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Abstract: This work presents the fabrication, characterization, and application of iron-coated carbon
fiber (Fe@CF), synthesized in a facile in situ iron reduction, for As(III) removal from an aqueous
solution. The physico-chemical properties of the composite were characterized using Brunauer–
Emmett–Teller (BET) surface area, scanning electron microscopy (SEM), X-ray diffraction (XRD),
and Fourier-transform infrared (FTIR) spectroscopy. Adsorption studies were evaluated in batch
experiments with respect to reaction time, the dose of adsorbent, As(III) initial concentration, pH,
and co-existing ions. The results showed that the BET surface area and pore volume of Fe@CF
slightly decreased after Fe coating, while its pore size remained, while the SEM and XRD analyses
demonstrated that the Fe was successfully anchored on the CF. A maximum As(III) adsorption of 95%
was achieved with an initial As concentration of 1.5 mg/L at optimum conditions (30 min of reaction
time, 1 g/L of dose, 1 mg/L of As(III) concentration, and pH 3.5). Since the treated effluents could
not meet the strict discharge standard of ≤10 µg/L set by the World Health Organization (WHO),
a longer reaction time is required to complete the removal of remaining As(III) in the wastewater
effluents. As compared to the other adsorbents reported previously, the Fe@CF composite has the
highest As(III) removal. Overall, the findings suggested that the use of Fe@CF as an adsorbent is
promising for effective remediation in the aquatic environment.

Keywords: adsorption; arsenic; carbon fiber; phyico-chemical technique; wastewater treatment

1. Introduction

As the result of water pollution that has threatened over 2 billion people recently, clean
water has become an important issue in terms of pollution abatement and water recycling.
To maintain a green environment for future generations, a clean water supply is vital due
to its key role in addressing the world’s challenges such as food insecurity.

While clean water is important for public health, the extent of water pollution has
risen in the developing world such as India due to arsenic (As) contamination that causes
skin cancer or keratosis. There is no break, even during this Covid-19 global pandemic, as
300 million people are still affected by the As contamination [1]. The increasingly stringent
discharge limits of arsenic (<10 µg/L) set by the WHO also result in the increasing demand
for clean water [2]. Unless properly addressed, it is anticipated that by 2030, half of the
world’s population will be living in water-stressed areas [1]. As everyone has the right to
safe, clean, and affordable water for personal and domestic utilization, finding sustainable
solutions for this problem represents another challenge for the current generation.
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To address this global challenge, water scientists have constantly searched for new
technologies that could be implemented in wastewater treatment operations. Various
water technologies have been tested such as membrane filtrations [3], precipitation [4], and
advanced oxidation process [5]. On the basis of economical, eco-friendly, and treatment
performance, adsorption represents one of the most promising options to remove As from
contaminated wastewater [6]. Adsorbents from low-cost sources such as agricultural
waste [7], industrial by-products [8], and natural minerals [9,10] have been investigated for
the treatment of contaminated water laden with heavy metals such as As, Cr, and Ni.

However, most of the adsorbents have not been investigated with respect to sustain-
ability [11]. The sustainability approach of adsorption is based on the adsorbent with
high surface area, ease of separation post-treatment, and structural and functional activity
even after regeneration [12,13]. With such characteristics, identifying suitable functional
materials that decrease the consumption of natural resources has become an imperative task
for water scientists to contribute to the UN SDGs #6 “Clean water and sanitation” [14,15].

In this regard, new materials are more than often standing at the basis of technological
breakthroughs, while water chemistry is enabling science to make game-changing solutions
possible for an efficient sewage treatment [14]. Materials from unused resources can play
roles when it comes to promoting a circular economy (CE). Adopting resource recovery
and zero-waste approaches not only minimizes waste generation by utilizing by-products,
but also paves the way forward for a closed loop in the CE [15]. As a green approach to
water technology is the need of the hour, the use of functional materials for the removal
of aquatic pollutants has intensified recently. Since the world’s economy gradually shifts
toward a CE [16], there is increasing pressure to substitute conventional materials with
sustainable and renewable materials such as composites from unused resources, which
often end up in landfill for disposal [17].

Recently, combining two starting materials into a composite has gained popularity [18].
Although they are ubiquitous, the utilization of composites for water treatment is still
limited [19]. If properly recycled and reused in the loop of a CE, the materials can lead
to greenhouse gas emissions (GHG) reduction and carbon footprint attenuation [20]. To
offer readers a new perspective of CE applications in water treatment, the application
of composites as adsorbents could help public water utilities to attain carbon-neutral
water treatment by providing treated water without generating secondary waste. This
distinguishes its utilization as an adsorbent from other separation technology that still
generates waste such as sludge that needs to be treated first before its final disposal in
landfills. As a result, this adds operational costs to wastewater treatment.

To mitigate the bottlenecks in the field of study, iron-based composites have been
developed to remediate As(III)-laden water because of their ability to disperse Fe nanopar-
ticles. Among the composites, carbon fibers, made from polyacrylonitrile, were selected
for this study due to their large surface area. As iron-coated carbon fiber (CF) exhibits
favorable adsorption towards contaminants such as Cr(VI) [21,22], it may be regenerated
for subsequent treatment to improve its cost-effectiveness. Although surface modifica-
tion using nano zero-valent iron (nZVI) may be effective to enhance its performance, the
production cost of CF for water treatment is high.

To reflect its novelty, this study investigated the technical feasibility of iron-coated
carbon fiber synthesized via in situ iron reduction for the adsorption of As(III) from an aque-
ous solution. The resulting adsorbent was characterized using Brunauer–Emmett–Teller
(BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform
infrared (FTIR) spectroscopy. Batch experiments were carried out under optimized con-
ditions of reaction time, dosage, As(III) initial concentration, pH, and in the presence of
coexisting ions (Mg2+, Ca2+, K+, Cl−, SO4

2−, HCO3
−, and PO4

3−). The removal of As(III)
by the Fe@CF was evaluated and compared to as-received CF and those of other materials.
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2. Materials and Methods
2.1. Materials

Carbon fiber cloth (30 cm × 30 cm) was provided by the Anhui Tianfu Technology
(China). The material was then crushed, passed through 60-mesh screen (<0.25 mm), and
thoroughly washed with ultra-pure water. The average diameter of the fibers used in this
study was less than 0.25 mm. A stock solution of As(III) (1000 mg/L) was prepared from
Tanmo Standard Substances Center (Changzhou, China). Each working solution was ob-
tained by diluting the stock solution using ultrapure water (18.2 MΩ cm−1). Other reagents
were obtained from Adamas (Shanghai, China) and used without further purification.

2.2. Synthesis of Iron-Coated Carbon Fiber Composite

In a typical in situ reduction method [23,24], 3.78 g of carbon fiber was mixed with
27 mM of FeCl2·4H2O solution (200 mL). Afterward, 54 mM of KBH4 (200 mL) was added
dropwise to the mixture, which reduced Fe2+ to Fe0 (Equation (1)) [25]. After 1 h of stirring,
the resultant solid was filtered and washed repeatedly. In this process, the Cl− and K+,
which did not participate in the reaction, were removed. After the complete synthesis of
the composite, the resulting material was vacuum-dried at 105 ◦C overnight and marked
as Fe@CF.

2Fe2+ + BH−4 + 2H2O→2Fe0 + BO2
− + 2H2 + 4H+ (1)

2.3. Characterizations of CF and Fe@CF

The specific surface area and porous properties of the materials used in this study were
determined on an ASAP2460 instrument (Micromeritics, Norcross, GA, USA) using BET N2
adsorption-desorption method. Fourier-transform infrared (FTIR) spectra were collected on
a Nexus 670 (Nicole, Ramsey, MN, USA) in the range of 4000–400 cm−1. X-ray diffraction
(XRD) measurement was carried out on an X’Pert Pro MPD X-ray diffractometer (Nalytical,
Amsterdam, The Netherlands) using CuKα radiation at 40 kV, 30 mA at 5◦/min. Scanning
electron microscope tests (TESCAN MIRA LMS, Brno, Czech Republic) along with an
Xplore 30 EDS detector were recorded to detect the surface morphology and composition
of the composite.

2.4. Batch Adsorption Studies

The effects of reaction time (10~180 min), Fe@CF dose (0.5~3 g/L), initial concentration
of As(III) (0.5~2 mg/L), pH (3.5~9.5), and coexisting ions with an initial concentration
of 0.1 M (cations: Na+, Mg2+, and Ca2+; anions: Cl−, HCO3

−, SO4
2−, and PO4

3−) were
examined to determine the optimum conditions of As(III) removal by Fe@CF. The batch
experiments were conducted at ambient temperature. After the reaction was complete,
an aliquot of sample solution was collected and filtered through a 0.45 µm microporous
membrane by using 5 mL of plastic injector. As the size of the Fe@CF composite was
less than 0.25 mm, the spent composite can be recovered from the contaminated water
through 0.45 µm micro-porous membrane. The saturated adsorbent could be regenerated
and reused for subsequent treatment [26].

2.5. Analysis Method

The remaining concentration of As(III) after treatment was measured by hydride
generation atomic fluorescence spectrometry (HG-AFS, SA-20, Titian, China). The As(III)
was converted to AsH3 by 2% (w/v) KBH4 in 0.5% (w/v) NaOH solution (Equation (2)).
Citric acid (0.1 M) was used as carrier solution, while 0.4 M sodium citrate buffer (pH 4.5)
was used as the working solution.

As3+ + 4BH−4 + H+ + 8H2O→AsH3↑ + 4HBO2↑ + 13H2↑ (2)
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The As(III) removal (η(%)) was calculated based on the standard method [27] as follows:

η(%) = (1 − Ce

C0
) × 100 (3)

where: C0 and Ce are the initial and equilibrium concentration of As(III), respectively.

2.6. Statistical Tests

The adsorption experiments were conducted in triplicate. Their means were presented
with their coefficient variations of less than 5%. Statistical analysis was conducted using
SPSS 25.0 Windows version. Differences were statistically significant when p ≤ 0.05.

3. Results and Discussion
3.1. Physico-Chemical Properties of Fe@CF

The N2 adsorption–desorption isotherms curves and pore size distribution of the CF
and Fe@CF composite are presented in Figure 1. Compared to those of the as-received
CF (776.1 m2/g and 0.37 cm3/g), the BET surface area and pore volume of the Fe@CF
were slightly smaller (717.8 m2/g and 0.35 cm3/g), respectively (Figure 1a). The reduced
BET surface area and pore volume of the Fe@CF were ascribed to the coating of the Fe
nanoparticles. In addition, the adsorption–desorption curves of both the CF and Fe@CF
reached 0.2 of relative pressure and the average pore size was 2.9 nm (Figure 1b), indicating
that both the materials had a highly ordered mesoporous structure. No pore blockage
occurred on the surface of Fe@CF by Fe0. The findings were consistent with the results
reported earlier by Qu et al. [25].
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Figure 1. N2 adsorption–desorption isotherm curves (a) and pore size distribution curves (b) of CF 
and Fe@CF. 
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composite. The synthesized Fe nanoparticles coated on the columnar-shaped CF showed 
a globular-like morphology with an average particle size of 116 nm and formed an 
aggregated structure due to their intrinsic magnetic property. This characteristic 

Figure 1. N2 adsorption–desorption isotherm curves (a) and pore size distribution curves (b) of CF
and Fe@CF.

SEM images were used to understand the morphological characteristics of the Fe@CF
composite. The synthesized Fe nanoparticles coated on the columnar-shaped CF showed a
globular-like morphology with an average particle size of 116 nm and formed an aggre-
gated structure due to their intrinsic magnetic property. This characteristic represents the
magnetic attractive force between particles that increases with the sixth power of parti-
cle/agglomerate radius [28], which might result in decreasing the adsorption of the target
pollutant. A higher Fe0 content in the composite was attributed to their agglomeration
(Figure 2a,b). The EDS spectrum of the selected area, presented in Figure 2c, shows that the
elements of C, O, and Fe existed in the Fe@CF composite. The weak peaks of the Fe were
observed and its weight fraction in the Fe@CF composite was 4.9% (Figure 2c). The results
indicate that the Fe nanoparticles were successfully anchored on the surface of the CF.
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Figure 2. SEM images (a,b) and the EDS spectrum (c) of Fe@CF.

The XRD pattern of Fe@CF is presented in Figure 3a. The diffraction peak at 22.5◦

was ascribed to amorphous carbon, while the peak at 44.9◦ was indexed to the 110-plane
reflection of the metallic α-Fe (Fe0) (JCPDS NO. 06-0696) [15]. This indicated that the CF
was coated by nZVI, which was consistent with the results of the EDX. No other diffraction
peaks were observed, suggesting that nZVI was the main species coated onto the CF.
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FTIR studies in the region of 4000~400 cm−1 were carried out to identify changes in the
oxygen-containing groups on the surface of CF before and after surface modification with
nZVI. Figure 3b shows that the broad band that appeared at 3410 cm−1 was assigned to the
-OH stretching vibrations. Weak bands around 1560 cm−1 corresponded to the vibration of
C=O [29], while the broad and intense band at 1040 cm−1 could be attributed to the C-O
vibration [22]. The results suggested that the oxygen-containing groups on the CF had
no obvious changes after being coated with nZVI. The broad peak below 800 cm−1 was
responsible for the Si-O-Si stretching. The band of Si-O-Si at Fe@CF decreased, suggesting
a reaction between Si-O-Si and nZVI [30]. Numerous studies reported that the stretching of
the Si-O-Si variation resulted from the entrapment of the Fe atom by SiO2. The bond of the
Si-O-Fe was attributed to the compacted coating of silica on the Fe nanoparticles [31].

3.2. Effect of Reaction Time on As(III) Removal

The adsorption of As(III) by CF and Fe@CF was studied as a function of contact time
at the same concentration of 1 mg/L. Figure 4 shows that the adsorption of As(III) by CF
remained unchanged for 3 h of reaction time. In contrast, the adsorption of As(III) by the
Fe@CF composite increased sharply with the longer reaction time. About 94% of As(III)
(C0 = 1 mg/L) was adsorbed within 30 min. The high rate of As(III) uptake at the initial
stage of adsorption was ascribed to the availability of active sites on the composite. The
difference in the adsorbate concentration between the solution and the adsorbent surface
provided a driving force for mass transfer [31]. The adsorption of As(III) by the composite
achieved an equilibrium after 30 min, implying that the active sites were gradually occupied
by the adsorbate [32]. This indicated that the Fe@CF had not only larger adsorption sites,
but also a short equilibrium time. Overall, a short reaction time was essential to minimize
treatment costs [33]. Therefore, 30 min of contact time was adopted for subsequent studies.
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Figure 4. Effect of contact time on As(III) adsorption by Fe@CF. (Experimental conditions: 1 g/L of
dosage, 1 mg/L of As(III), pH 3.5, 150 rpm, 25 ◦C).

3.3. Effect of Dose on As(III) Removal

The effects of dose on the adsorption of As(III) by Fe@CF were tested by varying the
dose from 0.5 to 3.0 g/L. Figure 5 shows that the adsorption of As(III) by the Fe@CF was
enhanced with an increasing dose. The As(III) removal efficiencies by the Fe@CF were 70,
95, 95, and 96% with a varying dose of 0.5, 1.0, 2.0, and 3.0 g/L, respectively. In general, an
increasing dose would provide additional sites for adsorbing the target pollutant [34,35].
Optimum removal of As by the Fe@CF was achieved at 1.0 g/L of dose.



Materials 2022, 15, 4365 7 of 13

Materials 2021, 14, x FOR PEER REVIEW 7 of 13 
 

 

Figure 4. Effect of contact time on As(III) adsorption by Fe@CF. (Experimental conditions: 1 g/L of 
dosage, 1 mg/L of As(III), pH 3.5, 150 rpm, 25 °C). 

 

3.3. Effect of Dose on As(III) Removal 
The effects of dose on the adsorption of As(III) by Fe@CF were tested by varying the 

dose from 0.5 to 3.0 g/L. Figure 5 shows that the adsorption of As(III) by the Fe@CF was 
enhanced with an increasing dose. The As(III) removal efficiencies by the Fe@CF were 70, 
95, 95, and 96% with a varying dose of 0.5, 1.0, 2.0, and 3.0 g/L, respectively. In general, an 
increasing dose would provide additional sites for adsorbing the target pollutant [34,35]. 
Optimum removal of As by the Fe@CF was achieved at 1.0 g/L of dose. 

With the varying dose from 1.0–3.0 g/L, there was no significant increase in the As(III) 
adsorption. A large amount of adsorbent led to particle aggregation, which resulted in an 
overall reduction in the adsorbent–adsorbate interactions [36,37]. 

0 5 10 15 20 25 30 35
0

20

40

60

80

100

η(
%

)

Time (min)

 0.5 g/L
 1.0 g/L
 2.0 g/L
 3.0 g/L

 
Figure 5. Effect of dosage on As(III) adsorption by Fe@CF as a function of reaction time. 
(Experimental conditions: 0.5~3.0 g/L of dosage, 1 mg/L of As(III), pH 3.5, 150 rpm, 25 °C). 

3.4. Effect of Initial Concentration of As(III) on Its Removal 
The effects of initial As(III) concentrations on its adsorption by the Fe@CF were 

studied in the range of 0.5~2.0 mg/L while keeping other parameters constant (30 min of 
reaction time and 1 g/L of dosage). As depicted in Figure 6, the As(III) adsorption was 
over 95% at 1.5 mg/L of As(III) concentrations after 30 min of reaction and decreased to 
84% when the As(III) concentration increased to 2.0 mg/L (p > 0.05; ANOVA test). A 
similar trend was also reported for the adsorption of As(V) on nZVI-supported by 
activated carbon [38]. The decrease in As(III) adsorption was attributed to less availability 
of the active sites for a certain amount of dose [39]. The active sites available for adsorption 
were substantial at low As(III) concentrations. However, as the active sites on the 
adsorbent became saturated at higher As(III) concentrations, the adsorbent became 
increasingly exhausted [40]. 

Figure 5. Effect of dosage on As(III) adsorption by Fe@CF as a function of reaction time. (Experimental
conditions: 0.5~3.0 g/L of dosage, 1 mg/L of As(III), pH 3.5, 150 rpm, 25 ◦C).

With the varying dose from 1.0–3.0 g/L, there was no significant increase in the As(III)
adsorption. A large amount of adsorbent led to particle aggregation, which resulted in an
overall reduction in the adsorbent–adsorbate interactions [36,37].

3.4. Effect of Initial Concentration of As(III) on Its Removal

The effects of initial As(III) concentrations on its adsorption by the Fe@CF were studied
in the range of 0.5~2.0 mg/L while keeping other parameters constant (30 min of reaction
time and 1 g/L of dosage). As depicted in Figure 6, the As(III) adsorption was over 95%
at 1.5 mg/L of As(III) concentrations after 30 min of reaction and decreased to 84% when
the As(III) concentration increased to 2.0 mg/L (p > 0.05; ANOVA test). A similar trend
was also reported for the adsorption of As(V) on nZVI-supported by activated carbon [38].
The decrease in As(III) adsorption was attributed to less availability of the active sites for a
certain amount of dose [39]. The active sites available for adsorption were substantial at
low As(III) concentrations. However, as the active sites on the adsorbent became saturated
at higher As(III) concentrations, the adsorbent became increasingly exhausted [40].
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3.5. Effect of pH on As(III) Removal by Fe@CF

Optimum pH affects the adsorption behavior by controlling the surface charge of the
adsorbent and the chemical speciation of adsorbate [8,41]. For instance, As(III) is stable at
pH 0~9 as neutral H3AsO3, while H2AsO3

−, HAsO3
2−, and AsO3

3− exist as stable species
at pH ranging from 10~14 [42]. Therefore, the adsorption of As(III) by the Fe@CF was
studied at varying pHs from 3.5 to 9.5.

Figure 7 shows that the maximum adsorption of As(III) by the Fe@CF was 95%,
suggesting that low pH was beneficial to the adsorption of As(III) by the Fe@CF. It should
be noted that the initial pH of 1 mg/L of As(III) solution was 3.5. Therefore, the optimum
As(III) adsorption at pH 3.5 did not require pH adjustment.
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H3AsO3 formation might reduce the interaction between As(III) with Fe@CF because
the As(III) ions preferred to form a compound rather than to be adsorbed on the surface of
Fe@CF. In an acidic environment, the high As(III) removal was attributed to H-bonding and
the electrostatic attraction between the As speciation (H3AsO3) and the positively charged
Fe@CF [43]. As the pH of the solution increased from 3.5 to 9.5, the H3AsO3 in the solution
was gradually converted to H2AsO3

−, while protons were released from the C-OH group
on the Fe@CF [44]. The negatively charged Fe@CF created charge repulsion with the As(III)
species, reducing the adsorption of As(III).

3.6. Effect of Coexisting Ions on As(III) Removal by Fe@CF

Figure 8 shows the effects of coexisting ions (Na+, Ca2+, Mg2+, Cl−, HCO3
−, SO4

2−,
and PO4

3−) on As(III) removal by the Fe@CF at pH 3.5. Initial As(III) concentration was
1 mg/L and the concentration of competitive ions was 0.1 M. As depicted in Figure 8,
Na+, Ca2+, and Mg2+ had negligible effects on As(III) adsorption, implying that the cations
were hardly adsorbed by the protonated composite because of the electrostatic repulsion.
Cl−, HCO3

−, and SO4
2− did not interfere in the As(III) removal by the Fe@CF, while the

counterproductive impact on As(III) adsorption took place due to the presence of PO4
3−

(0.1 M) under the same conditions.
As the As(III) was removed from the wastewater solution as an anion, the selectivity

trend depended on the Hofmeister series. Due to their hydrophobicity, certain materials
prefer lowly hydrated anions to highly hydrated ones due to their charge numbers. This
implies that the higher valences are more predominant than the lower valence ions based
on the Hofmeister series [45]. Another explanation is that PO4

3− is a competitor with As(III)
species for adsorption sites on the Fe@CF [46–48], due to its similar tetrahedral structure
to that of arsenic [49]. This was also supported by Wei et al. [50], who also reported that
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Ca2+, Mg2+, and SO4
2− ions did not substantially affect As(III) adsorption due to their low

affinity with Fe, as compared to the As(V).
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Figure 8. Effect of coexisting ions on As(III) removal by Fe@CF. (Experimental conditions: 1 g/L of
dose, 1 mg/L of As(III), 0.1 M of coexisting ions, pH 3.5, 150 rpm, 25 ◦C; CK represents control).

3.7. As(III) Adsorption Mechanisms on Fe@CF

Based on the results above, the Fe@CF composite showed an excellent As(III) adsorp-
tion with a maximum capacity of 1.6 mg/g, which was due to the presence of nZVI on the
CF surface (Figure 4). Previous studies found that the nZVI served as the adsorption site
for As(III) in aqueous media, while the CF functioned as a carrier to distribute and stabilize
the nZVI. As(III) removal by nZVI involved As(III) oxyanions that formed inner-sphere
surface complexation with hydroxyl groups of Fe oxides [51].

Liu et al. [52] clarified the roles of carbonaceous supports in enhancing As(III) removal
by nZVI. The electron-accepting capacity of the carbonaceous supports was associated with
As(III) oxidation and its removal by nZVI [53]. The inner-sphere surface complexation
of As(III) or As(V) with Fe oxides represents the main mechanisms of As(III) removal
(Figure 9).
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3.8. Comparison of As(III) Removal between Fe@CF and Other Adsorbents in Batch Studies

The removal performance of As(III) from aqueous solutions using various adsorbents
is presented in Table 1. Compared to the other adsorbents, the Fe@CF composite was
an outstanding adsorbent that could be exploited for As(III) removal. It had the highest
As(III) adsorption capacity. The findings reveal favorable implications for environmental
engineers as Fe@CF can be utilized effectively to facilitate effective remediation in the
aquatic environment. However, the treated effluents could not meet the strict discharge
standard limit of ≤10 µg/L set by the WHO. A longer reaction time was required to
complete the removal of the remaining As(III) in the effluents, increasing the operational
cost of wastewater treatment.

Table 1. Comparison of the As(III) adsorption of various materials.

Adsorbent Maximum Adsorption (%) Optimum Conditions Reference

Fe@CF 95 1 g/L of dosage, 1 mg/L of As(III), 30 min, pH 3.5 This study
C-mVMT 94 20 g/L of dosage, 10 mg/L of As(III), pH 5 [36]

Fe3O4/SS-BC 93 2 g/L of dosage, 0.5 mg/L of As(III), pH 5 [54]
Fe@CTS ENM 85 0.3 g/L of dosage, 0.1 mg/L As(III), 24 h, pH = 3.3~8.0 [55]

Fe3O4/AC 70 1.8 g/L of dosage, 5 mg/L of As(III), 60 min, pH 8.0 [56]

4. Conclusions

This study has demonstrated the feasibility of the iron-coated CF composite for an ef-
fective As(III) adsorption from aqueous media. The SEM and XRD analyses confirmed that
the CF was successfully anchored by Fe(0) nanoparticles during in situ fabrication. During
treatment, 95% of As(III) was adsorbed at optimized conditions (30 min of reaction time, 1
g/L of dose, 1 mg/L of As(III) concentration, and pH 3.5). With the increasing regeneration
tests, the adsorptive ability of the Fe@CF composites might gradually decline. Since treated
effluents could not meet the strict discharge standard limit of ≤10 µg/L set by the WHO’s
regulation, a longer reaction time was necessary to complete the removal of As(III) in the
wastewater. As compared to the other adsorbents reported previously, the Fe@CF compos-
ite had the highest As(III) adsorption. Overall, the findings suggested that the Fe@CF was
promising to facilitate an effective As(III) remediation from contaminated water.
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