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Abstract: With an increase of suction efficiency of fresh concrete pumping in confined spaces, the
laminar flow state will be damaged by the return flow caused by distribution value direction changes
and concrete gravity. This is a fact, but one which is rarely studied. In this work, the flow state, flow
velocity, and suction efficiency of fresh concrete pumping are simulated using the coupled smooth
particle hydrodynamics and Discrete Elements Method (SPH-DEM). The rheological parameters and
Herschel-Bulkley-Papanastasiou (HBP) rheological model are adopted to simulate fresh concrete in
the numerical simulation model. The study reveals that the error between the slump experimental
result and that obtained by the HBP model is negligible. A model is therefore established for numerical
simulations of the suction efficiency of fresh concrete pumping. An experimental concrete pumping
platform is built, and the pressure and efficiency data during pumping are collected. A comparison
of the numerical simulation with experimental results shows that the error is less than 10%.

Keywords: SPH-DEM; concrete pumping; rheology behavior of fresh concrete; test validating

1. Introduction

Despite advances in computer technology and numerical simulations, several prob-
lems regarding the pumping and delivery of fresh concrete have not been solved, such as its
rheological behavior, precipitation, and water secretion. Knowing the rheological behavior
of concrete during pumping and delivery may help to improve performance [1–3]. How-
ever, traditional empirical-based simulation methods present several limitations in concrete
flow predictions due to the unpredictability and complexity of the process. Therefore,
numerical simulation methods are increasingly attracting attention.

Currently, there are many studies on the components of concrete and the application
of various additives to improve its quality. Roussel [4] categorized the simulation methods
for concrete as follows: (a) the DEM method with numerous particles; (b) the classical
Computational Fluid Dynamics (CFD) method that treats concrete as a single-phase [5];
and (c) the multiphase coupled model [6].

The conventional CFD method treats concrete as a single fluid phase, ignoring many
solid aggregates, steel fibers, and other components. The Eulerian method is applied to
calculate concrete grid fluxes to obtain the velocity variation of the flow process and its
shear deformation region [7–9]. Some CFD calculation software, such as OpenFoam (the
OpenFoam Foundation Ltd, incorporated in England) [10], is freely available and may
be used to simulate the variations in the shear deformation flow process. Choi M [11]
et al. used Fluent (Ansys Ltd., Canonsburg, PA, USA) (CFD software) to analyze the
rheological properties of the lubricating layer and mortar by combining experimental and
numerical calculations, and found that the rheological properties of these compounds
were the same. However, in their study on the rheological behavior of concrete, the pipe
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was generally simplified to a two-dimensional one, thereby failing to address the deeper
nonlinear behavior of a non-full pipe state.

The DEM method discretizes concrete into particles such as aggregates, and slurry,
and performs simulations using the friction coefficient and collision restitution coefficient
among different materials. For example, Krenzer et al. [12] mixed dry and wet particles
upon collision to simulate the aggregation of slurry and aggregates during concrete mixing,
compared the slump experiments with the simulated analytical values, and proved the
feasibility of discrete concrete as a viscoelastic material. Such expositions are unsatisfactory
because they ignore the Bingham fluid flow state in pumping or piping.

The multi-phase fluid-solid coupling method is usually used to study the flow of
concrete in a static pipe or an L-box without an external load. Gram A [11] utilized the
CFD-DEM to measure the movement of concrete aggregate particles in pipes. The results
showed that particles tend to aggregate at the bend. Similarly, Zhang Y [13] found that
concrete fibers gather at the bend. CFD-DEM methods can be adversely affected by a
considerable rigid body under mesh motion conditions.

The smooth particle hydrodynamics (SPH) method, in which the continuous fluid
phase medium is discretized into individual particle locations, can create a realistic three-
dimensional simulation. Many software packages for the SPH method are available for
public use, such as the open-source Dualsphysics [14]. The SPH method is adopted to
analyze the rheology of complicated materials because it can easily deal with complex
media deforming equations. For example, it is widely applied in massive kinematic
deformation [12,15].

The flow of fresh concrete in pipes has received the attention of many scholars, while
concrete pumping has not. Most recent studies have focused on the effects of material
additions on concrete properties, while the suction efficiency and concrete flow in the
pumping cylinder and pipe have attracted very little attention.

In summary, previous studies on fresh concrete using DEM have paid little attention
to the laminar flow state during pumping. Conventional CFD methods generally do not
correspond to actual concrete composition ratios. On the other hand, most studies related
to the CFD-DEM double-way coupling have focused on discontinuing the static pipes only.
Therefore, the need for new research approaches to describe the continuous pumping and
components of fresh concrete has been recognized.

The suction efficiency of concrete pumping is numerically simulated in this work
using coupled SPH-DEM (based on the DualSPHYsics (developed by New Jersey Institute
of Technology, New Jersey, NJ, USA; The University of Manchester, Manchester, UK;
Universidade Vigo, Vigo, Spain; Università degli studi di Parma, Parma, Italy; Universitat
Politecnica de Catalunya–BarcelonaTech, Barcelona, Spain, and Instituto Superior Tecnico,
Lisbon, Portuga) open-source software coupled with the Project Chrono open-source
software). Firstly, SPH-DEM is utilized to create a fresh concrete simulation and analysis
model. Secondly, the practicality of the SPH-DEM to produce new concrete is proved by
experimentally evaluating the numerical simulation features of the concrete using concrete
aggregate grading and slump flow tests, as well as a rheometer. Then, experiments are
performed using the verified completed concrete and numerical models of the pumping
process. Finally, the theoretical velocity of concrete movement in the cylinder is compared
to that of the numerical simulation.

2. SPH-DEM Theory
2.1. SPH Methods

SPH [16] is one of the earliest Lagrangian procedure strategies. In it, a cloud of
“particles” represents the physical material of the domain. SPH control equations are
calculated by convolution with a weighted kernel operating and variables of the flow field
(such as velocity and pressure). Specific details of the SPH calculation solution to the N-S
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equation may be found in the literature, e.g., by Monaghan J J [17] et al. For viscous flow,
the Navier–Stokes acceleration equation given by Ye T [18] is expressed as follows:

dvi
dt

= −1
ρ

∂P
∂x

+
1
ρ

[
∂

∂xi

(
η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik∇υ

))
+

∂

∂xi
(ξ∇υ)

]
(1)

where η is the shear viscosity coefficient, and ξ refers to the bulk viscosity. Ye T [18]
determined the viscosity for the solution and rapid convergence of the N-S equation. In
SPH equations, the viscous factor, represented by Πab, is added to the pressure terms
to yield.

dva
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= −∑

b
mb

(
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ρ2
a
+

Pb

ρ2
b
+ Πab
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∇aWab + g , Πab = −v

(
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r2
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(2)

where h is the smoothing length which defines the impact domain of the kernel. In this
work, the Wendland Quintic kernel function was adopted, as shown in Figure 1:

W(r, h) = αD

(
1− q

2

)4
(2q + 1) , 0 ≤ q = r/h ≤ 2 (3)
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For slightly compressible fluids (e.g., water), the SPH is usually approximated by
replacing it with an artificially incompressible fluid, which is the basis of most finite
difference algorithms. Another approach to SPH calculations is to approximate a weakly
compressible fluid, which requires that the speed of sound is large enough for density
fluctuations to be negligible. When the air pressure is negligible, the form can be described
by Equation (4), according to Morrison [19]:

P =
c2ρ0

γ

[(
p
p0

)γ

− 1
]

(4)

where ρ0 is the reference density which usually equals the initial density of the boundary or
floating, ρ is the density of SPH particle, c =

√
γβ/ρ0 is the speed of sound at the reference

density, and β is a constant to maintain the relative density fluctuation |δρ|/ρ. As suggested
by Colagrossi [20], β = 100 means that the speed of sound is 10 times greater than that of
the most wave, thereby maintaining the density variation at interval bounds of 1%. γ is set
to 7.0 in Wang [21].

SPH adopts the smooth kernel function for calculations. If the particle boundary is
within the particle computational domain of the SPH smooth kernel function, the second-
order accuracy of the calculation and analysis can be guaranteed. However, when intersect-
ing with the boundary, the smooth kernel function is truncated by the boundary, and its
integral value is no longer 1. The computational error will cause a loss of the second-order
accuracy of the SPH smooth kernel function [22]. To solve this problem, the dynamic
boundary condition (DBC) was selected as the boundary condition in this work [23]. The
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physical density/pressure values are used in boundary particles, but the separation gap
between bound and fluid particles is avoided. The DBC has been applied to simulate
Newtonian [15] and Non-Newtonian fluids [21,24].

2.2. Rheology Model for Non-Newtonian Fluids

Inelastic fluid behavior is common in several non-Newtonian applications. Springless
fluid behavior is expressed as the shear rate in follow equation:

τ = µ
.
γ (5)

where τ is the shear stress, µ is the viscosity of the fluid, and
.

γ is the rate of deformation.
However, many fluids (like paint, lubricants, blood, mud, ice, etc.) do not follow that rule
and present variable consistencies.

In rheology, the standard Bingham model [25] is usually expressed as a mathematical
model, as in Equation (6):

τ =

{
τy + u · .

γ, τ ≥ τy
τy , τ < τy

(6)

where τy refers to material yield stress, Pa; τ is shear stress, Pa; u represents the plastic
viscosity, Pa·s; and

.
γ is the shear rate, 1/s. Equation (6) is the basic expression for visco-

plastic fluids obtained the Herschel-Bulkley (HB) rheological model, showing that the
effective viscosity exhibits a power law when the shear stress is above the yield stress. The
mathematical model of HB is as shown in Equation (7):

µe f f =
τy
.
γ

=
τy

2
.
γ
+ K ·

( .
γ
)n−1, K = µ · 2n−1 (7)

In Equation (7), if n = 1, the HB model is reduced from a power-law expansion model
to the conventional Bingham model. However, Equation (7) contains a downside in which
µe f f is infinite once and

.
γ is joined to zero, which can result in the non-convergence

of the calculation results [26]. Therefore, Papanastasiou proposed an enhanced model
called Herschel-Bulkley-Papanastasiou (HBP). The enhanced HBP model is defined as
Equation (8), based on Equations (6) and (7):

µe f f =
τy

2
.
γ

(
1− e−2m

.
γ
)
+ K ·

( .
γ
)n−1 (8)

In Equation (8), if m is massive enough, the HBP model is roughly equivalent to the
Bingham model. Then, a second-order expansion of e−2m

.
γ using the Peano residual term

Taylor-McLaughlin formula is obtained as Equation (9):

lim.
r→0

1
2

.
γ

(
1− e−2m

.
γ
)
= m (9)

There are two unique coefficients, m and n, in the HBP model compared with the
commonly used Bingham model. A sensitivity analysis is performed to analyze the impacts
of m and n on the HBP model. m and n are modified in the analysis, while the remaining
parameters are constant (µ = 0.02 Pa·s and τ = 2.00 Pa). m mostly governs the initial rapid
rise of shearing stress, while n primarily influences the linear or nonlinear behavior in the
high shearing rate range, as shown in Figure 2.
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n (m = 100).

2.3. DEM Method

As indicated in Figure 3, DEM discretizes the item into many particles and solves the
forces among them via collision and deformation.
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Figure 3. DEM calculation.

The particle force is divided into normal and the tangential forces. Both are made up of
the material’s completely elastic collision force and damping dissipation force. The normal
force can be calculated using Coulomb’s law of friction, as in Equations (10) and (11).

Fn = Fr
n − Ft

n = knδ3/2 − γnδ1/2
.
δ (10)

kn =
4
3

E∗
√

R∗, γn = −
lneij√

π2 + ln2eij

(11)

where eij is the average of the collision response coefficients of the two materials.

R ∗ =
(

1
R1

+
1

R2

)−1
, E ∗ =

(
1− v2

p1

E1
+

1− v2
p2

E2

)−1

(12)

where Ri is the particle radius, Ei represents the modulus of elasticity of the material, and
vpi is the Poisson’s ratio of the material. The tangential force is calculated using a similar
method of normal force, as shown in Equations (13) and (14):

Ft = Fr
t − Fc

t = ktδ
t − γtδ

t
.
δ (13)

kt = 2/7kn, γt = 2/7γn (14)

3. Experiment Test
3.1. Slump Tests

Experiments on concrete-related ratios and the slump-related gradation related to
slump are required to determine the judgement criteria of the pumping procedure. The con-
crete is proportioned and matched in accordance with the characteristics listed in Table 1.

Table 1. Proportion of concrete (kg).

Groups Water Cement Sand Aggregate

1 3.6 9.6 16.7 20.1
2 4.5 7.1 21.7 17.5
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The aggregate is sieved for size and density, and graded in order to refine the concrete
for the pumping. The results are displayed in Figure 4.
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Figure 4. Aggregate classification results.

The aggregate in Table 2 is classified into four grades, ranging from 19 to 9.5 mm in
diameter, with the percentage of each grade stated in the diagram.

Table 2. Aggregate gradations.

Aggregate 19–16 mm 16–13.2 mm 13.2–9.5 mm <9.5 mm

31.3% 24.2% 21.2% 23.2%

After being certified, the aggregates are mixed into the concrete. Then the mixed
material described in Table 1 was slump tested. The slump test is depicted in Figure 5.
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Figure 5. Slump tests.

Slump tests were carried out for both proportions of the concrete described in Table 1.
The results are shown in Table 3.

Table 3. Slump test results.

Number Slump/(mm) Dispersion/(mm)

1 190 350/375
2 180 290/295

After that, the rheological properties of fresh concrete and the related rheological
coefficient are measured, as shown in Figures 6 and 7.
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3.2. Concrete Pumping Test

The focus of this work is the response of the concrete suction process relative to an
actual physical model during concrete pumping; hence, the pumping mechanism is shown
in Figure 8a. The hydraulic schematic of the pumping system is depicted in Figure 8b. In
this Figure, 1, 6, 8, and 17 are the pressure gauge; 2 and 16 is the electromagnetic control
reversing device; 3, 13, 14, 20, and 21 are the hydraulic directional valve; and 5, 15, 22, and
7 are the pressure control valve. Actuator hydraulic motor 4 is the mixer paddle. Hydraulic
cylinder 12 is the distribution valve swing cylinder. Hydraulic cylinders 18 and 19 are
pumping cylinders. The pumping process by hydraulic cylinders 18 and 19 alternates
direction with the oscillating hydraulic cylinder 12 to complete the pumping process.
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Figure 9 illustrates the pumping effectiveness load in this mechanism.
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Figure 9. Concrete pumping test.

As concrete is not transparent, it is difficult to observe the changes of internal shape
during delivery. Improving the concrete pump inhalation efficiency means observing and
studying the experimental process by using a concrete pump which is constantly inhaling
and pushing out concrete. As a result, the performance of the total quantity of concrete
inhaled by the pump can be characterized by using the weight of the concrete pump
output. This yields large amounts of data and records the mass during the delivery. Before
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pumping, the concrete density is determined, and the concrete output squared is calculated
using the concrete weight.

The hydraulic pump output flow rate can be determined, and the average efficiency
in many pumping trials can be calculated using the ratio of the two flow rates. The
experimental process should be performed ten times, with each group employing concrete
pumps. The findings on efficiency and mass are displayed in Figure 10.
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Figure 10. Concrete pumping efficiency and mass.

According to the experimental results, the mass of every ten pumping instances
was 1890–2380 kg. The average weight of each pumping in the 12 groups was 2156 kg.
The pumping efficiency was 82.1–92.61% using the hydraulic pump output flow rate as
determined from the hydraulic system. The pumping efficiency for the 12 groups was
86.9%, on average.

4. Simulation Test
4.1. Tools

In this work, the HBP model was adopted to investigate the rheological behavior, and
the DEM method was employed to solve the forces between the fluid and the solid. The
HBP model is an excellent non-Newtonian fluid model for simulating fresh concrete, and it
can accurately simulate the Bingham or Power-law models used to describe slurry flow.

4.2. Slump Simulation

To offer a thorough depiction of the pumping process, the concrete simulation analysis
model, which is a comparison of the experimental data, first had to be calibrated. The
parameters of the simulation model were defined based on the experimental results listed
in Table 4.

The simulation of the Group 1 slumps is shown in Figure 11a–d.
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Table 4. Simulation parameters of SPH-DEM.

Parameters Notation Unit Value

Simulation
parameters

Number of fluid particles Np f 58,250
Number of solid particles Nps 283,168
Particle distance Dp m 0.004
Smooth length H m 0.00692
The ratio between smooth length and particle
distance K 1.73

Simulation duration t s 10
Constant of EOS γ 7
Sound speed coefficient β 20
The artificial viscosity coefficient αI I , β I I 0.001
Initial time interval ∆t s 1 × 10−6

CFL coefficient CFL 0.2

Rheological Density ρ kg/m3 2040.0
parameters Apparent dynamic viscosity µp Pa·s 185

Key coefficients of HBP model m 100
n 1

Yield stress τy Pa 282

DEM Density ρ kg/m3 2300
Parameters Young modulus E GPa 30

Poisson rate ν 0.3
Restitution coefficient r 0.1
Kinetic friction coefficient µ 0.4
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In Figure 11a, the concrete slump vacant part is the location of aggregate generation
for the DEM method, while the aggregates are SPH particles. The initial fresh concrete
was mixed and stirred above the slump cylinder and entered the cylinder by gravity.
Aggregates were generated in the proportions given in Table 1. Figure 11b shows the fresh
concrete flowing into the slump cylinder; the yellow part indicates the concrete slurry
while the rest is the concrete aggregates. Once the concrete has entered the slump cylinder,
the vessel is quickly lifted, at which point the slump experimental process begins. The
slump experimental results are shown in Figure 11c,d. Figure 11c is the cross-section in the
X–X direction; at this time, the slump corresponding to the simulation analysis was about
190 mm, the remaining height was 110 mm, and the extension was 375 mm. In Figure 11d,
the slump is shown as 400 mm. The simulation analysis results were compared with the
experimental results, and the data results are shown in Figure 12.
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The simulation results of Group 2 are shown in Figure 13a,b. The slump of the
compared process was 180 mm, while that in the simulations was about 185 mm, and the
extension were set to 300 mm and 325 mm, respectively.
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The simulation analysis results of Group 2 were compared with the experimental
data, as shown in Figure 14. The slump was 180 mm in the experiment and 185 mm in the
simulation, and the expansions were 295 mm/290 mm and 320 mm/300 mm, respectively.
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The error between them was small, which suggests that the SPH-DEM method showed a
good response and fitting to the actual physical model.
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4.3. Concrete Pumping Simulation

The flow during concrete pumping is difficult to observe and represent, since it is in a
restricted environment. Furthermore, there is no clear theory for how aggregate and slurry
are separated in concrete, and this can only be determined by waiting for the former to
accumulate, resulting in pipe obstruction. To describe the pumping process completely
using the current computer technology, it is necessary to compare the pumping efficiency of
a simulation analysis with the actual efficiency to determine whether they are compatible.

Therefore, the mass of concrete pushed via the pumping cylinder is approximated
by that sucked by the pumping cylinder, i.e., the conservation of mass. It is critical to
investigate the efficiency and mass sucked by the pumping cylinder. Figure 15 depicts the
pumping simulation analysis model applied in this research; the trailer pump assembly
(a), the hopper (b), the distribution valve (c), and the mixer paddle (d) are shown. The
reciprocating motion of the pumping cylinder and the distribution valve play a supporting
role to the pump to concrete.

The experimental process is complex. As such, simulation analyses were used to find
a way to optimize the experimental prototype, which can be understood as approximat-
ing and matching the changing trend of the simulation analysis system and the actual
experimental model. The actual experiment model contains too much information in the
edges and corners, increasing the difficulty for the simulation analysis model to focus
on real issues. Therefore, the edges and corners must be simplified. The redundant hole
features in the pumping structure model shown in Figure 16a–d depict a basic simulation
analysis model.
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Figure 15. Concrete pumping machinery. (a) Concrete pumping assembly. (b) Hopper. (c) Distribu-
tion valve. (d) Mixer paddle. (e) Schematic of concrete machinery.
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Figure 16. Simulation analysis model of concrete pumping. (a) Y–Y Cross-sectional view.
(b) Complete machine. (c) SPH-DEM particles. (d) Whole model of concrete pumping.
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The Y–Y section is shown in Figure 16a. The main mechanism of the pumping model
is illustrated in Figure 16b; it includes a mixer, a distribution valve, two pumping cylinders,
and a pumping piston. The volume ratio of slurry and aggregate was determined using
the experimental concrete ratio. Figure 16c shows the beginning generation location of
concrete and aggregate. The piston movement velocity during pumping was set to 1 m/s,
and the distribution valve change of direction time was defined at 0.2 s each time that the
system realized a function, as indicated in Figures 17 and 18.

Materials 2022, 15, 4294 15 of 20 
 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 16. Simulation analysis model of concrete pumping. (a) Y–Y Cross-sectional view. (b) 

Complete machine. (c) SPH-DEM particles. (d) Whole model of concrete pumping. 

The Y–Y section is shown in Figure 16a. The main mechanism of the pumping model 

is illustrated in Figure 16b; it includes a mixer, a distribution valve, two pumping 

cylinders, and a pumping piston. The volume ratio of slurry and aggregate was 

determined using the experimental concrete ratio. Figure 16c shows the beginning 

generation location of concrete and aggregate. The piston movement velocity during 

pumping was set to 1 m/s, and the distribution valve change of direction time was defined 

at 0.2 S each time that the system realized a function, as indicated in Figures 17 and 18. 

 
(a) 

 
(b) 

Figure 17. Concrete flow during pumping suction. (a) Flow state and velocity sampling; (b) Suction 

efficiency. 
Figure 17. Concrete flow during pumping suction. (a) Flow state and velocity sampling; (b) Suction
efficiency.
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The distribution valve is in the left position of the cylinder when the pumping model
is at 0 s; after a reversal at 0.2 s, it moves to the right position. In accordance with the
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experimental procedure, the stirrer was operating at 20 rpm. Pumping in the experimental
process was repeated 20 times per minute. The matching pumping speed was approxi-
mately 1 m/s, and the simulation analysis speed was assumed to be 1 m/s. The pumping
cylinder of the simulation analysis model was 1.4 m long. When the suction finished after
1.4 s, the simulation analysis showed that the suction full tube position was 1.2 m, which
corresponded to a single inhalation of 85.714%. The suction efficiency of the physical
experiment was calculated to be 86.9%, as shown in Figure 18, with a 1.2% error. This
demonstrates that the simulation analysis was quite close to the experimental process in
terms of a practical fit.

The Bingham fluid in the pipe with the resolved motion velocity gives the flow velocity
of concrete in the pipe via Equation (15):

uz(r) =

{ ∆PR2

4µp L
(
1− r0

R
)2, 0 ≤ r < r0

∆PR2

4µp L

(
1−

( r
R
)2
)
− τ0R

µp

(
1− r

R
)
, r0 ≤ r < R

(15)

where r0 is the yielding surface area defined by Equation (16)

r0 =
2τ0L
∆P

(16)

where ∆P/L is the pressure gradient along the pipe. The ratio of pumping pressure to
pumping length is calculated in Figure 19.
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Figure 19. Pressure loss in experiment.

To obtain the theoretical velocity in the respective region of r/R, the parameters of the
moving process were introduced into the preceding equation. The velocity of the concrete
radial motion in the pipe is shown, and the two analyses are compared in Figure 20.

The theoretical motion velocity of Bingham fluid in the pipe was well fitted to that in
the numerical simulation.
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5. Conclusions

This work aimed to develop a new method to determine fresh concrete behavior
during pumping.

1. The results showed that the SPH-DEM method could be utilized to simulate fresh
concrete through slump tests. The rheological parameters of fresh concrete were
identified by a rheometer. The slump test error between simulation and experiment
results was compared and shown to be less than 10%. Therefore, the SPH-DEM
numerical simulation could potentially be used to react a real physical model.

2. A numerical simulation model of the pumping process was established to analyze the
effects of variations in the plastic viscosity of fresh concrete on the suction efficiency. In
addition, the suction efficiency was studied experimentally. The numerical simulation
results were compared with the experimental results, and the average error of suction
efficiency was less than 5%.

3. The gradient variation of the pressure loss along the pipe (Dp/L) was calculated and
the theoretical flow rate of concrete in the pipe was analyzed. Compared with the
numerical simulation, the theoretical velocity analysis showed that the results from
the SPH-DEM numerical model approached those of the theoretical analysis. The
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issue of the pipe blocking mechanism is an intriguing one which should be further
explored in future research.

Author Contributions: Conceptualization, W.C. and W.W.; methodology, W.C.; software, W.C. and
G.L.; validation, W.C., G.T. and G.L.; formal analysis, W.C.; investigation, W.C.; resources, W.C.;
data curation, G.T.; writing—original draft preparation, W.C.; writing—review and editing, G.T.;
visualization, G.T.; supervision, W.W.; project administration, W.W.; funding acquisition, W.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Zoomlion Heavy Industries Co., Ltd., ZL20211012-QT-11. The
authors are grateful for the financial support for this research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: Thanks for the funding ZL20211012-QT-11, and opensource software Dual-
sphysics and project chrono developer.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Wu, Y.; Li, W.; Liu, Y. Fatigue life prediction for boom structure of concrete pump truck. Eng. Fail. Anal. 2016, 60, 176–187.

[CrossRef]
2. Lee, S.J.; Chung, I.S.; Bae, S.Y. Structural design and analysis of CFRP boom for concrete pump truck. Mod. Phys. Lett. B 2019, 33,

1940033. [CrossRef]
3. Wang, A.L.; Shi, Z.Q.; Yuan, C.X.; Hu, Y.Q. Optimal Design of Concrete Pumping Displacement Control. Adv. Mater. Res. 2012,

422, 238–242. [CrossRef]
4. Roussel, N.; Gram, A. Simulation of fresh concrete flow. RILEM State-Art Rep. 2014, 15.
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