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Abstract: The bonding interface between the CFRP and the steel plate is the weak link of CFRP-
strengthened steel structures. This paper studies the bond–slip relationship of the CFRP–steel
interface by experiments and numerical tests. First, a series of double-strap experiments on a CFRP-
strengthened steel plate are carried out. The results show that the maximum shear stress of the
bonding interface of the Q345B specimen is larger than that of the X100 specimen. The initial slip and
maximum slip become larger as the thickness of the bonding interface becomes larger. Finite element
analysis of the above tests is carried out; we introduce the maximum stress criterion to simulate the
bonding interface, which assumes that when the nominal stress of the material reaches the maximum
nominal stress of damage, the material begins to damage. The FE model established has proved
very effective for analyzing the bond characteristics of CFRP-strengthened steel plates. Finally, a
verification test was carried out, using an FE analysis to verify the accuracy of the modified equations;
the results prove that the results of the modified equations are in good agreement with the numerical
results and experiment results, which verifies the effectiveness of the equations.

Keywords: CFRP; steel plate; double-strap experiment; bond–slip model; bond properties; FE analysis

1. Introduction

CFRP (carbon fiber reinforcing polymer) has attracted great attention in engineer-
ing [1,2] because of its high strength, good corrosion resistance, strong adaptability, and
convenient construction [3,4]. The traditional welding methods to repair defects of steel
structures affected by the environment and load during service often have problems, such
as long construction, difficult maintenance, and residual stress, affecting the structural
stability and fatigue [5], but the use of CFRP reinforcement can avoid these problems effec-
tively [6,7]. At present, there are many cases of strengthening steel structures with CFRP.
Miller et al. [8] used CFRP to strengthen and repair a steel girder bridge, and Galvez [9]
and Marques [10] used CFRP-reinforced joints to strengthen the steel structures on bus and
aerospace heat insulation panels, respectively.

Due to the use of adhesive for reinforcement, the bonding interface between CFRP
and steel is the weak link of reinforced components [11,12]. The reinforcement effect
of CFRP usually depends on the bond performance of the interface. Therefore, many
researchers have carried out in-depth studies on the bond performance of the interface
of CFRP-strengthened structures. Yu et al. [13] carried out a series of single-strap tensile
tests of CFRP-reinforced steel and obtained that the bond–slip curve of linear bind fit the
triangular bilinear model, which is a bond–slip model with a triangular shape containing an
ascending branch and a descending branch. Sabrina Fawzia et al. [14] pointed out that the
thickness of the bonding interface has a significant affection on the bond–slip model, and
the initial slip and maximum slip increased with the increase in the thickness of the bonding
interface. The initial slip is the slip at the end of the ascending branch, and the maximum
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slip is the slip at the end of the descending branch. The experiment of Wang et al. [15]
showed that the interfacial bond strength gradually increased with the increase in the
thickness of the bonding interface, and the interfacial bond strength of different adhesives
would be different.

Majidi et al. [16] proposed the point stress method by using finite element analysis
to predict the ultimate load of double shear specimens, which can efficiently calculate
the ultimate load of double-strap specimens. Li et al. [17] carried out experiments and
numerical analysis to study the effects of different types of epoxy adhesive and CFRP; the
result showed that different epoxy adhesives or CFRPs with distinct mechanical properties
can lead to different failure modes for CFRP—steel bonding interfaces. Ke et al. [18]
proposed a novel film adhesive and conducted experiments on double-lap joints (DLJs)
with different bond lengths to prove the validity of the adhesive. The result showed that
the bonding interfaces in CFRP–steel composites achieved superior strength, ductility,
and high-temperature resistance. The authors’ team has previously conducted a series of
double-strap experiments of CFRP-reinforced steel [19]. By measuring the strain of the
bonding interface with the strain gauge and DIC (i.e., digital image correlation), the failure
characteristics and mechanical behavior of the CFRP-reinforced steel plate were analyzed.
It was concluded that the thickness of the bonding interface and steel type affected the load
displacement curve, stress distribution, and effective bond length (the critical bond length
when the ultimate load of the bonding interface no longer increase with the increase of the
bond length) of the specimens.

From the existing literature, it can be seen that there is little research on the influence of
steel type on bonding interface. Furthermore, though there exists several bond–slip models
to characterize the property of bonding interface, it is difficult to predict it. In this paper,
a series of supplementary experiments were carried out to study the bond–slip model of
the CFRP–steel interface based on the previous tests [19]. Three existing bond–slip model
theories were compared, and a set of modified equations according to the test results was
given. A finite element numerical analysis was also carried out to verify the accuracy of
the expressions. The modified equations have a good prediction effect on the property of
bonding interface.

2. Double-Strap Experiment

Figure 1 shows the double-strap joint used in this test; the fabrication of specimens
follows the standards ASTM E8/E8M-16a [20] and ASTM 3528-96(2016) [21]. The double-
strap specimens are designed to accurately measure the shear stress of bonding interface by
reducing moment of bonding interface as much as possible. The steel plate was processed
by wire cutting, and the surface reinforced by CFRP was polished and cleaned with acetone.
The CFRP was woven by carbon fiber and prepreg mixed with epoxy resin and a curing
agent. The carbon fiber used was T700-12k, manufactured by Toray Company (Tokyo,
Japan). The epoxy resin adhesive (lica-131), mixed with small steel balls of uniform size to
control the thickness of the bonding interface, was applied on the surface of the steel plate.
The strain of the specimen was measured by strain gauge and DIC. The two types of steel
used in the test were Q345B and X100. In the test, the CFRP material used to strengthen
the steel plate was made by t700-12k, produced by the Toray company from Japan; the
adhesive used was lica-131. Table 1 shows the mechanical properties of materials used in
this test.

Specimens in this test were divided into six groups, with three specimens in each
group. Specimens with two different steel types (Q345B and X100) adopted three different
thicknesses (0.1 mm, 0.5 mm, and 0.8 mm) of bonding interface, respectively. Table 2 shows
a specific configuration of the specimen groups. An MTS servo testing machine was used
for the test device, and the loading rate was set at 0.005 mm/s. The loading device is shown
in Figure 2.
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Table 1. Mechanical Properties of Materials in this Experiment.

Elastic
Modulus

(GPa)

Poisson
Ratio

Yield
Strength

(MPa)

Tensile
Strength

(MPa)

Shear
Strength

(MPa)

Q345B 206 0.3 345 455 /
X100 210 0.3 700 790 /
CFRP 230 0.307 / 4750 /

Lica-131 2.4 / / 38 14

Table 2. Test Configuration and Specimen Groups.

Steel Type Test Groups Thickness of Bonding
Interface (mm) Sample

Q345B
Q-01 0.1 3
Q-05 0.5 3
Q-08 0.8 3

X100
X-01 0.1 3
X-05 0.5 3
X-08 0.8 3

A previous study [22] indicated that galvanic corrosion could occur when steel has
direct contact with CFRP material in aggressive environments. However, this phenomenon
can be avoided by increasing the thickness of the adhesive layer and improving the plump-
ness of the adhesive layer. In the past experiments on CFRP–steel composite, galvanic
corrosion has never occurred.
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Figure 2. Test Equipment.

3. Test Results

The bond–slip curve, i.e., the shear stress–slip curve of the bonding interface, could
characterize the load-carrying process and failure process of the interface as well as the
macroscopic bearing performance of the interface. The previous test [19] pointed out that
the maximum shear stress of the bonding interface was affected by the thickness of the
bonding interface and the steel type. According to the experiment in Section 1, this paper
analyzed the bond–slip curve of the bonding interface and the effect caused by the thickness
of the bonding interface and the steel type. The shear stress and slip at the midpoint of test
point i and test point i − 1 are given by:

τi =
∆εiEptp

∆li
=

(εi − εi−1)Eptp
li − li−1

si =
i

∑
j=1

ε j + ε j−1
2 ∆lj

(1)

where τi is the shear stress at test point i, li is the distance between test point i and the front
end of the steel plate, ∆li is the distance between test point i and test point i − 1; Ep and
tp are the elastic modulus and thickness of CFRP, respectively. This paper took as the test
point 25 mm from the front end of the steel plate to plot the bond–slip curve, for this point
experienced the complete process of the shear stress fluctuation and transmission.

Six bond–slip curves of the bonding interface of each test group are plotted in Figure 3
according to the shear stress and slip calculated by Equation (1). It can be seen that for all
six groups of specimens, the bond–slip relationship approximated to the bilinear bond–slip
model as containing an ascending branch and a descending branch. At the same time, for
the same steel type, the τmax of the interface was similar: for Q345B specimens, the τmax of
the interface for Q-01 and Q-05 was similar, and the τmax for Q-08 is about 24% less than
those of the two previous specimens; the τmax was similar for all X100 specimens. As for
different steel type, the τmax of the Q345B specimens was larger than that of the X100, which
was about 1.9 times of X100. It can be seen that the type of steel effect on the bond–slip
model dramatically, which represent in the maximum shear stress (τmax) and interfacial
facture energy (Gf) of Q345B being much bigger than that of X100, it may be due to the
difference in surface roughness of different steel types. A steel plate with higher strength
may decrease the bond property of the bonding interface, which awaits further study. With



Materials 2022, 15, 4187 5 of 12

the increase in the thickness of the bonding interface, the initial slip (δ1) changes little, yet
the maximum slip (δf) of the interface decreases.
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4. Comparison of Bond–Slip Models

For different adhesives with different mechanical properties, there exist two different
bond–slip models [12,22]: the bond–slip model of a linear adhesive can be approximated
by a bilinear curve (Figure 4a), while a nonlinear adhesive can be approximated by a
trapezoidal curve (Figure 4b). For the bilinear bond–slip model, in the elastic stage, the
shear stress increased linearly with the increase in slip, and the growth rate between
the shear stress and slip is the interface stiffness K; when the shear stress reached the
maximum shear stress τmax (the slip reaches δ1), the interface entered the debonding
stage, and the shear stress decreased linearly with the slip. At the end of the descending
branch, the shear stress decreased to 0 as the slip reaches δf. The trapezoidal bond–slip
model has an additional platform before the debonding stage, in which the shear stress
remains unchanged.
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At present, the linear adhesive is mostly studied. Many researchers have carried out
experimental research and provided fitting equations for bond–slip parameters. Xia and
Teng [23] proposed that the bond–slip curve of the CFRP-strengthened steel specimens
damaged by debonding of the bonding interface was very close to a bilinear shape and
established a simplified bilinear bond–slip model. Fernando [24] provided a bilinear
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bond–slip model fitting equation through the experiment and finite element simulation of
several different adhesives; Fernando believed that the result was more accurate than Xia’s.
Fawzia [14] believes that δf will increase significantly when the thickness of the bonding
interface increases to more than 0.5 mm. Table 3 gives the expressions of the above three
bilinear bond–slip models.

Table 3. Expressions of Parameters of Different Bond–Slip Models.

Xia [23] Fernando [24] Fawzia [14]

τmax = 0.8σmax

Gf = 31
(

σmax
Ga

)0.56
t0.27
a

δ1 = τfta
Ga

τmax = 0.9σmax
Gf = 628t0.5

a R2

δ1 = 0.3
(

ta
Ga

)0.65
σmax

τmax = σa
δ1 = ta

10
δf =

ta
4 for ta = 0.1 − 0.5mm

δf = 0.125 + ta−0.5
10 for ta = 0.5 − 1mm

where σmax and Ga are the tensile strength and the shear strength of the adhesive, ta is the thickness of bonding
interface, and R is the tensile strain energy of the adhesive.

Figure 5 shows the comparison of calculation result of the three bond–slip models
and experimental results. Combined with Figure 3, it can be seen that among the τmax
given by the three models, the change in the thickness of the bonding interface did not
affect the value of τmax, which was consistent with the experimental results, where the
Xia model was the closest to the experimental results of Q345; for Gf and δ1, the fitting
results given by Fawzia were close to the experimental results, while the fitting results of
Xia and Fernando were 14~20 times larger than the experimental results, but the trend of
bond–slip parameters fit well between Xia’s model and the experimental result. Moreover,
for the X100 specimen, only the δ1 given by Fawzia was in good agreement with the
experimental results.
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According to the experimental results in Section 2, although the fitting results of the Xia
model were quite different from the experimental results, the trend of the parameters with
the thickness of bonding interface was very similar to the experimental results. Therefore,
the coefficients of the Xia model were used to better fit the bond–slip model of the bonding
interface of the CFRP-reinforced steel using Q345 and X100; the modified fitting equations
are given as follow:

Q345B:
τmax = 0.7σmax

Gf = 0.16
(

σmax
Ga

)0.56
t0.3
a

δ1 = τfta
14Ga

(2)

X100:
τmax = 0.19σmax

Gf = 0.3
(

σmax
Ga

)0.56
t0.3
a

δ1 = τfta
16Ga

(3)
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5. Numerical Simulation Analysis
5.1. Finite Element Model

In this paper, the finite element model of the CFRP-reinforced steel plate was estab-
lished by the finite element analysis software ABAQUS, and the numerical analysis was
made based on the FE model. In the FE model, the C3D8R element was used for the steel
plate and the CFRP. To accurately simulate the bond characteristics of the bonding interface,
a three-dimensional cohesive element COH3D was used for the bonding interface. In order
to reduce the calculation scale, taking the neutral plane in the thickness direction of the
steel plate as the symmetrical plane, a 1/2 model of the double-strap test specimen was
established, constraints in the X, Y, and Z directions were applied to the nodes on the free
end and the symmetrical plane, and the horizontal displacement was applied to the loading
end of the steel plate to simulate the loading process. The model consisted of 3605 C3D8R
units, 3000 COH3D units, and 13,996 nodes; Figure 6 shows the FE model established
in ABAQUS.

Materials 2022, 15, x FOR PEER REVIEW 8 of 12 
 

 

max
0.56

max
f a

f a

0 3

1
a

max

.

0.19

0.3

16

a

G t
G

t
G

τ σ

σ

τδ

=

 
=  

 

=

 
(3)

5. Numerical Simulation Analysis 
5.1. Finite Element Model 

In this paper, the finite element model of the CFRP-reinforced steel plate was estab-
lished by the finite element analysis software ABAQUS, and the numerical analysis was 
made based on the FE model. In the FE model, the C3D8R element was used for the steel 
plate and the CFRP. To accurately simulate the bond characteristics of the bonding inter-
face, a three-dimensional cohesive element COH3D was used for the bonding interface. 
In order to reduce the calculation scale, taking the neutral plane in the thickness direction 
of the steel plate as the symmetrical plane, a 1/2 model of the double-strap test specimen 
was established, constraints in the X, Y, and Z directions were applied to the nodes on the 
free end and the symmetrical plane, and the horizontal displacement was applied to the 
loading end of the steel plate to simulate the loading process. The model consisted of 3605 
C3D8R units, 3000 COH3D units, and 13,996 nodes; Figure 6 shows the FE model estab-
lished in ABAQUS. 

 
Figure 6. Finite element model. 

The modeling of the cohesive element of the bonding interface needs to introduce the 
traction–separation criterion to simulate the bond characteristics. The stiffness and nomi-
nal stress in three directions (one normal direction and two tangential directions) need to 
be input as material parameters. Its relationship can be represented by: 

n nn n

s ss s

t tt t

0 0
0 0
0 0

t K
t K
t K

ε
ε
ε

     
    =    
         

 (4)

where nt , st , and tt  are the nominal stress in the normal direction and tangential direc-
tions, respectively; nnK , ssK , ttK  and nε , sε , tε  are the respective stiffness and the 
nominal strain in three directions. The bond–slip parameters (stiffness K, maximum shear 
stress fτ , and interface facture energy fG ) from Section 3 were substituted into the bi-
linear traction–separation criterion. 

The initial damage criterion corresponds to the critical damage condition of cohesive 
materials. The traction–separation criterion included the maximum stress criterion, max-
imum strain criterion, secondary stress criterion, and secondary strain criterion. In this 

Figure 6. Finite element model.

The modeling of the cohesive element of the bonding interface needs to introduce the
traction–separation criterion to simulate the bond characteristics. The stiffness and nominal
stress in three directions (one normal direction and two tangential directions) need to be
input as material parameters. Its relationship can be represented by:

tn
ts
tt

 =

Knn 0 0
0 Kss 0
0 0 Ktt


εn
εs
εt

 (4)

where tn, ts, and tt are the nominal stress in the normal direction and tangential directions,
respectively; Knn, Kss, Ktt and εn, εs, εt are the respective stiffness and the nominal strain
in three directions. The bond–slip parameters (stiffness K, maximum shear stress τf, and
interface facture energy Gf) from Section 3 were substituted into the bilinear traction–
separation criterion.

The initial damage criterion corresponds to the critical damage condition of cohesive
materials. The traction–separation criterion included the maximum stress criterion, max-
imum strain criterion, secondary stress criterion, and secondary strain criterion. In this
paper, the maximum stress criterion was adopted; that is, when the nominal stress of the
material reached the maximum nominal stress of damage, the material began to damage,
which can be represented by:

Max
{

tn

t0
n

,
ts

t0
s

,
tt

t0
t

}
= 1 (5)

where t0
n, t0

s , and t0
t are the respective maximum nominal stress of damage in three directions.
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5.2. Numerical Simulation Results

Table 4 shows the comparison of the ultimate load Pult between the experiment results
and the finite element simulation results. It can be seen that the error of Pult between the
test results and the finite element results was within 10%.

Table 4. Comparison of Pult between Experiment results and FE results.

Test Groups EXP FEA

Q-01 56.8 51.6
Q-05 56.3 52.9
Q-08 41.7 39.0
X-01 25.3 28.9
X-05 25.6 31.7
X-08 18.8 25.4

Figure 7 shows the comparison between the test results and the numerical simulation
results of the bond–slip curves of specimens with different steel and bonding interface
thickness. The results show that the total error between the numerical simulation results
of the bond–slip curves and the test results was also less than 10%. Therefore, the finite
element model could accurately simulate the bond characteristics of the CFRP-reinforced
steel specimens. This FE model can be effectively used to analyze the interfacial bond
properties of CFRP-strengthened steel specimens.
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6. Verification Test

In order to further verify the validity of Equations (2) and (3) given in Section 3, a
verification test was carried out in this paper. In this verification test, six specimens of
CFRP-strengthened steel plate using Q345B and X100 (each for three) with a bonding
interface thickness of 1.0 mm were used. All test conditions were exactly the same as those
in Section 1 except the thickness of the bonding interface. At the same time, the finite
element model established in Section 4 was used to simulate the verification test.

The bond–slip curve obtained by the verification test, modified equation, and FE
analysis are given in Figure 8. It can be seen that the bond–slip parameters obtained by
the modified equations were in good agreement with the verification test results and finite
element results, with no error. Therefore, the fitting formulas for the bond–slip model given
by Equations (2) and (3) well predicted the bond characteristics of the CFRP–steel interface.
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7. Conclusions

This paper studied the bond properties of CFRP-strengthened steel plates by exper-
iments and simulation. Three existing bond–slip models were analyzed, and a set of
modified fitting equations for bond–slip parameters were proposed and verified. The main
conclusions are as follows:
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1. The τmax of the bonding interface of the CFRP-reinforced steel plate was not affected
by the change in the thickness of the bonding interface, but the τmax of the Q345B
specimen was larger than that of the X100, about 1.9 times that of the X100. It may be
because of the difference of surface roughness between two steel types. A steel plate
with higher strength may decrease the bond property of the bond interface, which
awaits further study.

2. The result of τmax given by Xia’s model was the closest to the experimental result of
Q345; for the Gf and δ1, Fawzia’s fitting results were the closest to the experimental
results, but Xia’s model better predicted the trend in the thickness of the bonding
interface on the bond–slip parameters. The initial facture energy of bonding interface
is linear correlate with thickness of bonding interface, and initial slip is exponential
correlated with thickness of bonding interface.

3. An FE model for CFRP-strengthened steel was established; the model proved to be
effective for the analysis of the bond characteristics of the CFRP–steel interface, for
the total error between the numerical simulation results of the bond–slip curves and
the test results was less than 10%. Furthermore, the introduction of the maximum
stress criterion proved to be very helpful to the modeling of the bonding interface.

4. A set of modified equations for the bond–slip parameters was given. The effectiveness
of the modified equations for predicting the bond characteristics of the CFRP–steel
interface was verified by means of a verification test and FE analysis. The modified
equations have a good prediction effect on the property of bonding interface, and the
FE model and modified equations established in this study can be extended to further
research, such as fatigue performance, crack propagation, and mechanical property
under the specific environment of CFRP-strengthened steel structures.
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