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Abstract: The low tensile strain capacity and brittle nature of high-strength concrete (HSC) can
be improved by incorporating steel fibers into it. Steel fibers’ addition in HSC results in bridging
behavior which improves its post-cracking behavior, provides cracks arresting and stresses transfer
in concrete. Using machine learning (ML) techniques, concrete properties prediction is an effective
solution to conserve construction time and cost. Therefore, sophisticated ML approaches are applied
in this study to predict the compressive strength of steel fiber reinforced HSC (SFRHSC). To fulfil
this purpose, a standalone ML model called Multiple-Layer Perceptron Neural Network (MLPNN)
and ensembled ML algorithms named Bagging and Adaptive Boosting (AdaBoost) were employed
in this study. The considered parameters were cement content, fly ash content, slag content, silica
fume content, nano-silica content, limestone powder content, sand content, coarse aggregate content,
maximum aggregate size, water content, super-plasticizer content, steel fiber content, steel fiber
diameter, steel fiber length, and curing time. The application of statistical checks, i.e., root mean
square error (RMSE), determination coefficient (R2), and mean absolute error (MAE), was also
performed for the assessment of algorithms’ performance. The study demonstrated the suitability
of the Bagging technique in the prediction of SFRHSC compressive strength. Compared to other
models, the Bagging approach was more accurate as it produced higher, i.e., 0.94, R2, and lower
error values. It was revealed from the SHAP analysis that curing time and super-plasticizer content
have the most significant influence on the compressive strength of SFRHSC. The outcomes of this
study will be beneficial for researchers in civil engineering for the timely and effective evaluation of
SFRHSC compressive strength.

Keywords: steel fiber; concrete; high strength concrete; compressive strength; building material

1. Introduction

Globally, cement is the most comprehensive construction material due to its easy pro-
duction, abundant ingredients, and various applications. In its traditional form, concrete
is a brittle material with low toughness and lesser strain and energy absorption capacity.
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Therefore, researchers are exploring ways to reduce concrete’s brittleness and improve its
tensile properties. The energy absorption capability of concrete can be enhanced by adding
dispersed fibers into it [1–6]. Incorporating steel, natural, and synthetic fibers into concrete
has been explored in various research studies to enhance its mechanical characteristics,
including ductility, fatigue resistance, and crack resistance [7–23]. The toughness and post-
cracking behavior of concrete can be improved by the addition of steel fibers [24–27]. In the
construction industry, SFRHSC may be used for pavements, building, repair, rehabilitation,
etc. A detailed experimental program needs to be conducted in current practice to deter-
mine SFRHSC properties which consume a bulk quantity of time and cost for developing
a precise linkage for mix design and its related properties [28]. The variable factors for
SFRHSC include cement, fine and coarse aggregates, admixture/super-plasticizer, water,
steel fibers, and the type of admixture. An effort was made in the current study to predict
the strength parameters of SFRHSC by applying machine learning techniques.

ML approaches are beneficial for solving different multifaceted issues in multiple
engineering fields. ML approaches incorporate an input factors database for the outcome
prediction. Two ML techniques, a standalone approach based on a single model and Bag-
ging and AdaBoost ensembled algorithms, are employed in this work to predict properties
for SFRHSC. The literature depicts that the ensembled ML approach’s performance is
preferable to the standalone technique [29,30]. An in-depth evaluation of ML approaches
for concrete properties prediction is performed by Chaabene, et al. [31]. In addition to that,
the prediction for characteristics of different kinds of concrete, i.e., high-performance con-
crete (HPC) [32–37], self-healing concrete [38], recycled aggregate concrete (RAC) [39–42],
and materials-integrated phase change concrete [43], has been explored. HPC compressive
strength estimation was performed with the help of ML techniques by Han, et al. [33].
Water, sand, coarse aggregates, cement, GGBFS, fly-ash, age, and five other variable com-
binations were input factors. The established model provided an accurate estimation of
the compressive strength of HPC. In the current research, ML techniques were applied to
estimate the compressive strength of SFRHSC. This study shall be beneficial for researchers
to conserve experimental time and cost in the future.

Furthermore, the impact of raw ingredients on SFRHSC compressive strength is not
significantly explored yet, indicating a research gap. Therefore, the input parameters/raw
ingredients for SFRHSC effect on its predicted compressive strength was also explored
and described in this study with the help of a post hoc model-agnostic technique named
SHapley Additive exPlanations (SHAP) [20,21]. The ML algorithms SHAP integration was
performed to give an understanding of SFRHSC design mix for strength parameter through
multifaceted non-linear behavior and the contribution of input parameters are described
by allocation of weightage to all input parameters individually. As already mentioned,
the precise prediction of concrete types can be made by applying ML techniques. For this
purpose, considerable consumption of effort, time, and cost is required in the case of the
experimental setup. Hence, it is a need of the hour to establish algorithms based on data
modeling and identification of interlinked independent factors and the swift decrease in
input matrix dimensions. The employment of ML techniques is important in estimating
the behavior of concrete materials. ML techniques application can be claimed as alternative
approaches for estimating SFRHSC compressive strength to save experimental time and
cost. The application of the standalone ML model and ensembled ML approaches was
made in this study. MLPNN is a standalone ML model, whereas Bagging and AdaBoost
are ensembled ML algorithms. Additionally, statistical checks were applied for models’
evaluation, and their performances were also compared. Later on, based on the perfor-
mance of various statistical parameters, a model with accurate SFRHSC prediction was
proposed. The explanation of input parameters contribution and ML models’ integration
was also made in this study to have a deep insight into mix design for achieving strength
of SFRHSC. Overall, a correlation was also developed among interpretable ML approaches
and feature importance for considerable properties of the structure.
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2. Dataset

The database was taken from the literature [44,45] and includes 255 mix designs
having 15 input factors with compressive strength of 60–120 MPa. Table 1 exhibits the
statistical summary of the database utilized to predict SFRHSC compressive strength. The
input parameters include cement content, fly ash content, slag content, silica fume content,
nano silica content, limestone powder content, sand content, coarse aggregate content,
maximum aggregate size, water content, super-plasticizer content, steel fiber content, steel
fiber diameter, steel fiber length, and curing time. The compressive strength prediction
variables are based on these input parameters. Anaconda software’s Spyder and Python
scripting is employed for SFRHSC compressive strength prediction.

Table 1. Statistical summary of input and output parameters.

Mean Standard
Error Median Mode Standard

Deviation Range Minimum Maximum

Cement content (kg/m3) 719.0 11.7 716.0 960.0 187.1 1021.2 230.0 1251.2

Fly ash content (kg/m3) 47.3 6.2 0.0 0.0 98.8 475.0 0.0 475.0

Slag content (kg/m3) 27.7 6.0 0.0 0.0 95.1 475.0 0.0 475.0

Silica fume
content (kg/m3) 94.8 6.3 50.0 0.0 100.5 291.3 0.0 291.3

Nano silica
content (kg/m3) 8.2 0.8 0.0 0.0 13.1 43.7 0.0 43.7

Limestone
powder content (kg/m3) 67.8 10.6 0.0 0.0 168.9 1058.2 0.0 1058.2

Sand content (kg/m3) 1109.8 17.2 1104.0 960.0 275.1 1095.6 407.8 1503.4

Coarse
aggregate

content
(kg/m3) 90.3 17.5 0.0 0.0 279.9 1162.0 0.0 1162.0

Maximum
aggregate size (mm) 2.9 0.3 2.0 2.0 4.5 19.9 0.1 20.0

Water content (kg/m3) 177.1 1.4 176.9 160.0 22.1 146.0 140.0 286.0

Superplasticizer
content (kg/m3) 27.7 0.8 25.2 21.6 13.1 46.9 5.1 52.0

Steel fiber
content (%) 0.9 0.1 0.0 0.0 1.0 3.0 0.0 3.0

Steel fiber
diameter (mm) 0.1 0.0 0.2 0.0 0.1 0.2 0.0 0.2

Steel fiber
length (mm) 6.5 0.4 6.0 0.0 6.4 13.0 0.0 13.0

Curing time (days) 30.9 5.4 7.0 28.0 87.0 719.0 1.0 720.0

Compressive
strength (MPa) 95.7 1.1 100.0 108.0 17.5 60.0 60.4 120.4

3. Machine Learning Approaches

One of the significant ML models is an approach named artificial neural network
(ANN). ANN has a high potential for solving non-linear problems in the environmental
and hydrological engineering sectors. The multi-layer perceptron ANN (MLPNN) is the
most frequently applied model among different ANN models. There are broadly three
layers in the structure of the MLPNN model: i. an input layer, ii. hidden layers (may be
one or more), and iii. an output layer. Tansig, purelin, and logsig are three typical MLPNN
functions. Its three main and/or important parts are weights, activations, and bias for
both hidden and output layers. The weights or model parameters are governed by the
models’ training. The tansig activation is applied in hidden layers, and purelin is applied
in the case of the output layer. The fivefold cross-validation is adopted to extract the best
structure. The three hidden layers (i.e., 9, 3, and 2) are extracted in the top ANN model
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with the optimum quantum of neurons for each hidden layer [46]. Figure 1 depicts a typical
ANN model structure. The network composition is bifurcated into three steps: i. input
is processed by a forward pass, ii. multiplication of weight is performed, and iii. model
output prediction. The estimated outcomes are then compared with input parameters.
Different loss functions are used depending on their performance and objectives. Backward
propagation creates back in operation linked individual parameters’ partial derivatives for
cost function. The weight of model was updated and propagation of back loss was also
performed by utilizing gradient descent.
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Figure 1. Typical neural network architecture [47].

Ensembled techniques may be applied to enhance the recognition and prediction
accuracy of ML. These techniques assist in solving over-fitting issues, i.e., sub-model
components, by integrating and aggregating different models with weak estimations. The
establishment of various sub-models, i.e., A, B, . . . , N, and training data alteration can
generate an intelligent learner. Additionally, the combination measures average and votes
are merged to obtain an ideal model with accurate prediction. Bagging is the most widely
used ensembled modelling technique, in which the resampling bootstrap approach is
employed to gather data and calculate aids. While executing this process, the first training
set substitution with partial models was conducted out of the actual model. Few data
samples can appear in the number of models; however, some data samples may not appear
a single time in the product of any model. The final output of a model is calculated by
taking an average of all the model outputs. The Bagging technique, such as the Boosting
approach, develops a collective model that develops various components that are more
accurate than non-ensembled models. In addition, the Boosting method involves sub-
models based on weighted averages to evaluate their addition to the final model. Based
on standalone learners such as MLPNN, this study estimates the SFRHSC compressive
strength by employing Bagging and AdaBoost techniques. The procedural flowcharts for
Bagging and AdaBoost algorithms are shown in Figures 2 and 3.
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Moreover, this study recognizes global feature influences and considered feature
interactions with SFRHSC, based on a game theory method called SHapley Additive exPla-
nations (SHAP) [50]. SHAP analysis would increase the proposed model’s explainability. In
this approach, each instance prediction is demonstrated by calculating all features, taken for
contribution, by employing SHapley values from a coalition of game theory. Each feature
value contribution over all the possible amalgamations is slightly averaged for SHapley
value. The SHAP values are directly related to the influence of features. The average of
each feature SHAP value is taken to achieve the feature influences globally. Later, in terms
of importance, the descending order is sorted for these values followed by the plotting of
SHAP values. The SHAP value for each feature is depicted from a single point on the SHAP
plot. X and Y axis represent SHapley values and feature importance, respectively. Its higher
location shows the higher feature influence on SFRHSC on the y-axis, and a scale of low to
high color is used to depict its importance. The features interaction and their respective
influence on SFRHSC are represented from the SHAP plots having a colored scheme to
show the feature interaction. This method offers improved information compared to typical
partial dependence plots [51]. In SHAP analysis, the importance of feature (j) for model
output f ; φj( f ), is the assigned weight for feature contribution summation for outcome of
model f (xi) to obtain probable feature combinations, as a whole [52]. The φj( f ) is stated
by Equation (1), as presented below:

φj( f ) = ∑S⊆{x1,...,xp}/{xj}
|S|!(p− |S| − 1)!

p!

(
f
(

S t
{

xj
})
− f (S)

)
(1)
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where

S = features subset,
xj = feature j, and
p = feature number in model.

In this method, a feature’s importance is evaluated by quantifying estimation errors
while disturbing a definite feature value. The estimation error sensitivity is considered to
assign weight to the feature significance while perturbing its value. SHAP also describes
the trained ML model performance. SHAP pays another feature attribution approach, i.e.,
the linear input parameters addition, to reveal an interpretable model is considered by the
model’s outcome. For example, a model having input factors xi; where i ranges from 1 to
k, and k shows input factor number and h(xs) shows the description model having xs as a
simple input; however, Equation (2) is employed to depict an original model f (x):

f (x) = h(xs) = ∅0 + ∑p
i=1 ∅ixi

s (2)

where

p = input feature number and
∅0 = constant without any information (i.e., no input).

x = mx(xs), i.e., mapping function interlinked with both x and xs input factors. Lund-
berg and Lee [53] provided Equation (2), in which (h()), i.e., the estimation value, was
increased by ∅0, ∅1, and ∅3 terms and a reduction of ∅4 in h() value was also detected
(Figure 4). A single-value solution to Equation (2), i.e., incorporation of three favorable
properties: consistency, local accuracy, and missingness. Consistency confirms no attribu-
tion reduction allocated to the corresponding feature in a more influencing feature change.
In missingness, it is confirmed to have no important value for missing features, i.e., ∅i = 0
is applied by xi

s = 0. In local precision, it is confirmed that sum-up for attribution of
features to be considered as an output function which comprises a model requirement
for matching output f for xs as a simplified input. x = mxxs denotes the local accuracy
accomplishment.
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4. Results and Analysis

Figure 5 shows the MLPNN predicted and experimental outcomes for SFRHSC com-
pressive strength. The 0.71 R2 value demonstrates the least relevant results. At the same
time, the estimated outcomes for SFRHSC compressive strength by MLPNN are not in the
adequate range. The error distribution of MLPNN predicted, and experimental values for
SFRHSC compressive strength are illustrated in Figure 6. Where; 49% of total error values
are less than 10 MPa, 26% of these values lie between 10–20 MPa, and 25% are more than
20 MPa.
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Figure 7 depicts the predicted Bagging algorithm and experimental outcomes for
SFRHSC compressive strength. The 0.94 R2 value in the case of Bagging shows high precise
results with better accuracy than the standalone MLPNN and Bagging algorithm. The
error distribution of Bagging predicted, and experimental values for SFRHSC compressive
strength are shown in Figure 8. It is observed that 68% of total error values are less than
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10 MPa, 23% of values are between 10–20 MPa, and 9% of values are more than 20 MPa.
The higher R2 and lower error values depict more precision in the case of the Bagging
model than MLPNN. In contrast, the obtained Bagging ensembled ML models’ R2 and
error values are adequate. Hence, this outcome indicates that Bagging prediction results
have higher precision than other models.
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The AdaBoost algorithm predicted- and experimental values are compared for SFRHSC
compressive strength, as shown in Figure 9. The AdaBoost shows less error variance for
SFRHSC compressive strength and better-estimated outcomes than that of standalone
MLPNN. The adequacy of the AdaBoost model is represented by an acceptable, i.e., 0.86
R2 value. The error distribution of AdaBoost predicted and experimental for SFRHSC
compressive strength is illustrated in Figure 10. The average error value for SFRHSC
compressive strength is 11.16 MPa. Where; 58% of total error values are below 10 MPa, 26%
of these values are between 10–20 MPa, and 16% value is more than 20 MPa.
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5. Discussion
5.1. Comparison of All Models

During execution, the validity of models was assessed using the k-fold cross-validation
approach. The model’s performance was evaluated by applying statistical checks [55–58].
Generally, in the k-fold cross-validation method, data are split into ten groups for random
dispersion with ten times the repetition of this method to achieve satisfactory outcomes.
Statistical checks for all the models are listed in Table 2 and Figure 11a–c. The R2 values for
SFRHSC compressive strength are 0.71, 0.94, and 0.86 in the case of standalone MLPNN,
Bagging, and AdaBoost models, respectively, as illustrated in Figures 5, 7 and 9. Table 2
shows the values of MAE and RMSE for SFRHSC compressive strength. The MAE are
12.77, 8.12, and 11.16 in the case of standalone MLPNN, Bagging, and AdaBoost models,
respectively. The RMSE are 16.37, 11.06, and 14.22 for MLPNN, Bagging, and AdaBoost
models, respectively. It may be noted that the R2 value in the case of Bagging is higher
compared to other considered models having lesser error values for compressive strength
of SFRHSC. A comparison of current model with previous models is shown in Table 3.

Table 2. Statistical checks of MLPNN, Bagging, and AdaBoost model.

Techniques MAE (MPa) RMSE (MPa) R2

MLPNN 12.77 16.37 0.71

Bagging 8.12 11.06 0.94

AdaBoost 11.16 14.22 0.86

Table 3. ML techniques used in the previous studies and current study.

Ref. Material Type Properties
Predicted

ML Techniques
Employed

No. of Input
Parameters Data Points

Best ML
Technique

Recommended

[59]
Recycled
aggregate
concrete

Split-tensile
strength

Gene expression
programming,
artificial neural
network, and

bagging regressor

9 166 Bagging regressor

[58] Geopolymer
concrete

Compressive
strength

Decision tree,
bagging regressor,

and AdaBoost
9 154 Bagging regressor

[60] Fly ash-based
concrete

Compressive
strength

Gene expression
programming,
artificial neural

network, decision
tree, and bagging

regressor

7 98 Bagging regressor

[61] Fly ash-based
concrete

Compressive
strength

Gene expression
programming,

decision tree, and
bagging regressor

8 270 Bagging regressor

Current
study SFRHSC Compressive

strength
MLPNN, Bagging,

and AdaBoost 15 255 Bagging regressor
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To obtain efficient and reliable results, ensembled ML approaches are applied in the
current study to predict SFRHSC compressive strength. The Bagging algorithm having
a 0.94 R2 value offers a more accurate prediction for SFRHSC compressive strength. To
predict SFRHSC compressive strength, an optimized model, out of 20 sub-models, is
utilized for ensembled Bagging ML models that have better performance (Figure 12a,b).
More precision and lesser error are observed in the case of ensembled Bagging models than
in other models.
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5.2. Effect of Input Parameters on the Outcome Using SHAP Analysis

The values of each considered feature for SFRHSC compressive strength are plotted in
the form of violin SHAP plotting, as illustrated in Figure 13. A different color is assigned
for each feature value in this plot, and the respective SHAP value at the x-axis shows
the contribution outcome. For example, in the case of input features such as curing time
and content of super-plasticizer, their positive influence on SFRHSC compressive strength
is observed from the right axis. On the rightmost side of the axis, a 14 SHAP value in
red points shows that the SFRHSC compressive strength would be higher in enhancing
curing time. As far as the super-plasticizer feature is concerned, it may depict a positive
influence but only till optimum content. Above optimum content, the negative impact
is depicted in the form of blue color points (i.e., lower values). Super-plasticizer is a key
parameter for achieving the high strength of concrete by reducing the w/c. Steel fiber feature
also positively influences SFRHSC compressive strength. Then, in the case of maximum
aggregate size, it impacts both ways, i.e., positive and negative. However, sand negatively
influences SFRHSC compressive strength. As in the case of enhancing sand content, the
surface area increases, and ultimately cementitious material would be utilized more in the
sand coating. Similarly, the water content feature is a positive influence up to a certain
limit, beyond which it would be a negative influence. Down the list, nano silica, silica fume,
and cement contents also positively influence the SFRHSC compressive strength.
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The SHAP interaction plot for all the considered input parameters is shown in
Figure 14. The cement content is directly related to SFRHSC compressive strength, and
its interaction increases with the curing time. As can be observed from Figure 14a, up to
1000 kg/m3 is used as required for HSC. The curing time shows positive linear relation
with SFRHSC compressive strength (Figure 14b). Similarly, as presented in Figure 14c,
the super-plasticizer also positively influences SFRHSC compressive strength up to op-
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timum content. As depicted in Figure 14d, up to almost 1000 kg/m3 content of sand, is
showing appropriate influence; however, further addition in its content causes reduction in
SFRHSC compressive strength. Water shows both influences (Figure 14e) and its content
is kept lesser, as in the case of HSC, and a controlled water content is used with more
super-plasticizer content to achieve high strength. As far as the interaction of steel fiber
content is concerned (Figure 14f), content up to 2.5% depicts a positive influence; however,
beyond this content, its influence becomes negative on SFRHSC compressive strength.
Figure 14g shows that nano silica positively influences the SFRHSC compressive strength
up to optimum content, i.e., 30 kg/m3. The higher content, i.e., 40 kg/m3, of nano silica
ultimately results in reduced strength due to its larger surface area. Although the aggregate
size is a positive influence, the much larger aggregate size may come up with negative
results, as shown in Figure 14h. Commonly, a small-size aggregate is used for HSC. The
addition of multiple supplementary cementitious materials demands a smaller size of
aggregate to achieve higher strength. As in this scenario, the strength of the cementitious
matrix is much higher than aggregate strength; therefore, relatively smaller aggregates
are preferable for HSC. In the same manner, the fly ash content (Figure 14i) and steel fiber
length (Figure 14j) also positively influence it up to an optimum content. As in the case
of enhanced steel fiber length, the number of fibers decreases. In the case of compressive
strength, the shorter length of fibers is preferable.
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6. Conclusions

The focus of this research was to evaluate the level of accuracy for machine learning
approaches to predict SFRHSC compressive strength. The considered input parameters
for said prediction were cement content, fly ash content, slag content, silica fume content,
nano silica content, limestone powder content, sand content, coarse aggregate content,
maximum aggregate size, water content, super-plasticizer content, steel fiber content, steel
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fiber diameter, steel fiber length, and curing time. The following conclusions are drawn
from current research:

1. The 0.71 and 0.86 R2 values standalone MLPNN and ensembled AdaBoost ML mod-
els, respectively, demonstrated acceptable outcomes for the compressive strength
of SFRHSC. The application of the Bagging approach produced a highly accurate
SFRHSC compressive strength prediction from its actual data, which is shown by a
0.94 R2 value.

2. Highly effective estimation of SFRHSC compressive strength was observed in the
case of the ensembled Bagging model compared to other models. Twenty sub-models
ranging from 10 to 200 predictors were used for the optimized prediction of SFRHSC
compressive strength.

3. The statistical checks, i.e., RMSE (11.06 MPa) and MAE (8.12 MPa), were employed
to determine the model’s performance. At the same time, the larger coefficient of
determination and lesser error values depict the better performance of Bagging to
estimate the compressive strength of SFRHSC.

4. It is also evident from the k-fold cross validation method upon the comparison of all
models that the Bagging model has lower RMSE and MAE and higher R2 values for
prediction of SFRHSC compressive strength compared to all other models.

5. SHAP analysis reveals that the highest influence is from the curing time on estimating
SFRHSC compressive strength, followed by super-plasticizer and steel fiber contents.
However, the compressive strength of SFRHSC is least influenced by fly ash and slag.
The interaction plot depicts that the cement content positively influences the SFRHSC
compressive strength.

6. Among all ML approaches, the Bagging model is the best approach for predicting
SFRHSC compressive strength.

This study was based on a wide range of data sets with 15 input variables; however,
the database and more input parameters such as workability, specimen size, and curing
age need to be generated in future for a better response of the employed models. Users
could obtain a much more accurate model by increasing the number of data points/entries,
importing a much larger number of mixtures, and considering more input parameters. So,
it has been suggested that experimental work, field tests, and numerical analysis, among
other things, be used in future studies to increase the number of data points and results
(e.g., Monte Carlo simulation).

Author Contributions: L.D.: Conceptualization, Investigation, Methodology, Formal analysis,
Writing—original draft. X.W.: Investigation, Formal analysis, Writing—Review and Editing, Super-
vision. M.Z.: Methodology, Funding acquisition, Writing—Review and Editing. W.A.: Validation,
Data Curation, Writing—Review and Editing, Supervision, Project administration. M.A.: Visualiza-
tion, Writing, Reviewing, and Editing, Project administration, Data Curation. M.M.S.S.: Software,
Validation, Investigation, Writing—Review and Editing, Funding acquisitions. A.S.: Resources, Visu-
alization, Writing, Reviewing, and Editing. D.Y.Z.E.: Resources, Visualization, Writing, Reviewing,
and Editing. All authors have read and agreed to the published version of the manuscript.

Funding: The research is partially funded by the Ministry of Science and Higher Education of
the Russian Federation as part of the World-class Research Center program: Advanced Digital
Technologies (contract No. 075-15-2022-311 dated 20 April 2022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this research are properly cited and reported in the
main text.

Acknowledgments: The authors acknowledge the Ministry of Science and Higher Education of
the Russian Federation for funding this research. This work was sponsored in part by Training
plan for young and middle-aged scientific research backbones of Nantong Institute of Technology
(ZQNGG401).



Materials 2022, 15, 4450 17 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Naaman, A.E. High performance fiber reinforced cement composites. In High-Performance Construction Materials: Science and

Applications; World Scientific Publishing: Singapore, 2008; pp. 91–153.
2. Imam, M.; Vandewalle, L.; Mortelmans, F.; Van Gemert, D. Shear domain of fibre-reinforced high-strength concrete beams. Eng.

Struct. 1997, 19, 738–747. [CrossRef]
3. Furlan, S., Jr.; de Hanai, J.B. Shear behaviour of fiber reinforced concrete beams. Cem. Concr. Compos. 1997, 19, 359–366. [CrossRef]
4. Kene, K.S.; Vairagade, V.S.; Sathawane, S. Experimental study on behavior of steel and glass fiber reinforced concrete composites.

Bonfring Int. J. Ind. Eng. Manag. Sci. 2012, 2, 125–130. [CrossRef]
5. Dvorkin, L.; Bordiuzhenko, O.; Tekle, B.H.; Ribakov, Y. A Method for the Design of Concrete with Combined Steel and Basalt

Fiber. Appl. Sci. 2021, 11, 8850. [CrossRef]
6. Han, J.; Zhao, M.; Chen, J.; Lan, X. Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of

steel fiber reinforced concrete. Constr. Build. Mater. 2019, 209, 577–591. [CrossRef]
7. Cao, M.; Mao, Y.; Khan, M.; Si, W.; Shen, S. Different testing methods for assessing the synthetic fiber distribution in cement-based

composites. Constr. Build. Mater. 2018, 184, 128–142. [CrossRef]
8. Khan, M.; Cao, M.; Hussain, A.; Chu, S. Effect of silica-fume content on performance of CaCO3 whisker and basalt fiber at matrix

interface in cement-based composites. Constr. Build. Mater. 2021, 300, 124046. [CrossRef]
9. Arshad, S.; Sharif, M.B.; Irfan-ul-Hassan, M.; Khan, M.; Zhang, J.-L. Efficiency of supplementary cementitious materials and

natural fiber on mechanical performance of concrete. Arab. J. Sci. Eng. 2020, 45, 8577–8589. [CrossRef]
10. Xie, C.; Cao, M.; Guan, J.; Liu, Z.; Khan, M. Improvement of boundary effect model in multi-scale hybrid fibers reinforced

cementitious composite and prediction of its structural failure behavior. Compos. Part B Eng. 2021, 224, 109219. [CrossRef]
11. Cao, M.; Khan, M. Effectiveness of multiscale hybrid fiber reinforced cementitious composites under single degree of freedom

hydraulic shaking table. Struct. Concr. 2021, 22, 535–549. [CrossRef]
12. Khan, U.A.; Jahanzaib, H.M.; Khan, M.; Ali, M. Improving the Tensile Energy Absorption of High Strength Natural Fiber

Reinforced Concrete with Fly-Ash for Bridge Girders. Key Eng. Mater. 2018, 765, 335–342.
13. Khan, M.; Cao, M.; Ai, H.; Hussain, A. Basalt Fibers in Modified Whisker Reinforced Cementitious Composites. Period. Polytech.

Civ. Eng. 2022, 66, 344–354. [CrossRef]
14. Zhang, N.; Yan, C.; Li, L.; Khan, M. Assessment of fiber factor for the fracture toughness of polyethylene fiber reinforced

geopolymer. Constr. Build. Mater. 2022, 319, 126130. [CrossRef]
15. Khan, M.; Ali, M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr. Build. Mater. 2019, 203,

174–187. [CrossRef]
16. Ramakrishnan, V.; Wu, G.Y.; Hosalli, G. Flexural fatigue strength, endurance limit and impact strength of fiber reinforced

concretes. Transp. Res. Rec. 1989, 1226, 17–24.
17. Gupta, S.; Rao, V.K.; Sengupta, J. Evaluation of polyester fiber reinforced concrete for use in cement concrete pavement works.

Road Mater. Pavement Des. 2008, 9, 441–461. [CrossRef]
18. Sinha, D.; Mishra, C.; Solanki, R. Comparison of normal concrete pavement with steel fiber reinforced concrete pavement. Indian

J. Appl. Res. 2014, 4, 233–235. [CrossRef]
19. Farooqi, M.U.; Ali, M. Contribution of plant fibers in improving the behavior and capacity of reinforced concrete for structural

applications. Constr. Build. Mater. 2018, 182, 94–107. [CrossRef]
20. Farooqi, M.U.; Ali, M. Effect of pre-treatment and content of wheat straw on energy absorption capability of concrete. Constr.

Build. Mater. 2019, 224, 572–583. [CrossRef]
21. Farooqi, M.U.; Ali, M. Effect of Fibre Content on Compressive Strength of Wheat Straw Reinforced Concrete for Pavement

Applications. IOP Conf. Ser. Mater. Sci. Eng. 2018, 422, 012014. [CrossRef]
22. Farooqi, M.U.; Ali, M. Effect of Fibre Content on Splitting-Tensile Strength of Wheat Straw Reinforced Concrete for Pavement

Applications. Key Eng. Mater. 2018, 765, 349–354. [CrossRef]
23. Thomas, B.S.; Yang, J.; Bahurudeen, A.; Abdalla, J.A.; Hawileh, R.A.; Hamada, H.M.; Nazar, S.; Jittin, V.; Ashish, D.K. Sugarcane

bagasse ash as supplementary cementitious material in concrete—A review. Mater. Today Sustain. 2021, 15, 100086. [CrossRef]
24. Khan, M.; Cao, M.; Chu, S.; Ali, M. Properties of hybrid steel-basalt fiber reinforced concrete exposed to different surrounding

conditions. Constr. Build. Mater. 2022, 322, 126340. [CrossRef]
25. Li, L.; Khan, M.; Bai, C.; Shi, K. Uniaxial tensile behavior, flexural properties, empirical calculation and microstructure of

multi-scale fiber reinforced cement-based material at elevated temperature. Materials 2021, 14, 1827. [CrossRef] [PubMed]
26. Khan, M.; Cao, M.; Xie, C.; Ali, M. Hybrid fiber concrete with different basalt fiber length and content. Struct. Concr. 2022, 23,

346–364. [CrossRef]
27. Khan, M.; Cao, M.; Xie, C.; Ali, M. Effectiveness of hybrid steel-basalt fiber reinforced concrete under compression. Case Stud.

Constr. Mater. 2022, 16, e00941. [CrossRef]
28. Xu, M.; Bao, Y.; Wu, K.; Xia, T.; Clack, H.L.; Shi, H.; Li, V.C. Influence of TiO2 incorporation methods on NOx abatement in

Engineered Cementitious Composites. Constr. Build. Mater. 2019, 221, 375–383. [CrossRef]

http://doi.org/10.1016/S0141-0296(96)00150-2
http://doi.org/10.1016/S0958-9465(97)00031-0
http://doi.org/10.9756/BIJIEMS.1617
http://doi.org/10.3390/app11198850
http://doi.org/10.1016/j.conbuildmat.2019.03.086
http://doi.org/10.1016/j.conbuildmat.2018.06.207
http://doi.org/10.1016/j.conbuildmat.2021.124046
http://doi.org/10.1007/s13369-020-04769-z
http://doi.org/10.1016/j.compositesb.2021.109219
http://doi.org/10.1002/suco.201900228
http://doi.org/10.3311/PPci.18965
http://doi.org/10.1016/j.conbuildmat.2021.126130
http://doi.org/10.1016/j.conbuildmat.2019.01.103
http://doi.org/10.1080/14680629.2008.9690127
http://doi.org/10.15373/2249555X/August2014/60
http://doi.org/10.1016/j.conbuildmat.2018.06.041
http://doi.org/10.1016/j.conbuildmat.2019.07.086
http://doi.org/10.1088/1757-899X/422/1/012014
http://doi.org/10.4028/www.scientific.net/KEM.765.349
http://doi.org/10.1016/j.mtsust.2021.100086
http://doi.org/10.1016/j.conbuildmat.2022.126340
http://doi.org/10.3390/ma14081827
http://www.ncbi.nlm.nih.gov/pubmed/33917108
http://doi.org/10.1002/suco.202000472
http://doi.org/10.1016/j.cscm.2022.e00941
http://doi.org/10.1016/j.conbuildmat.2019.06.053


Materials 2022, 15, 4450 18 of 19

29. Nafees, A.; Khan, S.; Javed, M.F.; Alrowais, R.; Mohamed, A.M.; Mohamed, A.; Vatin, N.I. Forecasting the Mechanical Properties
of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF. Polymers
2022, 14, 1583. [CrossRef]

30. Nafees, A.; Javed, M.F.; Khan, S.; Nazir, K.; Farooq, F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Predictive Modeling of Mechanical
Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP. Materials
2021, 14, 7531. [CrossRef]

31. Chaabene, W.B.; Flah, M.; Nehdi, M.L. Machine learning prediction of mechanical properties of concrete: Critical review. Constr.
Build. Mater. 2020, 260, 119889. [CrossRef]

32. Castelli, M.; Vanneschi, L.; Silva, S. Prediction of high performance concrete strength using genetic programming with geometric
semantic genetic operators. Expert Syst. Appl. 2013, 40, 6856–6862. [CrossRef]

33. Han, Q.; Gui, C.; Xu, J.; Lacidogna, G. A generalized method to predict the compressive strength of high-performance concrete by
improved random forest algorithm. Constr. Build. Mater. 2019, 226, 734–742. [CrossRef]

34. Al-Shamiri, A.K.; Yuan, T.-F.; Kim, J.H. Non-tuned machine learning approach for predicting the compressive strength of
high-performance concrete. Materials 2020, 13, 1023. [CrossRef] [PubMed]

35. Dingqiang, F.; Rui, Y.; Zhonghe, S.; Chunfeng, W.; Jinnan, W.; Qiqi, S. A novel approach for developing a green Ultra-High
Performance Concrete (UHPC) with advanced particles packing meso-structure. Constr. Build. Mater. 2020, 265, 120339. [CrossRef]

36. Fan, D.; Yu, R.; Shui, Z.; Wu, C.; Song, Q.; Liu, Z.; Sun, Y.; Gao, X.; He, Y. A new design approach of steel fibre reinforced ultra-high
performance concrete composites: Experiments and modeling. Cem. Concr. Compos. 2020, 110, 103597. [CrossRef]

37. Nguyen, H.; Vu, T.; Vo, T.P.; Thai, H.-T. Efficient machine learning models for prediction of concrete strengths. Constr. Build. Mater.
2021, 266, 120950. [CrossRef]

38. Ramadan Suleiman, A.; Nehdi, M.L. Modeling self-healing of concrete using hybrid genetic algorithm–artificial neural network.
Materials 2017, 10, 135. [CrossRef]

39. Deng, F.; He, Y.; Zhou, S.; Yu, Y.; Cheng, H.; Wu, X. Compressive strength prediction of recycled concrete based on deep learning.
Constr. Build. Mater. 2018, 175, 562–569. [CrossRef]

40. Zhang, J.; Huang, Y.; Aslani, F.; Ma, G.; Nener, B. A hybrid intelligent system for designing optimal proportions of recycled
aggregate concrete. J. Clean. Prod. 2020, 273, 122922. [CrossRef]

41. Han, T.; Siddique, A.; Khayat, K.; Huang, J.; Kumar, A. An ensemble machine learning approach for prediction and optimization
of modulus of elasticity of recycled aggregate concrete. Constr. Build. Mater. 2020, 244, 118271. [CrossRef]

42. Behnood, A.; Golafshani, E.M. Machine learning study of the mechanical properties of concretes containing waste foundry sand.
Constr. Build. Mater. 2020, 243, 118152. [CrossRef]

43. Marani, A.; Nehdi, M.L. Machine learning prediction of compressive strength for phase change materials integrated cementitious
composites. Constr. Build. Mater. 2020, 265, 120286. [CrossRef]

44. Soroush, M.; Yi, B. The key material properties of ultra-high-performance concrete (UHPC). Mendeley Data 2021. [CrossRef]
45. Mahjoubi, S.; Meng, W.; Bao, Y. Auto-tune learning framework for prediction of flowability, mechanical properties, and porosity

of ultra-high-performance concrete (UHPC). Appl. Soft Comput. 2022, 115, 108182. [CrossRef]
46. Hadzima-Nyarko, M.; Nyarko, E.K.; Lu, H.; Zhu, S. Machine learning approaches for estimation of compressive strength of

concrete. Eur. Phys. J. Plus 2020, 135, 682. [CrossRef]
47. Song, Y.; Wang, J. Optimization of Relief Well Design Using Artificial Neural Network during Geological CO2 Storage in Pohang

Basin, South Korea. Appl. Sci. 2021, 11, 6996. [CrossRef]
48. Wu, L.-Y.; Weng, S.-S. Ensemble Learning Models for Food Safety Risk Prediction. Sustainability 2021, 13, 12291. [CrossRef]
49. Wang, Q.; Ahmad, W.; Ahmad, A.; Aslam, F.; Mohamed, A.; Vatin, N.I. Application of Soft Computing Techniques to Predict the

Strength of Geopolymer Composites. Polymers 2022, 14, 1074. [CrossRef]
50. Lundberg, S. A game theoretic approach to explain the output of any machine learning model. Github 2021.
51. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local

explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [CrossRef]
52. Molnar, C. Interpretable Machine Learning. Available online: https://www.lulu.com (accessed on 3 June 2022).
53. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30. Available

online: https://arxiv.org/pdf/1705.07874.pdf (accessed on 22 November 2017).
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