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Abstract: Metal cylindrical shells are widely used to store and transport highly hazardous chemicals.
The impact resistance of metal cylindrical shells under an explosive load is a concern for researchers.
In this paper, an innovative failure criterion considering the time effect is proposed for metal cylindri-
cal shells under explosive loads. Firstly, based on the maximum shear stress criterion, an innovative
failure criterion containing the time effect is provided. Then, a metal cylindrical shell model is
established. Next, a failure pressure equation for metal shells under an explosive load is proposed
based on the innovative failure criterion. Lastly, the proposed equation is verified by numerical
simulation. The results indicate the failure pressure equation for a metal cylindrical shell under an
explosive load uses the finite element method. Our research is of significance for fully understanding
the failure mechanism of piping and pressure vessels under impact load.

Keywords: failure criterion; metal cylindrical shells; failure pressure; explosive load

1. Introduction

The failure of a metal structure is usually caused by various loads in the environment,
among which, the explosive load is one of the most damaging. At present, the research
on the dynamic behavior of materials is mostly concentrated on aviation and the military
industry. Explosive vessels are typical pressure vessels subjected to explosive loads that
carry potential risks; they are usually metal, cylindrical shells. Metal cylindrical shells are
used to transport hazardous materials and for scientific experiments [1]. The explosion
test is a consumable test with a high cost and high risk factor. Explosive containers in the
process of use carry the possibility of causing serious injury if they fail. In order to ensure
the safety performance of metal cylindrical shells in service, accurate calculation of the
dynamic failure pressure during the explosion is a key issue.

At present, the research methods of the failure pressure of metal cylindrical shells
mainly include experimental methods, finite element methods and theoretical analysis.
Most researchers’ studies have focused on the failure pressure of metallic cylindrical shells
under static loading. In theoretical analysis, thin-walled cylinder theory and thick-walled
cylinder theory are commonly used to predict the burst pressure, combined with the
existing static strength criteria. Failure pressure is closely related to dynamic failure criteria
for metal cylindrical shells under explosive loads. In order to understand the dynamic
failure criteria of metal cylindrical shells under explosive loads, we should know the static
failure criteria. There are significant differences and similarities between static failure
criteria and dynamic ones. There has been a lot of research on static failure pressure and
static failure criteria [2]. As early as the 1950s, Cooper [3] began to analyze the failure
pressures of metal cylindrical shells using the von Mises criterion. Later, scholars also
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provided a number of failure pressure equations based on different failure criteria for
cylindrical metal shells [4]. Recently, Zhu and Leis [5] proposed the Zhu–Leis criterion
for the failure pressure of metal cylindrical shells. Zhang et al. [6,7] proposed the mean
yield criterion for the failure pressure of metal cylindrical shells. Yu et al. [8,9] proposed
the double shear yield criterion and unified strength theory for the failure pressure of
metal cylindrical shells. Chen et al. [10] proposed a new multi-parameter failure criterion
and applied it to the failure strength assessment of hydrogen pipelines. There are also
some industrial standards for the failure pressures of metal cylindrical shells, such as
ASME B31G [11], API [12], Nadai [13], and the ISO 10400 [14]. Investigation found that the
existing failure criteria are for the failure pressures of materials under static loads and do
not consider the time effect and inertia effect of materials under the action of instantaneous
explosive loads.

Few researchers have studied the failure pressures of metal cylindrical shells under
explosive loads. The failure criteria and failure pressures of metal cylindrical shells un-
der impact loads are poorly studied, despite there being much research on the dynamic
responses of metal cylindrical shells under explosive loads. Cheng et al. [15] investigated
the dynamic responses and structural losses of cylindrical composite structures under
repeated blast loading. V Hadavi et al. [16] proposed a theoretical method for calculating
the maximum radial deflection of cylindrical shells under blast loading. Robert A [17] quan-
tified the stress induced by shock waves within the pipeline using finite element methods.
However, the failure pressure under dynamic explosive loading is slightly understudied.
Finite element analysis is one of the most widely used methods for simulating the failure
of pipes under static and dynamic loads, and also for validating the results of theoretical
analyses [18,19]. Xue et al. [20] investigated the applicability of finite element analysis
methods for predicting rupture pressure under dynamic and static internal pressure, and
the results indicated that both dynamic and static finite element methods can predict burst
pressure. Cheng et al. [21,22] proposed an empirical formula based on experimental data for
determining the short-term burst pressures of metal cylinders under short-term dynamic
loads. Wei et al. [23] took the gas cylinder steel HP295 as their research object and proposed
a modified Barlow formula for the failure pressure of the gas cylinder. Chen et al. [24,25]
proposed a failure pressure model for metal cylindrical shells subjected to explosive loads.
However, the above studies did not theoretically analyze the failure behavior of metal
cylindrical vessels under instantaneous blast loading, nor is the stress–strain behavior of
the inner wall of a pipe under dynamic loading sufficiently understood. Failure criteria of
metal cylindrical shells under explosive loads are critical for dynamic safety assessments of
metal cylindrical shells. Therefore, it is necessary to establish an innovative failure criterion
considering the time effect to further research the failure behavior of metal cylindrical shells
under explosive loads.

As indicated above, despite the surging interest in the failure pressures of metal
cylindrical shells under explosive loads, only limited attention has been given to a failure
criterion that is applicable to the explosive loads. Consider that under explosive loads,
the dynamic ultimate bearing capacity of a material is different from the static one, and
the dynamic ultimate bearing capacity is related to time. To better understand the failure
pressures of metal cylindrical shells under explosive loads, we propose an innovative failure
criterion considering the time effect in this paper. Firstly, taking metal cylindrical shells as
the research object, the explosive load is simplified according to the load characteristics.
Secondly, based on the stress function method, we obtain the analytical solution for the
metal cylindrical shell. Next, the failure pressure equation is developed in conjunction with
the proposed failure criterion. In the end, the accuracy of the new failure pressure equation
is verified by FEM.
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2. An Innovative Failure Criterion

The mechanical behavior of a material subjected to explosive loads is significantly
different from that subjected to static loads. The relationship between material failure pres-
sure and strain rate is complicated. Under the action of explosive loads, the failure of metal
materials is related to the time effect, inertia effect, and damping effect. Baker et al. [26]
and Hampton et al. [27] reviewed and summarized the data of some carbon steels, and
obtained a functional relationship between the strain rate and dynamic ultimate strength.

σd
u = σu

[
1.1 + 0.1 log(

.
ε•s)

]
(1)

where is σd
u the dynamic ultimate strength of the materials; σu the ultimate strength of the

materials;
.
ε is the strain rate, which can be calculated by the ratio of strain rate to time; s is

the unit of time.
The Tresca criterion considers that the material will yield or fail if the maximum stress

reaches a certain value, which can be expressed as:

σT = max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) (2)

When σ1 > σ2 > σ3, the Tresca criterion can be simplified as:

σT = σ1 − σ3 (3)

where σT is the Tresca effective stress. σ1, σ2, σ3 are the first principal stress, the second
principal stress, and the third principal stress, respectively.

Equation (3) shows that the intermediate principal stress does not affect the yield
or failure of the material. Equation (3) cannot be directly used for metal cylinder shells
under explosive load, because it does not take into account the time effect. The failure
pressure of metal cylinder shells under an explosive load is time-dependent. A dynamic
failure assessment can be performed only after the time effect is added to Equation (3). It
should be clearly pointed out that adding the time effect into the Tresca criterion is the
main innovation of this paper.

Previous studies have shown that the Tresca criterion is the lower limit of the predicted
value when predicting the failure pressure of metal cylinder shells [5,28]. For the prediction
of burst pressure under an explosive load, a conservative calculation is beneficial to reduce
the failure rate of the vessel, so the relatively conservative predicted value is acceptable. To
depict the failure criterion of materials under explosive loads, we introduce a coefficient k
into Equation (3), which is from Equation (1). Additionally, the innovative failure criterion
can be expressed as:

σd
T = kσT = σ

′
1 − σ

′
3 (4)

where k = 1/1.1 + 0.1 log(
.
ε•s); σd

T is Tresca effective stress; σ
′
1, σ

′
3 are the first principal

stress and third principal stress.
Equation (4) is the innovative failure criterion we propose in this paper. This criterion

takes into account the strain rate and is quite different from the static damage criterion.
The strain rate is a time-dependent parameter. Therefore, Equation (4) is an innovative
failure criterion considering the time effect. As the innovative failure criterion was mainly
proposed by Li Yan and Chen Zhan-Feng, it can also be called the Li–Chen criterion. The
innovative failure criterion is a failure criterion transformed from a static failure criterion.
Based on the innovative failure criterion, the failure pressure of a metal cylindrical shell
under an explosive load can be transformed into a static load problem to be solved. This is
similar to D’Alembert’s principle. The innovative failure criterion provides a new idea for
further study of the dynamic failure behavior of materials.
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3. Mechanical Model of Metal Cylinder Shells

In this section, the innovative failure criterion is first used in the failure pressure
analysis of metal cylinder shells under explosive loads. The metal cylinder shell is used
as the research object to study the burst pressure under internal explosive loads. When
the burst load acts on the inner wall of the metal cylinder, the action time is brief, and the
strain rate of the metal cylinder material is high. The classical static failure criterion cannot
be applied during the explosion.

3.1. Geometric Model

The metal cylinder shell is simplified as a thick-walled, cylindrical container. To
simplify the calculation, we performed the following assumptions:

1. The wall of a metal cylindrical shell is made of isotropic elastoplastic metal;
2. The impact of the metal fragments generated on the shell is not considered when the

blast occurs;
3. The gas–solid interactive effect during the explosion is not considered;
4. No theoretical analysis of the elastic-plastic response of the cylindrical shell is performed;
5. We neglect the effect of axial load on the breaking pressure;
6. Explosions occur in routine environments.

3.2. Stress Boundary Condition

It is not difficult to understand that the blast load distribution within the cylindrical
shell is not uniform when the explosion occurs. In general, the load near the explosion
point is greater than the load at the principle explosion point. Far from the explosion
point, the load is low. Based on the above analysis, assuming that the explosion point is
located in the center of the metal cylinder, the burst load on the plane can be simplified
as two symmetrical parabolic loads. The parabolic load acts on the inner wall of the
metal cylindrical shell, as shown in Figure 1; Pi is the internal explosive load in the metal
cylindrical shell. Ma et al. [1] made similar assumptions when analyzing the damage to
metallic cylindrical shells under blast loading based on the finite element method. The
difference is that the geometric model proposed in this paper can be used for general
theoretical analysis and has significant theoretical significance.

Figure 1. Geometric model of a metal cylindrical shell subjected to an internal explosive load.

4. Failure Pressure of Metal Cylindrical Shells

When the explosion occurs inside the metal cylindrical shell, the strong pulse generated
acts on the inner wall of the metal cylindrical shell. The pulses are bounced back, become
smaller, and eventually disappear. The first pulse is the most powerful, the most harmful,
which is the focus of our research. Plenty of researchers are interested in the dynamic
response. Unfortunately, only a few scholars have paid attention to the failure pressures
and failure criteria of metal cylindrical shells. Presently, what is known is still not enough
for scholars to study the failure mechanisms of metal cylindrical shells under explosive
loads. The existing failure criterion makes it difficult to obtain the failure pressures of metal
cylindrical shells under explosive loads.
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In this section, we try to study the failure pressure of a metal cylindrical shell under
an explosive load. During the explosion, the impact energy will gradually dissipate, and
the intensity of the pulse will gradually decrease. The first pulse is the most destructive.
Therefore, the first pulse is the key to determining the failure pressure. The first pulse
closest to the explosion point has the most energy, whereas the pulse energy further from
the explosion point is decreased. In this paper, the failure pressure of a metal cylindrical
shell is determined by a failure pressure equation, regardless of the impacts of various solid
fragments on the inside wall and gas–solid coupling. Considering the symmetry of the
metal cylindrical shell, strain, stress, and displacement are also symmetrical under ideal
conditions, as indicated in Figure 2.

Figure 2. The mechanical model of a metal cylindrical shell under the first pulse. a is the internal
radius of the metal cylindrical shell, b is the external radius of the metal cylindrical shell, h is the axial
displacement of the explosive load from the maximum value to zero, r is radial displacement of the
metal cylindrical shell.

4.1. Stress Function

Metal cylindrical shells are constructed from thick-walled, cylindrical structures with
closed ends. According to the previous assumptions, as shown in Figure 2, it can be
known that in the shell, all stress boundary conditions, the structure, and constraints are
symmetrical around the z-axis. The relationship between stress and deformation of the
cylindrical pressure vessel can be thought of as being determined by r and z, whereas angle
θ has no bearing on it at all.

The stress function for the metal cylindrical shell conforms to the biharmonic equa-
tion [29]: (

∂2

∂r2 +
1
r

∂

∂r
+

∂2

∂z2

)(
∂2φ

∂r2 +
1
r

∂φ

∂r
+

∂2φ

∂z2

)
= 0 (5)

The stress function of the metal cylindrical shell under a parabolic load can be ex-
pressed as:

ϕ = γ1
(
8z5 − 15zr4)+ γ2

(
8z5 − 40z3r2 + 15zr4)+ γ3

(
8z4 − 3r4)+

γ4
(
2z4 − 3r2z2)+ γ5z log(r) + γ6z3 + γ7r2z + γ8zr2 log(r)+

γ9z3 log(r) + γ10r2 log(r) + γ11z2 log(r)

(6)

where γ1 to γ11 are unknown coefficients that can be determined by the stress boundary
condition; ϕ is the stress function of the metal cylindrical shell under a parabolic load.
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4.2. Stress Component

In an axisymmetric problem, the stress components depend on r and z instead of θ.
Following the stress function method of elastic theory, the stress component of the metal
cylindrical shell can be expressed as [30]:

σr =
∂
∂z

(
µ∇2 ϕ− ∂2 ϕ

∂r2

)
σθ = ∂

∂z

(
µ∇2 ϕ− 1

r
∂ϕ
∂r

)
σz =

∂
∂z

(
(2− µ)∇2 ϕ− ∂2 ϕ

∂z2

)
τrz =

∂
∂r

(
(1− µ)∇2 ϕ− ∂2 ϕ

∂z2

) (7)

where σr, σ
θ
, σz, τrz are the radial, hoop, axial, and shear stress, respectively. µ is the Poisson

ratio, ϕ is the stress function of the cylindrical shell under a parabolic load, r is the radial
displacement, and z is the axial displacement.

4.3. Boundary Conditions

The geometric representation of a metal cylindrical shell is shown in Figure 2. The
inner radius of the cylindrical shell is parameter a, and the outer radius is parameter b.
Axis z is the symmetric axis of the geometric model. As illustrated in Figure 2, a cylindrical
coordinate system is created along the z-axis, and the parabolic pressure ranges from h
to –h according to the actual impact range of the first pulse. Based on the mathematical
assumption that h = b, the stress boundary conditions for the metal cylindrical shells can be
determined as follows:

When r = a, {
σr = a1z2 + a2z + a3
τrz = 0

(8)

where a1, a2, a3 are the coefficients of the explosive load. When r = b, it can be obtained
from Equation (8): {

σr = 0
τrz = 0

(9)

When z = ±h, it can be obtained from Equation (9):

∫ b

a
rσzdr = 0 (10)

By substituting Equation (6) into (7), we obtain the stress component. The expression
is as follows:

σr =
(

480γ1µ + 240γ2 +
3γ9
r2

)
z2 +

[
192γ3µ + 12γ4(1 + 2µ) + 2γ11

r2

]
z + [180γ1(3− 4µ)− 180γ2]r2

+[6γ9µ + γ8(4µ− 2)] log r + γ5
r2 − 3γ8 + 6γ6µ + 4γ8µ + γ7(4µ− 2)

σθ =
(

480γ1µ + 240γ2 − 3γ9
r2

)
z2 +

[
192γ3µ + 12γ4(1 + 2µ)− 2γ11

r2

]
z + [60γ1(1− 4µ)− 60γ2]r2

+[6γ9µ + γ8(4µ− 2)] log r− γ5
r2 − γ8 + 6γ6µ + 4γ8µ + 2γ7(2µ− 1)

σz = 480[γ1(1− µ)− γ2]z2 − 24[8γ3(µ− 1) + γ4µ]z + 240[γ1(µ− 2) + γ2]r2

+2[2γ8(µ− 2) + 3γ9(1− µ)] log r + 4γ7(2− µ) + 4γ8(2− µ) + 6γ6(1− µ)

τrz =
[
(480γ1(µ− 1) + 480γ2)r +

4γ8(1−µ)−6γ9µ
r

]
z + [96γ3(µ− 1) + 12γ4µ]r

+ 4γ10(1−µ)−2γ11µ
r

(11)

where µ is Poisson’s ratio.
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By substituting Equation (11) into Equations (8)–(10), the coefficients γ1 to γ11 can
be obtained:

γ1 = a2a1
240(a2−b2)(1+µ)

γ2 = a2a1(1−µ)
240(a2−b2)(1+µ)

γ3 = a2a2µ

96(a2−b2)(1+µ)

γ4 = a2a2(1−µ)
12(a2−b2)(1+µ)

γ5 = − a2b2[a2a1µ+4a2(1+µ)]
4(a2−b2)(1+µ)

+
4µa4a1b4(log b−log a)

4(a2−b2)
2
(1−µ)

γ6 = − a2(4a2(µ−2)+a2a1(µ−1)+a1b2(1+3µ))
12(a2−b2)(1+µ)

+
a1a2b2(a2 log a−b2 log b)

3(a2−b2)
2

γ7 =
a2
[(

4a2(µ−1)2+a1µ(a2(µ−1)−b2(3+µ))
)]

8(a2−b2)(µ2−1) +
µa1a2b2(b2 log b−a2 log a)

2(a2−b2)
2
(µ−1)

γ8 = a2a1b2µ

2(a2−b2)(µ−1)

γ9 = − a2a1b2

3(a2−b2)

γ10 = a2a2b2µ

4(a2−b2)(µ−1)

γ11 = − a2a2b2

2(a2−b2)

(12)

By substituting Equation (12) into Equation (11), the axial stress σz, the radial stress σr,
the hoop stress σθ , and the shear stress τrz of a metal cylindrical shell under the first pulse
can be obtained:

σr =
a2a1(b2−r2)
(b2−a2)r2 z2 +

a2a2(b2−r2)
(b2−a2)r2 +

a2a1µ(b2−r2)(a2−r2)
4(b2−a2)r2(µ+1) −

a2a1b2µ

(b2−a2)
2r2(µ−1)

[
b2(a2 − r2) log b + a2(b2 − r2) log a− r2(b2 − a2) log r

]
σθ = − a2a1(b2+r2)z2

(b2−a2)r2 − a2a2(b2+r2)
(b2−a2)r2 −

a4a1b2µ

4(b2−a2)r2(µ+1)+

a2a1µ(a2(µ−1)+3r2(1−µ)+b2(3+5µ))
4(b2−a2)(1−µ2)

+

a2a1b2µ

(b2−a2)
2r2(µ−1)

[
b2(r2 + a2) log b− a2(r2 + b2) log a + r2(a2 − b2) log r

]
σz =

2a1a2b2(b2 log b−a2 log a)
(a2−b2)

2
(µ−1)

+

a1a2[b2(1+3µ)+2r2(1−µ)+a2(µ−1)+4b2(1+µ) log r]
2(a2−b2)(µ2−1)

τrz = 0

(13)

4.4. Failure Pressure Equation

The failure pressure of a vessel under internal pressure usually refers to the maximum
load carrying capacity under static or quasi-static loading. The static failure pressure can
be obtained by hydrostatic experiment. In the experiment, the hydraulic loading rate must
be very low, which can be regarded as a static or quasi-static process. The blast load is
different from the static or quasi-static load in the experiment, which is a dynamic load.
Depending on the strain rate of the material, a distinction can be made between static and
dynamic loads. When the strain rate is less than 10−5 s−1, it is a static load. When the strain
rate is between 10−5 and 10−3 s−1, it is a quasi-static load. When the strain rate is more
than 10−3 s−1, it is a dynamic load [31]. The internal explosive load of the metal cylindrical
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shell is a characteristic dynamic load subject to strong time dependence. A number of
equations have been proposed in the past for the prediction of the failure pressures for
cylindrical vessels under static loads [32–34]. Since the explosive load is a time-dependent
equation, these equations cannot be used for the prediction of the failure pressure of a
metal cylindrical shell under an explosive load.

In this study, we assume that the first pulse is a parabolic impact load. It is evident
that the maximum impact load of the parabolic load arises at z = 0. Consequently, the
location of maximum stress is found in the positions of z = 0 and r = a in the cylindrical
coordinate system. As z = 0 and r = a are substituted into Equation (13), the stresses of the
metal cylindrical shell under explosive loads can be expressed as:

σθ = − a3(b2+a2)
(b2−a2)

+
a2a1µ(b2(1+3µ)+a2(1−µ))

2(b2−a2)(1−µ2)
+

2a2a1b4µ(log b−log a)
(b2−a2)

2
(µ−1)

σz =
a2a1(b2(1+3µ)+a2(1−µ))

2(b2−a2)(1−µ2)
+

2a2a1b4(log b−log a)
(b2−a2)

2
(µ−1)

σr = a3

(14)

where σθ , σz, σr corresponded to σ1, σ2, σ3.
To simplify the expressions, we make the following assumption:

A = − (b2+a2)
(b2−a2)

B =
a2µ(b2(1+3µ)+a2(1−µ))

2(b2−a2)(1−µ2)

C =
2a2b4µ(log b−log a)
(b2−a2)

2
(µ−1)

(15)

As a result, the first principal stress can be described as follows:

σ1 = Aa3 + (B + C)a1 (16)

As for the third principal stress, it can be expressed as follows:

σ3 = a3 (17)

By substituting Equations (16) and (17) into Equation (4), we can obtain the following
expression:

Aa3 + (B + C)a1 − a3 = σu (18)

By substituting z = b and a2 = 0 into Equation (8):

a1b2 + a3 = 0 (19)

By solving Equations (18) and (19), we can determine a1 and a3.{
a1 = − σu

k(1+Ab2−B−C)

a3 = b2σu
k(1+Ab2−B−C)

(20)

Obviously, a3 is the maximum parabolic internal pressure. Based on the innova-
tive failure criterion, the failure pressure equation of the metal cylindrical shell can be
expressed as:

Pd
b =

b2σu

k(1 + Ab2 − B− C)
(21)

where k = 1
1.1+0.1 log(

.
ε·s) .
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5. Verification of Accuracy by FEM

As the deformation process needs to consider the inertia effect and strain rate effect
of the structure, the stress state of the implosion condition and its analysis method are
fundamentally different from those for a static load [35]. FEM is a good tool for determining
static and dynamic failure pressures in pressure vessels and pipes. To verify the accuracy
of the new failure pressure equation and criterion, we analyzed a metal cylinder shell using
LS-DYNA software under dynamic explosion conditions. In this section, the accuracy of
Equation (21) is examined based on finite element simulation results in reference [22].

The geometric model of the FEA is shown in Figure 3. The metal cylindrical shell
is complete and defect-free. In Figure 3, t is the wall thickness of the metal cylindrical
shell, D is the outer diameter of the metal cylindrical shell, and L is the length of the metal
cylindrical shell (excluding the closed-end).

Figure 3. Shape and dimensions of the metal cylindrical shell.

The finite element analysis was performed on ASTMA-106B steel [27]. This material
is primarily used for seamless steel pipes. A constitutive relationship for ASTM A-106B
is depicted in Figure 4 at different strain rates. The failure criterion was the maximum
plastic strain under different strain rates in the finite element analysis. After the plastic
strain reached a maximum value for a particular strain rate in FEA simulation, the element
was removed from the calculation. By examining the output of the FEA model, we can
determine the failure pressure and burst time. Due to the boundary condition, loads,
and symmetry of the geometry, a quarter model was employed in FEA. The boundary
conditions are shown in Figure 5. It was fixed along the y-axis at the end of the cap, and
gravity acted in the negative y-axis direction. Rotation was not restricted. Figure 6 shows
the stress distribution in the cylindrical shell. The results of the finite element analysis are
listed in Table 1.

Figure 4. Stress–strain curve of ASTMA-106B steel.
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Figure 5. Boundary conditions [21].

Figure 6. The von Mises stress distribution at 5.2005 ms [21].

According to the literature [21,36], LS-DYNA is used to simulate the dynamic failure
of metal cylindrical shells. During the explosion, the impact load on the inner wall can
generate several periodic pulses. The duration of the pulse is actually half of the pulse
period. The pulse duration td is from 3.9 to 390 ms. The pulse duration and the burst time
are different in finite element analysis. The results of finite element analysis can be used
to determine the burst time tb in Equation (21). The strain ratio is

.
ε = ε/tb. Table 1 lists

the burst time tb and pulse duration. ASTM A-160B steel has a maximum strain of 0.262.
Thus, it is possible to obtain the strain rate

.
ε by Equation. The tensile strength of ASTM

A-160B steel in static tensile state is 413.69 MPa. Thus, the dynamic failure pressure Pd
b

can be calculated using Equation (21) based on the data above. The calculation results are
presented in Table 1.

Comparisons between FEA and the calculation results are shown in Figures 7–9.
Figure 7 demonstrates the comparison between the calculated results and the finite element
results at td = 3.9 ms. The maximum relative error in the comparison results is 9.46%, and
the minimum relative error is 1.65%. The majority of the error ranges fall between 0% and
10%. Figure 8 shows the comparison of the calculated results and those obtained from finite
elements at time td = 39 ms. The maximum error is 9%, the minimum error is 4.9%, and
the majority of errors are between 0% and 9%. Figure 9 shows the comparison between
the calculated results and the finite element results at td = 390 ms. The minimum error
is 0.14%, and the maximum error is 1.19%. Most of the errors are less than 1%. Through
comparison, it was found that when td = 390 ms, the calculation results are the closest to
the finite element analysis result, and the errors are the smallest.
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Table 1. Finite element analysis results and theoretically calculated Pd
b .

No. D (mm) T (mm) td (ms) Peak Pressure (MPa) tb (ms) Pd
b (MPa)

1 355.6 4.191 3.9 12.4106 5.011 12.6449
355.6 4.191 39 11.0317 40.461 11.743
355.6 4.191 390 10.7007 391.456 10.7631

2 355.6 4.7752 3.9 14.0654 5.236 14.4245
355.6 4.7752 39 12.6864 40.064 13.4207
355.6 4.7752 390 12.4106 398.019 12.2881

3 355.6 5.5372 3.9 16.5475 4.916 16.8208
355.6 5.5372 39 14.8928 39.626 15.6229
355.6 5.5372 390 14.3412 387.939 14.3133

4 355.6 6.35 3.9 19.0296 4.9046 19.363
355.6 6.35 39 16.8233 40.522 17.9678
355.6 6.35 390 16.2717 395.383 16.4627

5 355.6 7.9248 3.9 23.7181 5.002 24.3216
355.6 7.9248 39 20.9602 41.239 22.5697
355.6 7.9248 390 20.6844 388.973 20.7061

6 355.6 9.525 3.9 28.6824 4.965 29.4512
355.6 9.525 39 25.3729 41.170 27.3246
355.6 9.525 390 24.8213 393.792 25.0444

7 355.6 11.1252 3.9 33.6466 4.968 34.6446
355.6 11.1252 39 30.0613 40.438 32.1649
355.6 11.1252 390 29.3718 391.481 29.48

8 266.7 3.14452 3.9 12.1348 4.724 12.6756
266.7 3.14452 39 10.8938 40.635 11.746
266.7 3.14452 390 10.7559 388.724 10.7706

9 266.7 3.5814 3.9 13.7896 4.790 14.4684
266.7 3.5814 39 12.4106 40.876 13.4108
266.7 3.5814 390 12.2727 388.998 12.2994

10 266.7 4.1529 3.9 15.9959 4.825 16.8315
266.7 4.1529 39 14.6170 39.905 15.6188
266.7 4.1529 390 14.3412 387.140 14.3145

11 266.7 4.7625 3.9 18.4781 4.738 19.3858
266.7 4.7625 39 16.8233 39.863 17.9786
266.7 4.7625 390 16.2717 393.439 16.466

12 266.7 5.9436 3.9 23.1665 4.738 24.3667
266.7 5.9436 39 20.9602 40.297 22.5889
266.7 5.9436 390 20.5465 390.747 20.7023

13 266.7 7.1501 3.9 28.1308 4.657 29.5429
266.7 7.1501 39 25.2350 40.769 27.3598
266.7 7.1501 390 24.8213 392.350 25.0813

14 266.7 8.3439 3.9 32.8192 4.748 34.6982
266.7 8.3439 39 29.7855 40.384 32.1665
266.7 8.3439 390 29.2340 401.020 29.4516

15 177.8 5.5626 3.9 31.7161 4.670 34.7178
177.8 5.5626 39 29.5097 40.396 32.1661
177.8 5.5626 390 29.2340 392.020 29.4784

16 177.8 2.0955 3.9 11.8591 4.426 12.715
177.8 2.0955 39 10.8938 39.783 11.7503
177.8 2.0955 390 10.8938 387.844 10.7671
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Figure 7. Comparison results with pulse duration td = 3.9ms.

Figure 8. Comparison results with pulse duration td = 39ms.

Figure 9. Comparison results obtained when td = 390ms.

This study aimed to establish an innovative failure criterion for dynamic strength
analysis. Unlike earlier studies that simplified the explosive load within a metal cylindrical
shell to a uniform load, in this study, the explosive load inside the metal cylindrical
shell was simplified to a parabolic load. The analytical solution of the metal cylindrical
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shell was obtained. Validation of the new failure pressure equation with different pulse
duration times was carried out by comparing our calculations with finite element analysis
results. The results indicated that the new failure pressure equation can predict the failure
pressure accurately. The innovative failure criterion suggested in this paper can be used to
analyze the mechanical behavior of materials under explosive loads. The innovative failure
criterion and failure pressure equation of metal cylindrical shells under explosive loads can
be regarded as a reference for the design of cylindrical vessels.

6. Conclusions

In this paper, the dynamic failure problem of a metal cylindrical shell under an
explosive load was studied. Firstly, a dynamic strength criterion containing time was
proposed based on the Tresca strength criterion. Secondly, in order to analyze the stress
components when the metal cylindrical shell is subjected to the explosive load, the explosive
load was simplified to a symmetric parabolic load in the plane, and the stress components
of the explosive container under the burst load were obtained. Thirdly, a predicted equation
of dynamic failure pressure was obtained based on the innovative failure criterion. Finally,
the proposed dynamic failure pressure equation was validated by FEM. The results suggest
that the values calculated by the failure pressure equation based on the innovative failure
criteria are reasonably close to the values calculated by the FEM. Prediction accuracy is
greatest when the pulse duration is 390 milliseconds. The minimum error was 0.14%, and
the maximum error was 1.19%. The prediction accuracy increases with an increase in
pulse duration. It is the subject of our next study to identify the specific reasons for this.
This study provides a prediction method for dynamic failure pressure and also provides a
theoretical reference for the failure of metal cylindrical shells under dynamic loading.
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