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Abstract: The main purpose of the study was to define the machining conditions that ensure the best
quality of the machined surface, low chip temperature in the cutting zone and favourable geometric
features of chips when using monolithic two-teeth cutters made of HSS Co steel by PRECITOOL.
As the subject of the research, samples with a predetermined geometry, made of AZ91D alloy, were
selected. The rough milling process was performed on a DMU 65 MonoBlock vertical milling centre.
The machinability of AZ91D magnesium alloy was analysed by determining machinability indices
such as: 3D roughness parameters, chip temperature, chip shape and geometry. An increase in
the feed per tooth fz and depth of cut ap parameters in most cases resulted in an increase in the
values of the 3D surface roughness parameters. Increasing the analysed machining parameters
did not significantly increase the instantaneous chip temperature. Chip ignition was not observed
for the current cutting conditions. The conducted research proved that for the adopted conditions
of machining, the chip temperature did not exceed the auto-ignition temperature. Modelling of
cause-and-effect relationships between the variable technological parameters of machining fz and
ap and the temperature in the cutting zone T, the spatial geometric structure of the 3D surface “Sa”
and kurtosis “Sku” was performed with the use of artificial neural network modelling. During the
simulation, MLP and RBF networks, various functions of neuron activation and various learning
algorithms were used. The analysis of the obtained modelling results and the selection of the most
appropriate network were performed on the basis of the quality of the learning and validation, as
well as learning and validation error indices. It was shown that in the case of the analysed 3D
roughness parameters (Sa and Sku), a better result was obtained for the MLP network, and in the
case of maximum temperature, for the RBF network.

Keywords: magnesium alloy; rough milling; roughness 3D parameters; chip temperature; chip
geometry; artificial neural networks

1. Introduction

Very often, in the research on the machinability of magnesium alloys, monolithic tools
with sintered carbide inserts or tools with polycrystalline diamond (PCD) inserts are used.
These tools are often used in the production of light alloy parts, including parts made
of magnesium alloys in engineering, automotive and aviation industries, as well as for
scientific research purposes. An interesting issue seems to be the use of tools made of
high speed steel (HSS). The unit cost of machining using HSS cutters is small compared to
sintered carbide or very expensive PCD inserts.
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1.1. Surface Roughness Parameters Evaluating of Magnesium Alloys after Cutiig Processes

The quality and roughness of the surface is the key manufacturing index in the
production of various parts of various materials, both in the automotive and aerospace
industries. These requirements are increasing, especially when mating of two or more
elements in an assembly is critical. It is also an interesting scientific aspect during the
execution of machining processes. For magnesium alloys, the roughness obtained, as well
as the general manufacturing accuracy (with a relatively small spread of dimensional values
for high manufacturing precision classes), can be successfully comparable or even better
than after finish machining (Ra ≤ 0.16 µm [1], tolerance classes IT2–IT5 [2]). In research
works, the so-called basic parameters of surface roughness are analysed, while a much
broader approach is required for a comprehensive assessment, taking into account, for
example, surface geometry features, such as skewness and kurtosis.

The skewness coefficient Ssk is a measure of asymmetry of a surface. The skewness
coefficient Ssk > 0 indicates the right-hand asymmetry of the distribution, Ssk < 0 indicates
the left-hand asymmetry of the distribution and Ssk = 0 indicates a symmetrical distribution.
Kurtosis Sku is a measure of the concentration of results, a measure of location. This
measure indicates how many results/observations are similar the mean value and if most
of the observed results have a value similar to the mean value. Kurtosis is a measure of
flattening of the surface compared to the normal distribution and its characteristic value is
Sku = 3 (Figure 1). Sku values < 3 mean a distribution relatively flatter than the Gaussian
distribution, the surface has more rounded peaks, while Sku values > 3 mean a more convex
distribution, the surface has sharper peaks [3].
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Figure 1. Skewness and kurtosis, as well as graphical interpretation related to the surface geometrical
structure and its parameters Ssk and Sku [3].

An interesting aspect is also the use of Mg-Ca0.8 [4–6] and Mg-Ca1.0 [7] alloys, used
as biocompatible components in medicine. In milling using a face milling cutter with PCD
inserts, an average value of the Ra parameter was obtained in the range of approximately
0.5 µm [4] and approximately 0.4 µm for low dry milling and low plasticity burnishing [5].
However, in milling using a face milling cutter with sintered carbide inserts [6], lower
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values of the roughness parameter Ra = approximately 0.09–0.8 µm were obtained in
inverse milling, while in conventional milling, the roughness was Ra = approximately
0.9–1.4 µm. However, in milling using a face milling cutter with the so-called diamond-like
coating (DLC) inserts [7], Ra = approximately 0.08–0.16 µm was obtained.

In the work [8], when milling AZ31B alloy and cooling the cutting zone with com-
pressed air, it was observed that the surface roughness (Ra parameter) increased when the
feed and number of teeth is increased. However, in terms of changes to vc, the roughness
remains almost unchanged. Therefore, it is recommended to reduce the number of teeth to
the minimum necessary. A face milling cutter with uncoated sintered carbide inserts was
used in this work.

In the work [9], AM60 alloy was milled to find the optimal combination of cutting
parameters (lowest roughness of surface), obtaining Ra = approximately 0.3 µm. When
machining AZ61 alloy [10], the surface roughness defined with the Ra parameter was
within the range of approximately 0.1–0.4 µm. Milling was carried out using a face milling
cutter with sintered carbide inserts. Similarly, in the work [11], AZ61 alloy was machined
using a face milling cutter with sintered carbide inserts. The feed per tooth parameter
and the change of the cutting direction had the most significant influence on the surface
roughness. Changes of roughness caused by increasing vc and ap were minor. The values
of the Sa parameter obtained for direct feed were approximately 0.14–0.8 µm, while for
reversed feed, the values were approximately 0.2–0.7 µm. It was observed that the spread
of values of Sa were narrower using MQL cooling than during dry milling.

In the work [12], it was proved that with the use of low feed values of (0.03–0.09 mm/tooth)
and small depths of cut of (0.2–0.3 mm), it is possible to obtain a very low surface roughness
Ra = approximately 0.06–0.13 µm. The frequently used AZ91D alloy was also used for
this test. In this case, the lowest Ra value was achieved at the lowest of the tested cutting
speeds (vc = 900 m/min). The obtained test results proved that it is possible to eliminate
grinding or polishing in favour of face milling as the finish machining operation.

Similarly, in the work [13], a cutter with uncoated sintered carbide inserts and AZ91D
alloy were used. All milling tests were carried out on down milling under dry condition.
The machining was carried out with a speed of up to 400 m/min (conventional speed). The
Ra parameter increased with an increase of vc and fz. The lowest value of Ra was obtained
when using the low cutting speed vc = 50 m/min and low feed fz = 0.2 mm/tooth (Ra
approximately 0.5 µm).

In scientific tests, uncoated sintered carbide inserts [14]; inserts with TiN- [9], TiAlN- [15],
TiB2- [2] or TiAlCN-type protective coatings; and high-quality polycrystalline diamond
inserts are often used [1]. For example, it is possible to rough machine with machining
parameters defined as effective (vc = 1200 m/min, fz = 0.15 mm/tooth, ap = 6 mm) and
reach the roughness parameter Ra (measured on the face of the sample) at the level of
approximately 0.5 µm (at γ = 5◦) and approximately 2 µm (at γ = 30◦). The mean value
of the Ra parameter (measured this time on the side wall of the sample) was lower and
amounted to approximately 0.3 µm for the given conditions [15].

1.2. Temperature in the Cutting Zone

For the sake of safety, the key issue is assessment of the temperature during machining
of magnesium alloys. The conducted research on various types of magnesium alloys proves
that it is possible to mill without increasing the risk of ignition of chips formed during the
process of machining. Generally, it can be stated that the fire ignition of chips could happen
when the cutting temperature is close to the melting point of magnesium during high-
speed cutting. An experimental study [16] shows the mean temperature on the flank face in
high-speed dry cutting of AZ91 magnesium alloy. Foreign thermocouples (type k) placed
in the workpiece were used in the tests. In the HSC process, the mean flank temperature
is less than that on the rake face (cutting temperature). The undeformed chip thickness is
very thin and of the same order of cutting edge radius. The mean flank temperatures in
various cutting conditions were measured and the collected chips were examined under
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SEM to find the burn marks. It was found that below the mean flank temperature of
302 ◦C, there were no burn marks on the chips (at the cutting speed of 816 m/min and at
undeformed chip thickness 9 µm). The mean flank temperature can reasonably be used to
predict the occurrence of fire in high-speed cutting of magnesium alloys. The temperature
increases with an increase in cutting speed, and increases dramatically with a decrease in
the undeformed chip thickness.

In the work [4] the temperature in the cutting zone was also analysed and determined
both in the tool/chip interfaces (across chip) and in the subsurface sections. The anal-
yses and simulations performed show that the predicted temperatures at the tool/chip
interfaces were close to the melting temperature of the Mg-Ca0.8 alloy (approximately
600 ◦C). Similarly, in [17], the temperature in the cutting zone that would be generated
during milling the Mg-Ca0.8 alloy was analysed. A total of five simulation cases have
been performed covering five cutting speeds. The authors point out that when analysing
temperature distributions, two aspects should be taken into account: the size of the area
covered by a certain temperature and the temperature itself. Although temperatures close
to 600 ◦C were observed in the simulation, it should be noted that there would probably
be no spontaneous combustion during the treatment as the predicted temperatures would
be the upper bound of machining temperatures in practice under the cutting conditions
(heat conductions between the tool/workpiece and workpiece/environment were not
incorporated so it implies that material melting and chip ignition would not happen for the
concerned machining conditions). In addition, the temperature in almost the entire volume
of the chip is approximately 150–450 ◦C, so it is highly probable that there will be no chip
ignition and no fire hazard, as the chips can only ignite if the melting point (estimated at
516.6 ◦C) is exceeded in the entire chip volume. This is confirmed experimentally since no
spark or chip ignition occurred during milling.

In the work [18], the mean flank temperature was measured (through mounting two K-type
thermocouples). Magnesium alloy AM50A was used. The effect of the cutting speed on the
temperature rise of the tool flank was analysed. It was shown that the temperature first
increases and then decreases as the cutting speed increases, whereas, in [19], chip ignition
attempts were made during the machining of AM50A and AZ91D magnesium alloys. The
effect of the cutting parameters on the ignition of chips during face milling was analysed.
It is interesting to find that AZ91D is more inflammable than AM50A in dry face milling.

Similarly, in the work [20], the temperature distribution in high-speed milling was
analysed for the AZ91C alloy. The temperature distribution was measured using an
infra-red thermometer (machining zone temperature) and the contact method (platinum
temperature sensors for the work-piece temperature). The results show that the work-piece
temperature is reduced as the cutting speed passes the cutting speed of 452 m/min in
high-speed milling, while the machining zone temperature is increased as a result of the
increase in the cutting speed. No ignition was observed during the machining and in any
of the given range of machining parameters.

In [21], the typical problems that occur when measuring the temperature in the cut-
ting zone during milling of metal alloys were discussed. Selected results of temperature
measurements with the use of three measurement methods were also presented: the k type
foreign thermocouple, optical pyrometry and thermal imaging camera, whereas, in [22], the
results of the measurement of chip temperature in the cutting zone with the use of sintered
inserts with a TiAlN coating and AZ31 and AZ91HP magnesium alloys are presented in
more detail. The influence of the machining parameters on the maximum chip tempera-
ture in the cutting zone during dry milling was analysed. It was observed that the chip
temperature in the cutting area is substantially lower than the temperature needed for chip
ignition or the melting point of magnesium alloys, whereas, in [23], the so-called time to ig-
nition, ignition temperature and chip morphology after milling with TiAlN-coated sintered
carbide inserts were analysed. Additionally, the successive stages preceding chip ignition
for magnesium alloys (AZ31 and AZ91HP) were presented. Whereas, in the work [24], the
chip temperature in the cutting zone was also analysed when milling the mentioned mag-
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nesium alloys, in this case, a high-quality cutter with polycrystalline diamond PCD inserts
was used as the tool, for example, chip fractions and the mass of chips after machining
(taking into account different chip fractions). The work presents chip temperature results
in the form of box-plot charts and a summary table covering various temperature values
(including the entrance and the exit of the workpiece, including the so-called “outliers”
which differ from other measured values, including the stable region only). In addition,
metallographic photographs of magnesium alloy chips and the so-called “cauliflowers”
area in the magnesium chips ignited on a heating plate of a specially designed test stand
were presented.

Unfortunately, research works are often performed using the conditions of machining
parameters (mainly depth of cut) that are unlikely to be implemented in the common in-
dustrial practice. The milling tests using small cut depths of a dozen or so micrometres [25]
are, of course, valuable scientific works. In terms of industrial applications, the tests carried
out in machining conditions similar to those used in industry are valuable, if performed in
an effective and efficient manner.

Alternative methods of describing the complexity of the analysed surface are, inter
alia, multi-scale methods. Classical methods decompose the measured surface topography
into basic factors, e.g., roughness or waviness. On the other hand, multiscale methods allow
for a more comprehensive description of the surface topography [26]. Structure analysis
can be performed using, inter alia, wavelet transformation, which was argued by Sun et al.
in his research [27], who based on the signals obtained during measurements, assessed the
surface structure or Gogolewski when determining the minimum chip thickness [28].

1.3. Chip Shape and Geometry

Chips, often treated only as a waste effect of the machining process, can also provide
valuable information, such as the temperature in the cutting zone, for example. Some
features of chips may also indicate that the process of machining is performed in safe
manner. In the work [4], the characteristics and morphology of chips obtained during
milling of the Mg-Ca0.8 alloy with the use of PCD inserts was assessed. Similarly, in [17],
the chips produced in milling Mg-Ca0.8 alloy under different cutting speeds were analysed.
It was noticed that the free surfaces of the chips were characterised by lamella structures.
The back surface of the chip is smooth and shiny, which is completely different from the
free surface. For example, when observing the shape of the chips [8] produced in AZ31B
alloy milling, it was observed that with an increase in the number of inserts in the cutter,
the dimensions of the saw-tooth were smaller. The global literature [16] suggests looking
for traces of melts or burns on the side surface of chips. SEM scanning electron microscopy
was used to identify the melts. No melting points were found on the AZ91 magnesium
alloy chips.

In the work [29], attempts were made to ignite the chips during the machining of
AM50A and AZ91D alloys. The following spark types were identified during magnesium
alloy milling: minor sparks, major sparks and continuous sparks. The geometry of chips
visible in metallographic photos and SEM was also analysed. There are four main chip
geometry types: powder chips, long spiral chips, needle-like chips and strip chips. Addi-
tionally, the Al-Mn and Mg17Al12 phases were analysed, comparing the microstructure
and energy spectrum for the alloy specimens and chips. However, small depths of cut
(0.01, 0.04 and 0.08 mm) were used in the experiment. Milled AM50A alloy chips were
also researched in [30], where the relationship between the ignition conditions and chip
morphologies was analysed. The macromorphologies of the chips were observed by optical
microscope and the micro-structures were obtained by scanning electron microscope (SEM).
The macromorphologies of the chips can be characterised into powdered chips, tubular
helical chips, acicular helical chips and long belt chips, which correspond to the different ig-
nition conditions. The powdered chips and acicular spiral chips are easily ignited and cause
flares or continuous flares. These chips have lower lamellar thickness (2–3 µm), compared
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to tubular helical chips and long belt chips (more than 10 µm). During all of the milling
tests of AM50A alloy, the following were observed: sparks, flares and continuous flares.

It is also possible to assess the quality of the machined surface on the basis of the
size and quality of the chips produced, as the appropriate chip geometry results in a high-
quality surface. The tests conducted with the use of AZ91D alloy showed that the quality
of the chips depends on the feed, while the geometry of the chip is affected by the cutting
speed [13].

The works focussed on the analysis of AZ91D/HP [31,32] and AZ31 [33] magnesium
alloy chips, including among others the analysis of various types of chip fractions produced
during milling. In the works [31,32], tools with different tool point geometries were used
(γo = 5◦ and γo = 30◦). In the work [33], off-the-shelf TiAlN-coated inserts were used. These
works introduce the concept of fraction and fragmentation of chips. In the work [31], chip
fragmentation, chip mass and its dimensions are presented. Moreover, in the work [32],
the quantity of distinguished chip fractions and the influence of the parameters vc and fz,
as well as in the rake angle γo were analysed. It has been found that chip fragmentation
increases by increasing the above parameters, i.e., the feed rate fz and the cutting speed vc.
The observed chip fragmentation (the quantity of chip fractions) is lower at the tool rake
angle γo = 30◦. In [23,34], a controlled chip ignition was performed on a specially designed
and made chip flammability test stand, outside the machine. The so-called time to ignition
of different chip fractions was determined. Additionally, the photos of the stages preceding
chip ignition and metallographic photos of chips and ignition products were taken.

Chip classifications can be made based on available standards [35,36]. It should be
remembered, though, that these standards only apply to the steel turning.

1.4. Inteligent Methods in Surface and Temperature Parameters Modeling

Increasingly often, experimental research in the field of analysis of machining processes
are assisted using machine learning methods, including artificial neural networks [37–39].
Based on the analysis of the current literature, one can notice that machine learning is used
to model various processes, i.e., milling [40–48], turning [37,49,50] and abrasive water jet
machining [51,52].

By analysing the data presented in Table 1, it can be seen that in the case of the
milling process, the tests were carried out for various materials, such as aluminium
alloys [39,43,45–47,50,53,54], magnesium alloys [55,56], titanium alloys [37,40,57], cobalt al-
loys [44], nickel alloys [48,58–60] and steel [41,42]. Additionally, it can be stated that as
far as the milling roughness parameters are concerned, only 2D parameters are modelled,
mainly the Ra parameter. Few researchers have attempted to model more than one param-
eter. Such works were carried out by, among others Zerti et al., who also modelled the
parameters Ra, Rz and Rt, as well as Kulisz et al., who extended their research with the Rz
and RSm parameters. It seems that such a narrow scope of research is insufficient to carry
out a detailed analysis of surface conditions. In the case of temperature modelling, research
works were carried out on materials such as aluminium or nickel alloys [43,53,54,59].

1.5. Objective of Research and Novelties

This present work contains an analysis of three machinability indices that directly
relate, on the one hand, to the quality of the manufactured elements (3D roughness of the
machined surface), and on the other, to the safety of machining (self-ignition hazard—high
temperature and geometrical features of chips). The main purpose of the research was
to define the machining parameters that ensure the good quality of the surface defined
by low 3D roughness parameters, low chip temperature observed in the cutting zone
and the characteristics related to the description of the chip fractions (chip geometry)
during machining with a HSS tool. Another purpose was to model the 3D parameters of
surface roughness (Sa, Sku) and the temperature in the cutting zone after milling AZ91D
magnesium alloy in order to predict these parameters.
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Table 1. Comparison of modelling methods using the ANN for the milling.

Type of
Machining

Research
Object Methods * Material Year Reference

milling Ra ANN Ti–6Al–4V 2016 [40]

milling Ra, T ANFIS, ANN Inconel 690 2017 [58]

milling Sa ANN, GA, RSM DD5 2018 [48]

milling T ANN-GA AA6061 T6 2018 [53]

milling T ANN Inconel 718 2018 [59]

milling Ra ANN-GA AZ91D 2018 [56]

milling Ra ANN S45C steel 2019 [41]

milling Ra ANN Ti-6Al-4V 2019 [57]

milling Ra, T ANN-GA AISI D3 2019 [43]

milling Ra ANFIS,
ANN-GA

AA6061, AA2024,
AA7075 2019 [46]

milling Ra ANN, SVM, RA AA 075-T6 2019 [47]

milling Ra, Rz ANN Inconel 718 2020 [60]

milling Ra ANN-GA P1.2738 2020 [42]

milling T, Ra ANN, FL, GA AA7075 2020 [54]

milling Ra ANN AA6061 2021 [45]

milling Ra, Rz, RSm ANN AZ91D 2021 [60]

dry milling Ra ANN Co–28Cr–6Mo, Co–
20Cr–15W–10Ni 2021 [44]

dry turning Ra, Rz, Rt ANN AISI420 2019 [39]

low speed
turning Ra ANN AISI316 2015 [50]

* artificial neural network—ANN, adaptive neuro-fuzzy inference system—ANFIS, fuzzy logic—FL, genetic
algorithm—GA, regression analysis—RA; response surface method—RSM, temperature—T.

Taking into account the conducted literature on the machinability of magnesium
alloys, it can be concluded that, so far, few researchers have dealt with the 3D roughness
parameters for magnesium alloys. They focussed primarily on a 2D parameter—mainly
the Ra parameter. There is no wider analysis of a larger group of surface roughness
parameters, including a more detailed analysis of the features and operational properties of
the machined surface. Therefore, a much broader approach is required to comprehensively
assess the quality of the machined surface. Therefore, it is justified to extend the research
to a wider range of technological parameters, including 3D; however, one should take
into account the tendency of magnesium alloys to self-ignition with a sudden increase
in temperature in the cutting zone [30,34]. Additionally, attention should be paid to the
characteristics of the chips produced in machining. These features may indicate the safety
of the process or the ranges of parameters that should rather be avoided to decrease the
risk of ignition.

Modelling the roughness parameters (Sa, Sku) and temperature in the cutting zone in
milling AZ91D magnesium alloy can be the basis for creating tools to help manufacturing
engineers in determining the conditions of the machining process in order to obtain the
required surface roughness and the safety of machining. So far, no such work has been
carried out for magnesium alloy machining. In addition, the use of artificial neural net-
works and other solutions may contribute to the reduction of the number of research tests
necessary for the selection and optimisation of the technological process parameters.
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Additionally, the analysis may be interesting due to the universality and availability
as well as the low cost of the tools themselves, as well as the small amount of research work
devoted to milling with the use of HSS milling cutters.

2. Materials and Methods

The AZ91D alloy machinability tests were performed on a DMU 65 MonoBlock vertical
milling centre 12,000 RPM with the use of many devices and a number of highly specialised
scientific and research equipment presented in the further part of the experimental research
methodology. The research used a two-teeth HSS Co milling cutter by PRECITOOL with
a diameter of d = 20 mm. HSS cutters are widely used tools (lower unit costs), compared
to other expensive tools (more expensive carbide tools and very expensive PCD blades,
inserts). The study presents the selected parameters of 3D roughness (Sa, Sz, Sv, Sp, Ssk and
Sku), the temperature in the cutting zone, and the shape and geometry of chips produced in
rough milling. In experimental tasks of individual research works the following measuring
equipment was used:

- X6580sc thermal imaging camera from FLIR Systems Inc. (Wilsonville, OR, USA) was
used in the thermal imaging tests;

- In the chip geometry tests, SEM technique with an EDS PHENOM ProX electron
microscope by ThermoFisher Scientific (Waltham, MA, USA) and an Alicona Infinite
Focus microscope (Raaba bei Graz, Austria) were used;

- For the 3D surface roughness measurement, an Alicona Infinite Focus was used.

Thermovision measurements were carried out with the use of the following equipment
settings. The camera was located at a distance of 0.6 m from the tested workpiece. The
ambient and the cutter temperature were 22 ◦C before each test. With a resolution of
640 × 512, a frequency of 50 Hz was achieved. The average emissivity of magnesium of
0.13 was taken into account (for the purpose to obtaining the actual temperatures occurring
in the milling process).

The milling process was carried out with the following processing conditions: radial
depth of cut ae = 15 mm and cutting speed vc = 754 m/min (constant cutting conditions),
feed per tooth fz = 0.01–0.05 mm/tooth and axial depth of cut ap = 0.1–0.4 mm (variable
technological parameters).

Based on the obtained experimental results, attempts were made to model the temper-
ature in the cutting zone and selected 3D roughness parameters—Sa and Sku—with the
use of artificial neural networks. Two input neurons were defined in the input layer, i.e.,
variable processing parameters fz and ap. In the output layer, one modelled parameter was
defined, i.e., the temperature in the cutting zone, Sa and Sku, respectively. An example of
the model is shown in Figure 2.
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Figure 2. Schematics of the artificial neural network with the analysed process parameters.

Two types of MLP (Multilayer Perceptron) and RBF (Radial Basis Function) networks
were used to model the above parameters, the parameters of which are presented in
Table 2. They are most often used by researchers when modelling selected indicators of
manufacturing processes, which is confirmed by the publications presented in Table 1. The
Statistica Neural Networks software was used as the modelling tool.



Materials 2022, 15, 4277 9 of 23

Table 2. Artificial neural network learning parameters.

ANN Types Activation
Function

Learning
Algorithm

Hidden-Layer
Neurons Training Epochs

MLP
exponential,

logistic, linear,
tanh and sinus

BFGS
2÷15 150–300

RBF Gaussian, linear RBFT

For each modelled parameter, 200 networks were taught. The network was selected
on the basis of the quality of learning and validation, defined as the correlation coefficient
for these sets. Learning and validation errors were also taken into account, calculated as
the sum of the squared differences between the set values and the values obtained at the
outputs of each output neuron, according to the Equation (1):

SS = ∑n
i=1

(
y
′
i − y∗i

)2
, (1)

where n is the number of cases in a given set; y
′
i is the actual value of the analysed

parameter for the given set for the i-th observation; and yi is the predicted value of the
analysed parameter for the given set for the i-th observation.

The experimental data set was used in the proportion of 75/25%, where the first value
is the share of the teaching data and the second is the share of the validation data.

3. Results
3.1. Surface 3D Roughness Parameters

The surfaces obtained during machining with variable feed per tooth and cutting
depth were analysed based on 3D surface roughness parameters such as Sa, Sz, Sv, Sp, Ssk
and Sku. These results were analysed on the face of a sample made of AZ91D alloy. The
measurement results are shown in Figure 3.
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and depth of cut ap.

Table 3 presents the results of mathematical modelling of the spatial surface roughness
parameter Sa as a function of the feed per tooth fz for various depths of cut ap. The
following were selected as regression functions of one variable: linear function, exponential
function, logarithmic function, polynomial function and power function. The table shows
the coefficient of determination R2 and the p-value in Fisher’s test of statistical significance
of the linear model. If p-value is less than 0.05 then R2 is significantly different from zero and
we assume that the model can be treated as linear. The normality of the rest of the model
was checked for each model. The analysis of the modelling results presented in Table 3
shows that the best matches of the experimental results are described by the power function
for low depths of cut ap = 0.1 mm (R2 = 0.9843) and ap = 0.2 mm (R2 = 0.9735), while for
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higher values of the depth of cut, the best results were achieved for the description of the
functional relationships with polynomial regression equations (for ap = 0.3 mm (R2= 0.9995)
and ap = 0.4 mm (R2 = 0.9949)).

Table 3. Results of mathematical modelling of the Sa parameter as a function of the feed rate for
different values of the depth of cut (regression functions y = Sa(fz); fz = x with the coefficient of
determination R2).

a p
=

0.
1

m
m

y = 1.0213x + 0.6017
R2 = 0.9652 (p = 0.0028)

a p
=

0.
2

m
m

y = 0.8945x + 0.7405
R2 = 0.9596 (p = 0.0035)

a p
=

0.
3

m
m

y = 1.4353x + 0.2389
R2 = 0.9966 (p = 0.0001)

a p
=

0.
4

m
m

y = 1.803x − 0.1902
R2 = 0.9949 (p = 0.0002)

y = 1.2984e0.3141x

R2 = 0.9401 (p = 0.0063)
y = 1.3174e0.2906x

R2 = 0.9287 (p = 0.0083)
y = 1.2856e0.3769x

R2 = 0.9199 (p = 0.0099)
y = 1.2673e0.4184x

R2 = 0.9215 (p = 0.0096)

y = 2.4998ln(x) + 1.2720
R2 = 0.9341 (p = 0.0073)

y = 2.1884ln(x) + 1.3286;
R2 = 0.9279 (p = 0.0084)

y = 3.5233ln(x) + 1.1713;
R2 = 0.9701 (p = 0.0022)

y = 4.38ln(x) + 1.0249
R2 = 0.9485 (p = 0.0050)

y = −0.0601x2 + 1.3817x + 0.1812;
R2 = 0.9698 (p = 0.0302)

y = −0.0371x2 + 1.1169x + 0.481;
R2 = 0.9619 (p= 0.0381)

y = −0.0661x2 + 1.8317x − 0.2236;
R2 = 0.9995 (p = 0.0005)

y = 0.002x2 + 1.791x − 0.1762;
R2 = 0.9949 (p = 0.0051)

y = 1.5492x0.7996

R2 = 0.9843 (p= 0.0008)
y = 1.5507x0.7403

R2 = 0.9735 (p = 0.0018)
y = 1.5642x0.9759

R2 = 0.9965 (p = 0.0001)
y = 1.5785x1.0815

R2 = 0.9947 (p = 0.0002)

Analysis of the Sa parameter (Figure 3) showed that the lowest and also most similar
values (Sa = 1.51–1.57 µm) were obtained in machining with the lowest technological
parameters. Continued increasing of the feed per tooth fz resulted in an increase in the
value of the Sa parameter. This increase was greater the greater the depth of the cut ap and
feed per tooth fz. The exception is ap = 0.2 mm, for which the Sa parameter increase was
the smallest.

As in the case of the Sa parameter, increasing the feed per tooth fz resulted in a gradual
increase in the value of parameter Sz (Figure 4). The exceptions are the results obtained when
milling with depth of cut ap = 0.2 mm, for which the change of the feed per tooth did not
have a clear effect on the parameter Sz. At low feed fz, the lowest values of the Sz parameter
were obtained at the depths ap = 0.1 and 0.3 mm, while at higher feed rates of fz, the lowest
roughness height was obtained by using the depths ap = 0.2 and 0.3 mm, respectively.

Materials 2022, 15, x FOR PEER REVIEW 9 of 23 
 

 

manufacturing processes, which is confirmed by the publications presented in Table 1. 
The Statistica Neural Networks software was used as the modelling tool. 

Table 2. Artificial neural network learning parameters. 

ANN Types Activation Function Learning Algorithm 
Hidden-Layer 

Neurons 
Training 
Epochs 

MLP exponential, logistic, linear, tanh and sinus BFGS 
2÷15 150–300 RBF Gaussian, linear RBFT 

For each modelled parameter, 200 networks were taught. The network was selected 
on the basis of the quality of learning and validation, defined as the correlation coefficient 
for these sets. Learning and validation errors were also taken into account, calculated as 
the sum of the squared differences between the set values and the values obtained at the 
outputs of each output neuron, according to the Equation (1): 𝑆𝑆 =  ∑ (𝑦 − 𝑦∗) , (1)

where n is the number of cases in a given set; 𝑦  is the actual value of the analysed pa-
rameter for the given set for the i-th observation; and yi is the predicted value of the ana-
lysed parameter for the given set for the i-th observation. 

The experimental data set was used in the proportion of 75/25%, where the first value 
is the share of the teaching data and the second is the share of the validation data. 

3. Results 
3.1. Surface 3D Roughness Parameters  

The surfaces obtained during machining with variable feed per tooth and cutting 
depth were analysed based on 3D surface roughness parameters such as Sa, Sz, Sv, Sp, 
Ssk and Sku. These results were analysed on the face of a sample made of AZ91D alloy. 
The measurement results are shown in Figure 3. 

 
Figure 3. Results of measurements of the Sa roughness parameter as a function of feed per tooth fz 
and depth of cut ap. 

Table 3 presents the results of mathematical modelling of the spatial surface rough-
ness parameter Sa as a function of the feed per tooth fz for various depths of cut ap. The 
following were selected as regression functions of one variable: linear function, exponen-
tial function, logarithmic function, polynomial function and power function. The table 
shows the coefficient of determination R2 and the p-value in Fisher’s test of statistical sig-
nificance of the linear model. If p-value is less than 0.05 then R2 is significantly different 
from zero and we assume that the model can be treated as linear. The normality of the rest 
of the model was checked for each model. The analysis of the modelling results presented 
in Table 3 shows that the best matches of the experimental results are described by the 
power function for low depths of cut ap = 0.1 mm (R2 = 0.9843) and ap = 0.2 mm (R2 = 0.9735), 

0

2

4

6

8

10

0.01 0.02 0.03 0.04 0.05

S
a 

[m
]

fz [mm/tooth]

ap=0.1 mm
ap=0.2 mm
ap=0.3 mm
ap=0.4 mm

Figure 4. Results of measurements of the Sa roughness parameter as a function of feed per tooth fz

and depth of cut ap.

Table 4 presents the results of mathematical modelling of the spatial surface roughness
parameter Sa as a function of the feed per tooth fz, for various depths of cut ap. As the
regression functions of one variable, the same function was selected as in the case of the
parameter Sa. The table shows the coefficient of determination R2 and the p-value in
Fisher’s test of statistical significance of the linear model. The normality of the rest of
the model was checked for each model. The analysis of the modelling results presented
in Table 4 shows that the best matches of the results of the experimental research are
described by the second-order polynomial function ap = 0.1 mm (R2 = 0.9795), ap = 0.2 mm
(R2 = 0.0709), ap = 0.3 mm (R2 = 0.9829) and ap = 0.4 mm (R2 = 0.9958).
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Table 4. Results of mathematical modelling of the Sz parameter as a function of the feed rate for
different values of the depth of cut (regression functions y = Sa(fz); fz = x with the coefficient of
determination R2).

a p
=

0.
1

m
m

y = 31.469x − 15.111
R2 = 0.9627 (p = 0.0031)

a p
=

0.
2

m
m

y = 3.656x + 57.136
R2 = 0.0558 (p = 0.7021)

a p
=

0.
3

m
m

y = 22.381x − 0.641
R2 = 0.9393 (p = 0.0065)

a p
=

0.
4

m
m

y = 21.313x + 26.095
R2 = 0.989 (p = 0.0005)

y = 16.603e0.4565x

R2 = 0.9588 (p = 0.0021)
y = 53.741e0.0566x

R2 = 0.0577 (p = 0.7409)
y = 14.293e0.4498x

R2 = 0.7779 (p = 0.0268)
y = 40.48e0.2466x

R2 = 0.9911 (p = 0.0002)

y = 73.803ln(x) + 8.6294
R2 = 0.8555 (p = 0.0244)

y = 8.5086ln(x) + 59.957;
R2 = 0.0488 (p = 0.7210)

y = 56.532ln(x) + 12.373;
R2 = 0.9681 (p = 0.0024)

y = 50.547ln(x) + 41.64
R2 = 0.8986 (p = 0.0141)

y = 3.505x2 + 10.439x + 9.424;
R2 = 0.9795 (p = 0.0205)

y = 1.6114x2 − 6.0126x + 68.416;
R2 = 0.0709 (p = 0.9291)

y = −4.0779x2 + 46.848x − 29.186;
R2 = 0.9829 (p = 0.0171)

y = 1.4964x2 + 12.334x + 36.57;
R2 = 0.9958 (p = 0.0042)

y = 21.99x1.1368

R2 = 0.9696 (p = 0.0019)
y = 57.338x0.1098

R2 = 0.0493 (p = 0.7975)
y = 17.507x1.1974

R2 = 0.9215 (p = 0.0023)
y = 47.588x0.6037

R2 = 0.9658 (p = 0.0031)

Increase in the parameter Sv (Figure 5) in the entire range of feed per tooth occurred
only for the smallest depth of cut. For the remaining depths of cut, the size of the recesses in-
creased in the range fz = 0.01–0.04 mm/tooth, and then decreased. In the above-mentioned
range of feed per tooth, it was also observed that the smaller the depth of cut was used,
the deeper the roughness valleys were. In the case of the Sp parameter, no relationship to
the technological parameters variables was observed. The predominance of the roughness
valleys over peaks was also random in most cases. In the aforementioned range of feed per
tooth, lower values of the parameter Rv were obtained for the lower depths of cut.
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fz and depth of cut ap.

Table 5 presents the results of mathematical modelling of the spatial surface roughness
parameters Sv and Sp as a function of the feed per tooth fz, for various depths of cut ap. As
regression functions of one variable, the following were selected: the function analysed as
in the case of Sa and Sz. The table shows the coefficient of determination R2 and the p-value
in Fisher’s test of statistical significance of the linear model. The normality of the rest of
the model was checked for each model. The analysis of the Modelling results presented
in Table 5 shows that the best matches of the results of the experimental research are
described by the second-order polynomial function ap = 0.1 mm (R2 = 0.9139), ap = 0.2 mm
(R2 = 0.549), ap = 0.3 mm (R2 = 0.9465) and ap = 0.4 mm (R2 = 0.8089). In the case of
the parameter Sp, the best results were achieved for the description of the second-order
polynomial functional relationships: ap = 0.1 mm (R2 = 0.9896), ap = 0.2 mm (R2 = 0.8129),
ap = 0.3 mm (R2 = 0.9327) and ap = 0.4 mm (R2 = 0.769).

In measuring the roughness profile skew (Figure 6) negative values were obtained in
most cases. This indicates areas with flat peaks and quite deep individual valleys. This type
of surface has a high lubricant retention capacity. The lowest values of the Ssk parameter
were obtained when machining with the lowest and highest feed per tooth.
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Table 5. Results of mathematical modelling of the Sv and Sp parameters as a function of the feed
rate for various values of the depth of cut (regression functions y = Sv(fz), y = Sp(fz); fz = x with the
coefficient of determination R2).

Sp

a p
=

0.
1

m
m

y = 16.988x − 7.19
R2 = 0.8554 (p = 0.0005)

a p
=

0.
2

m
m

y = −7.399x + 60.241
R2 = 0.3027 (p = 0.0651)

a p
=

0.
3

m
m

y = 6.3234x + 5.8894
R2 = 0.7888 (p = 0.0101)

a p
=

0.
4

m
m

y = 9.928x + 13.612
R2 = 0.5327 (p = 0.1232)

y = 10.618e0.4095x

R2 = 0.9093 (p = 0.0091)
y = 55.657e−0.174x

R2 = 0.319 (p = 0.0374)
y = 7.7707e0.3446x

R2 = 0.6324 (p = 0.0192)
y = 21.924e0.1994x

R2 = 0.613 (p = 0.0883)

y = 38.745ln(x) + 6.6755
R2 = 0.7188 (p = 0.0069)

y = −18.31ln(x) + 55.573;
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− 9.506;
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R2 = 0.9465 (p = 0.0673)

y = 2.3158x3 − 15.277x2 +
31.187x + 13.666;
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y = 35.053ln(x) + 1.9623
R2 = 0.9367 (p = 0.0696)

y = 28.004ln(x) + 2.8435;
R2 = 0.7051 (p = 0.3398)

y = 39.623ln(x) + 3.6995;
R2 = 0.9035 (p = 0.0116)

y = 29.949ln(x) + 17.97
R2 = 0.6713 (p = 0.2754)

y = −0.2556x2 + 16.011x − 9.6972;
R2 = 0.9896 (p= 0.0861)

y = −3.0723x3 + 26.715x2 − 55.435x
+ 40.352;
R2 = 0.8129 (p = 0.7855)

y = −1.687x2 + 26.18x − 18.344;
R2 = 0.9327 (p = 0.0535)

y = −3.0083x3 + 23.011x2

− 35.22x + 34.556;
R2 = 0.769 (p = 0.5384)

y = 7.4551x1.371

R2 = 0.9808 (p = 0.0401)
y = 6.7438x1.2758

R2 = 0.7217 (p = 0.4027)
y = 8.9054x1.3574

R2 = 0.8982 (p = 0.0145)
y = 18.922x0.8178

R2 = 0.6194 (p = 0.2936)
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and depth of cut ap.

Table 6 presents the results of mathematical modelling of the spatial surface roughness
parameter Ssk as a function of the feed per tooth fz for various depths of cut ap. The
following were selected as regression functions of one variable: linear function, logarithmic
function and polynomial function. The table shows the coefficient of determination R2 and
the p-value in Fisher’s test of statistical significance of the linear model. The normality
of the rest of the model was checked for each model. The analysis of the modelling
results presented in Table 6 shows that the best matches of the results of the experimental
research are described by the polynomial function ap = 0.1 mm (R2 = 0.9503), ap = 0.2 mm
(R2 = 0.9823), ap = 0.3 mm (R2 = 0.9969) and ap = 0.4 mm (0.9285).

The kurtosis value Sku of the roughness profile (Figure 7) in most cases oscillated
around 3, which indicates that the roughness distribution was close to normal. The kurtosis
value was independent of the change in feed per tooth and depth of cut. Sku values >3
indicate larger roughness valleys and sharper peaks.

Table 7 presents the results of mathematical modelling of the spatial surface roughness
parameter Sku as a function of the feed per tooth fz for various depths of cut ap. The
following were selected as regression functions of one variable: linear function, exponential
function, logarithmic function, polynomial function and power function. The table shows
the coefficient of determination R2 and the p-value in Fisher’s test of statistical significance of
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the linear model. The normality of the rest of the model was checked for each model. The
analysis of the modelling results presented in Table 7 shows that the best matches of the
results of the experimental research are described by the polynomial function ap = 0.1 mm
(R2 = 0.9847), ap = 0.2 mm (R2 = 0.9513), ap = 0.3 mm (R2 = 0.9416) and ap = 0.4 mm (0.9864).

Table 6. Results of mathematical modelling of the Ssk parameter as a function of the feed rate for
different values of the depth of cut (regression functions y = Ssk(fz); fz = x with the coefficient of
determination R2).

a p
=

0.
1

m
m

y = 0.0587x − 0.4083
R2 = 0.2931 (p = 0.3460)

a p
=

0.
2

m
m

y = −0.0065x − 0.0471
R2 = 0.0035 (p = 0.9246)

a p
=

0.
3

m
m

y = 0.0261x − 0.1609
R2 = 0.2184 (p = 0.4274)

a p
=

0.
4

m
m

y = −0.0459x − 0.003
R2 = 0.1936 (p = 0.4584)

y = 0.1922ln(x) − 0.4164
R2 = 0.5082 (p = 0.1765)

y = 0.0394ln(x) − 0.1043;
R2 = 0.021 (p = 0.8163)

y = 0.0645ln(x) − 0.1445;
R2 = 0.2161 (p = 0.4301)

y = −0.061ln(x) − 0.0821
R2 = 0.0556 (p = 0.7026)

y = −0.0743x2 + 0.5042x − 0.9281;
R2 = 0.9503 (p = 0.0497)

y = 0.0599x3 − 0.6076x2 +
1.818x − 1.5327;
R2 = 0.9823 (p = 0.1688)

y = 0.0402x3 − 0.3539x2 +
0.9263x − 0.7794;
R2 = 0.9969 (p= 0.0711)

y = −0.0756x2 + 0.4077x − 5323;
R2 = 0.9285 (p= 0.0715)
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Table 7. Results of mathematical modelling of the Sku parameter as a function of the feed rate for
different values of the depth of cut (regression functions y = Sku(fz); fz = x with the coefficient of
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3.2. Thermovision Tests—Temperature of Chips Produced during AZ91D Magnesium
Alloy Milling

Figure 8 presents an example of a thermal image recorded during the milling of the
AZ91D alloy with an HSS tool with marked areas of chip temperature measurement. The
characteristic chips, along with the recorded values of their temperature, are marked.

The results of the maximum chip temperature measurement as a function are presented
in the form of a graph in Figure 9. When analysing the obtained results, no clear correlation
was observed between the change in feed per tooth and depth of cut, and the maximum
temperature. The obtained temperature values oscillated around 300 ◦C. The differences
in the obtained results may be largely due to the fact that the chip formation process is a
rapidly changing phenomenon.
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Figure 9. Results of measurements of the chips’ maximum temperature as a function of feed per
tooth and depth of cut.

Table 8 presents the results of mathematical modelling of the spatial surface roughness
parameter Sku as a function of the feed per tooth fz for various depths of cut ap. The
following were selected as regression functions of one variable: linear function, exponential
function, logarithmic function, polynomial function and power function. The table shows
the coefficient of determination R2 and the p-value in Fisher’s test of statistical significance of
the linear model. The normality of the rest of the model was checked for each model. The
analysis of the modelling results presented in Table 7 shows that the best matches of the
results of the experimental research are described by the polynomial function ap = 0.1 mm
(R2 = 0.7074), ap = 0.2 mm (R2 = 0.8483), ap = 0.3 mm (R2 = 0.658) and ap = 0.4 mm (0.9907).

Modelling with regression functions was aimed at selecting the optimal mathematical
solution describing the variability of the output parameters of the model with the input
data. The coefficients of the studied regression functions were changed so that the value
of the coefficient of determination R2 was as high as possible. The high value of R2 is a
measure of what percentage of the variability of the dependent variable (fz) is explained by
the independent variable (modelled parameter).

3.3. AZ91D Magnesium Alloy Chip Geometry

Figure 10a presents an example of an optical representation of a magnesium alloy
chip after milling, Figure 10b presents an enlarged visual image from the face side, and
Figure 10c presents an enlarged visual image from the free side. The presented images show
a relatively smooth surface of the chip with visible cracks in the transverse direction. There
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are no visible traces of burns and melting marks indicating the possibility of uncontrolled
ignition in machining. The free chip flow side has numerous shifts in the slip planes that
look like a stepped structure. The free surface on the chip flow on the rake face has a
reflective smooth surface with numerous discontinuities of the structure damaged as a
result of force interactions, stresses and shear in the sliding planes.
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The chips shown in Figure 10a can be classified as so-called snarled chips (long or
entangled). This is the type of chips that should be avoided due to their shape. In contrast,
the chips shown in Figure 10b,c are chips classified as so-called arc loose, and this is the
preferred type of chips. Nevertheless, all of the types of chips outlined above are easily
removed from the cutting zone and are generally not very hazardous due to their shape.

Whereas in Figures 11 and 12 SEM photos of chips produces during the milling of
AZ91D alloy are presented. The high quality of the observed chip surfaces in this case also
have no traces of any burn marks or melting. This may mean that the milling is still safe
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and there is no risk of uncontrolled ignition when machining with the pre-set technological
parameters. On the free surface of the chip, characteristic slip planes are visible (Figure 11a)
and material decohesion (Figure 11b). The structure of the free surface is “ball-shaped”
with clearly visible “steps”. On the chip flow side, on the rake face, the chip surface is
relatively flat, with visible traces in the form of scratches parallel to the chip flow velocity
vector and cracks (Figure 12a) and tearing (defragmentation) (Figure 12b).

Table 8. Results of mathematical modelling of the T parameter as a function of the feed rate for
different values of the depth of cut (regression functions y = T(fz); fz = x with the coefficient of
determination R2).

a p
=

0.
1

m
m

y = 14.89x + 243.97
R2 = 0.6384 (p = 0.1049)

a p
=

0.
2

m
m

y = −22.72x + 331.38
R2 = 0.3128 (p = 0.3270)

a p
=

0.
3

m
m

y = −5.24x + 321.4
R2 = 0.0551 (p = 0.7039)

a p
=

0.
4

m
m

y = −36.7x + 404.56
R2 = 0.5737 (p = 0.1381)

y = 246.33e0.0514x

R2 = 0.6477 (p = 0.1137)
y = 339.61e−0.095x

R2 = 0.3305 (p = 0.3797)
y = 321.38e−0.018x

R2 = 0.0523 (p = 0.6788)
y = 401.76e−0.111x

R2 = 0.6345 (p = 0.1424)

y = 33.236ln(x) + 256.82
R2 = 0.5138 (p = 0.1730)

y = −58.81ln(x) + 319.53;
R2 = 0.3386 (p = 0.3033)

y = −7.793ln(x) + 313.14
R2 = 0.0197 (p = 0.8219)

y = −106.5ln(x) + 396.48
R2 = 0.7811 (p = 0.0467)

y = −2.525x3 + 25.975x2 − 64.2x + 309.14;
R2 = 0.7074 (p = 0.6535)

y = 22.367x3 − 190.5x2 + 440.33x + 31.22;
R2 = 0.8483 (p = 0.4831)

y = −10.017x3 + 79.593x2 −
178.29x + 415.78;
R2 = 0.658 (p = 0.6996)

y = −8.125x3 + 98.254x2 −
379.22x + 716.96;
R2 = 0.9907 (p = 0.1227)

y = 257.55x0.1146

R2 = 0.5317 (p = 0.1831)
y = 323.46x−0.247

R2 = 0.3342 (p = 0.3550)
y = 312.75x−0.029

R2 = 0.0191 (p = 0.7930)
y = 391.91x−0.323

R2 = 0.8364 (p = 0.0508)
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Figure 11. SEM imaging of a magnesium alloy chip surface on the free side (a) slip plane and
(b) material decohesion.

3.4. Artificial Neural Network Simulation

The results of the modelling performed together with the parameters of the networks
are presented in Table 3. One network of each type (RBG, MLP) was selected for the
analysed roughness parameters (Sa and Sku) and the maximum temperature under cut-
ting stress. These networks were selected on the basis of network errors and quality of
learning and validation. The best parameters for maximum temperature were obtained
for the RBF 2-13-1 network with thirteen neurons in the hidden layer, and in the case of
roughness parameters—for the MLP network. For the Sa parameter, it is a network with
four neurons in the hidden layer (MLP 2-4-1), created in 8654 iterations, whereas for the
SKu parameter, with 5 neurons (MLP 2-5-1), created in 4659 iterations. The quality of both
learning and validation for these networks exceeds 0.95. Additionally, Table 9 contains
the correlation coefficients R, which, when analysed, showed that the interdependence
between the experimental data and those predicted for these selected networks is at a high
level (above 0.94).
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Table 9. Selected networks based on quality (learning, validation), errors (learning, validation).

Network
Name

Quality
(Training)

Quality
(Validation)

SS
(Training)

SS
(Validation)

Activation
(Hidden)

Activation
(Output)

R(i)
Correlation

Maximum Temperature

RBF 2-13-1 0.9947 0.9837 17.3924 143.9912 Gaussian Linear 0.9835
MLP 2-13-1 0.9377 0.8392 202.8053 652.0954 Tanh Sinus 0.8917

Sa

RBF 2-10-1 0.9432 0.9849 0.2431 0.0726 Gaussian Linear 0.9506
MLP 2-4-1 0.9999 0.9924 0.0019 0.0565 Logistic Linear 0.9970

Sku

RBF 2-11-1 0.9287 0.7085 0.0335 0.4862 Gaussian Linear 0.7440
MLP 2-5-1 0.9903 0.9538 0.0046 0.1025 Tanh Exponential 0.9414

The comparison of the results obtained as a result of RBF and MLP network modelling
presented in Table 9 are also featured in Figure 13, where the correlation of the individual
analysed parameters obtained experimentally and those obtained as a result of modelling
can be seen. The figures confirm that for the maximum temperature, better matched results
were obtained using the RBF network, whereas for Sa and Sku, using the MLP network.

As a result of the modelling procedure, it was possible to predict the maximum tem-
perature and the Sa and Sku parameters with the use of selected networks. After entering
the new data into the Statistica software (feed per tooth and milling depth, respectively),
the predicted values of the analysed parameters were generated. The results of the network
operation are presented for the RBF 2-13-1 network (maximum temperature) in Figure 14a,
for the MLP 2-4-1 network (parameter Sa) in Figure 14b, and for MLP 2-5-1 (parameter
Sku)—on Figure 14c.

In order to determine whether each of the input technological parameters affects the
maximum temperature and the Sa/Sku parameters, a sensitivity analysis was performed
(Table 10). None of the analysed technological parameters obtained a sensitivity analysis
value below 1, which means that each of them had a significant impact. The parameter
that had the most significant influence on the maximum temperature and the Sa and Sku
parameters is feed per tooth.
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Figure 13. Correlation graph of comparison between the modelling and experimental results of the
RBF and MPL networks for (a) Maximum temperature, (b) Sa parameter and (c) Sku parameter.

Table 10. Sensitivity analysis values for the technological parameters: feed per tooth fz and axial
depth of cut ap.

Sensitivity Analysis fz ap

Maximum temperature RBF 2-13-1 43.6506 28.7312
Sa MLP 2-4-1 127.9466 32.3221

Sku MLP 2-5-1 445.2054 12.2694

As a result of modelling the maximum temperature and Sa and Sku parameters, as
well as the prediction made, it can be concluded that the obtained RBF and MLP networks
have a satisfactory ability to predict these parameters. This is confirmed by, among others,
the R correlation value at the level of 0.94, high quality of learning and network validation
at the level of 0.95, and learning and validation errors. Comparing the experimental and
simulation data of the individual analysed parameter values, it can be concluded that
the value of the relative error does not exceed 15%, which proves that the network is
well trained.
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Figure 14. The simulation results of the variable feed per tooth fz and depth of cut ap for (a) maximum
temperature, (b) Sa parameter and (c) Sku parameter.

The black box model (built on the basis of artificial neural networks) was assessed
on the basis of quality of learning and validation as well as learning and validation errors.
Based on the simulations performed, the best networks describing the modelled relation-
ships were determined. The results of the network fit and the correlation of the modelled
relationships were also described using the correlation coefficients R. The simulations show
that the best network describing the relationship between the dependent variable (Sa)
and independent variables (fz and ap) is MLP 2-4-1, for which RSa = 0.9970, for the Sku
variable—MLP 2-5-1 network, for which RSku = 0.9414, and for the Maximum temperature
variable—RBF 2-13-1 network, for which RmaxT = 0.9835.
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4. Conclusions

Based on the conducted research, the following conclusions can be drawn:

- An increase of the feed per tooth fz in most cases resulted in an increase in surface
roughness parameters Sa, Sz and Sv. Higher values of these roughness parameters
were recorded for greater depths of cut ap. For parameters Sp, Ssk and Sku, no clear
relationships were observed with regard to the change in machining conditions. The
results of mathematical modelling proved that the best matching to the values of
the resulting surface geometric structure parameters was obtained for the regression
function in the form of a second and third degree polynomial. The obtained values of
the coefficient of determination R2 for the built models were in the range 0.5490–0.9995,
except for Sz for ap = 0.2, for which R2 was 0.0709. It should be noted, however, that
for the majority of the developed models, the value of the coefficient of determination
R2 is higher than 0.80 and only a few models have lower values of the coefficient
of determination;

- Changing the feed per tooth fz and the depth of cut ap in the analysed ranges did
not have a significant effect on the maximum temperature of the chips produced in
milling (T);

- In most cases, the temperature of the chip observed during milling was around 300 ◦C,
which is considered to be a safe chip temperature in terms of self-ignition hazard;

- The presented metallographic photos of chips, as well as the imaging performed using
a SEM, make it possible to conclude that the milling process is safe (no burn marks or
chip melting);

- The presented selected representations of chips belong to different groups of chips,
both snarled chips and loose chips, which are more favourable due to their shape;

- For modelling the maximum temperature obtained in milling AZ91D magnesium
alloy with the use of a HSS tool, the RBF neural network was found to be a better type
of network than MLP. For the RBF network, compared to MLP, the quality of learning
and validation is higher, and the errors are less significant;

- In the case of the 3D roughness parameters, a better result was obtained for the
MLP network;

- The obtained results of the network modelling show a satisfactory predictive ability,
as evidenced by the obtained values of correlation R. The values are RmaxT = 0.98353,
RSa = 0.997018 and RSku = 0.941437, respectively. Therefore, it can be concluded that
artificial neural networks are effective tools for predicting these parameters. Based
on the comparative assessment of the parameters of the mathematical models and
those made with the use of artificial neural networks, it can be indicated that 8 ÷ 14%
of models based on artificial intelligence show better matching results than most
polynomial mathematical models;

- Modelling of processes can constitute the basis for creating tools that are helpful
in the work of manufacturing engineers when determining the conditions of the
machining process, in order to obtain the required surface roughness and to maintain
safe machining parameters. In addition, it can save time and effort and eliminate costs
that would have to be incurred in the case of further machining tests.
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