case of the
non-FGM cylinder.

Figure 16. Comparison of radial stress along the radius of the cylinder under internal pressure,
Pa = 50 MPa and external pressure, Pb = 20 MPa.
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Figure 17. Comparison of tangential stress along the radius of the cylinder under internal pressure,
Pa = 50 MPa and external pressure, Pb = 20 MPa.

From Figure 18, it is observed that finite element method solution for radial displace-
ment in non-FGM cylinder varies with iterative solution only at fifth position after decimal.

Figure 18. Comparison of displacement along the radius of the cylinder under internal pressure,
Pa = 50 MPa and external pressure, Pb = 20 MPa.

Table 4 represents radial displacement in tabular form for different iteration stages a
n = 0, n = 1 and n = 2. In this table, u0, u1, and u2 show initial, first and second iterations
for radial displacement, respectively. From this table, it can be observed that relative error
(%) is approximately less than and equal to 1% as we iterate from u1 to u2. The minimum
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relative error of 0.78% occurs at internal surface (HCS) of the cylinder and the maximum
relative error of 1% occurs at external surface (MgO) of the cylinder.

Table 5 shows radial stress values in tabular form for the considered number of
iterations in the study. It can be noted that relative error from the first iteration to the
second iteration is much less (<0.5 %). It can also be seen that radial stress has zero error
at the inner and outer radii of the cylinder. Tabular values of tangential stress for different
iterations are presented in Table 6. From the table, it is found that relative error (%) from
first iteration to second iteration is 1.5%We can see from Tables 4–6 that we have an overall
relative error of less than 1.5% including error for radial displacement, radial stress and
tangential stress, thus the obtained results of the iterative method are acceptable and are in
good agreement with the solution obtained using the element method.

Figures 19–21 present the behaviour of stresses and the displacement in the FGM
cylinder under internal pressure (Pa = 50 MPa)–external pressure (Pb = 20) MPa for n = 0,
n = 1 and n = 2 iteration steps. Examining Figure 19 for the radial stresses obtained at
different iterations, it can be noted that solution values of radial stress are refined at the
second iteration, n = 2. Moreover, in the case of tangential stress, Figure 20 can be observed
to understand the efficacy of the iterative technique as tangential stress values obtained at
first and second iterations have an average relative error of 1.13%. A similar outcome of the
solution refinement can also be observed for displacement solution values from Figure 4, in
which first and second iterations generate displacement values with 0.91% average relative
error between them.

Table 4. Comparison of radial displacement un in FGM cylinder at n = 0, n = 1 and n = 2 iterations
under internal pressure, Pa = 50 MPa and external pressure, Pb = 20 MPa.

Radial Points
Iterative Radial
Displacement u

at n = 0

Iterative Radial
Displacement u

at n = 1

Iterative Radial
Displacement u

at n = 2
Relative Error%

0.4 0.000138899 0.000110838 0.000111702 0.78
0.425 0.000131225 0.000104109 0.000104959 0.82
0.45 0.000124432 0.000098342 0.000099179 0.85
0.475 0.000118382 0.000093376 0.000094202 0.88

0.5 0.000112961 0.000089081 0.000089896 0.91
0.525 0.000108082 0.000085354 0.000086157 0.94
0.55 0.000103669 0.000082108 0.000082899 0.96
0.575 0.000099663 0.000079272 0.000080053 0.98

0.6 0.000096011 0.000076789 0.000077559 1.00

Table 5. Comparison of radial stress σr in FGM cylinder at n = 0, n = 1 and n = 2 iterations under
internal pressure, Pa = 50 MPa and external pressure, Pb = 20 MPa.

Radial Points r
Iterative Radial

Stress σr at
n = 0

Iterative Radial
Stress σr at

n = 1

Iterative Radial
Stress σr at

n = 2
Relative Error%

0.4 −50 −50 −50 0.00
0.425 −43.8339 −44.4415 −44.4208 0.05
0.45 −38.6667 −39.6078 −39.5811 0.07
0.475 −34.2936 −35.3617 −35.3391 0.06

0.5 −30.56 −31.5984 −31.5859 0.04
0.525 −27.3469 −28.2371 −28.2363 0.00
0.55 −24.562 −25.2149 −25.2232 0.03
0.575 −22.1323 −22.4822 −22.4924 0.05
0.6 −20 −20 −20 0.00



Materials 2022, 15, 4537 18 of 21

Table 6. Comparison of tangential stress σθ in FGM cylinder at n = 0, n = 1 and n = 2 iterations
under internal pressure, Pa = 50 MPa and external pressure, Pb = 20 MPa.

Radial Points r

Iterative
Tangential
Stress σθ at

n = 0

Iterative
Tangential
Stress σθ at

n = 1

Iterative
Tangential
Stress σθ at

n = 2

Relative Error%

0.4 58 45.6366 46.1103 1.04
0.425 51.8339 43.195 43.6634 1.08
0.45 46.6667 41.2971 41.7588 1.12
0.475 42.2936 39.8365 40.2903 1.14

0.5 38.56 38.7326 39.1781 1.15
0.525 35.3469 37.9234 38.361 1.15
0.55 32.562 37.3607 37.792 1.15
0.575 30.1323 37.0064 37.4346 1.16

0.6 28 36.83 37.2599 1.17

Figure 19. Iterative radial stress σθ in FGM cylinder at n = 0, n = 1 and n = 2 iterations under
internal pressure, Pa = 50 MPa and external pressure, Pb = 20 MPa.

Figure 20. Iterative tangential stress σθ in FGM cylinder at n = 0, n = 1 and n = 2 iterations under
internal pressure, Pa = 50 MPa and external pressure, Pb = 20 MPa.
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Figure 21. Iterative displacement σθ in FGM cylinder at n = 0, n = 1 and n = 2 iterations under
internal pressure, Pa = 50 MPa and external pressure, Pb = 20 MPa.

4. Conclusions

This study presents an implementation of a novel semi-analytical iterative technique
to obtain displacement and stresses for an axisymmetric exponentially graded cylinder
under internal and external pressure conditions. The novelty or originality of our work is
demonstrated by applying an iterative technique to Navier’s equation under plain strain
conditions. Further, results obtained are compared with the finite element method. For
cylindrical pressure vessels, this iterative technique has not been implemented previously
for steady state elastic stress analysis under exponential gradation. Moreover, the mechani-
cal response of the FG cylinder made up of a High Carbon Steel (HCS) metal matrix and
magnesium oxide (MgO) ceramic has not been observed in any such previous studies. The
results show a good agreement between the iterative method and FEM, with an acceptable
error which can be further improved by considering a greater number of iterations. More-
over, results for the HCS material have been validated using both methods. The analysis
shows that the FGM cylinder made up of HCS (metal)–MgO (ceramic) with an exponential
gradation is more capable of reducing stresses than the non-FGM (HCS) cylinder. The
significant effect of the assumed in-homogeneity parameter can be seen in the mechanical
responses of the cylinder.
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