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Abstract: The utilization of solid waste in useful product is becoming a great deal of worth for
individuals, organizations, and countries themselves. The powder of waste glass and silica fumes are
also considered major waste materials across the globe. In this paper, the physico-chemical, thermal,
and morphological properties of both waste powders are investigated in order to determine their
suitability for use as a partial replacement for cement in basic concrete. They are suitable for use
in concrete due to their pozzolanic and other basic properties. Extensive testing, in terms of the
compressive strength test, the slump test, and the flexural strength test, has been carried out to study
the replacement of cement in the range of 5–15% by waste glass powder for curing ages of 7 and
28 days. The FTIR analyses of both materials are studied for determining the effect of characteristics
of chemical bonding and intense bands with bending vibrations of O–Si–O bonds. Experimental
results indicate towards the potential utilization of wastes in concrete in terms of green concrete.

Keywords: waste materials; green concrete; strength

1. Introduction

The principal environmental challenges created by the emission of carbon dioxide
(CO2) are global warming and climate change [1]. During the production of cement, a large
amount of CO2 is emitted, which makes the construction industry the leading industry
in causing the most CO2 emissions [2]. In 2016, it was reported that the cement industry
emitted 522 million tonnes of CO2. [3]. The manufacturing of one tonne of cement is
projected to release around 0.8 tonnes of CO2 into the atmosphere. Cement production is
expanding at a steady rate of 2.5 percent per year over the world [4]. Figure 1 [3] shows
that India is the world’s second-largest cement manufacturer after Europe.

Researchers throughout the world are looking for novel materials that can replace
cement completely or partially [5]. Since the previous decade, many supplemental cementi-
tious materials have been studied as cement replacements [6]. One billion tonnes of fly ash
and 360 billion tonnes of ground-granulated blast-furnace slag are made each year in the
United States, but only a small amount can meet the growing demand. As a result, finding
other materials to replace cement has become a global necessity [7–10]. In order to check
the feasibility, solid waste materials are also being explored in this research for the purpose
of replacing cement and evaluating their potential for use in construction applications.
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1.1. Waste Glass Powder

Due to having non-decomposition material, the generation of non-degradable waste
is causing problems because it requires costly heat treatments, chemical treatments, envi-
ronmental issues, and a huge area during disposal. These wastes include metallic, plastic,
fiber, and glass residual, etc. [11]. A scrap of metallic and plastics undergoes the recycling
process but the waste glass causes concerning issues.

Currently, material glass is used in the electronic sector to create a variety of screen-
based goods such as LCDs, TVs, and tablets. Mirrors, hinged objects, and other similar
items are used in the civil/construction businesses. In addition, they have uses in the food
and medical industries, ranging from surgical equipment to beverage bottles [10]. As a
result, the glass sector has a variety of possible examples around the world. Every product
has a specific use period after which it is considered garbage. However, a considerable
number of worthless objects, as well as defective or broken packaging glass, is transported
to landfills, essentially freeing up space or land for more pressing needs [12]. As a result,
the consumption countries must develop a better policy for reusing these trash glasses.
According to a report, global waste glass powder production is around 130 Mt, with
the EU (European Union) and China producing 65 Mt and the United States producing
20 Mt [13–15]. Its massive production has negative environmental consequences, and its
disposal in landfills has become expensive. Because of its dependability, adaptability, and
durability, glass powder is widely utilised in a variety of products around the world. Glass
products are mostly made from recycled materials, and they may be recycled multiple times
without affecting their chemical phases or arrangement [16]. Glass recycling begins with
the melting of a combination of soda ash, silica, calcium carbonate (CaCO3), and recycled
glass fragments. When glass powder reacts with calcium hydroxide, it exhibits a pozzolanic
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behaviour, which is enhanced by a higher surface area for the reactions [17]. According
to studies, glass has a better chemical behaviour than other common materials [18,19].
Furthermore, it was discovered that fine milling glass powder increases the interactions
between glass and cement hydrates, and that it can be used as a cement additive [20].
There have also been numerous pieces of research on the pozzolanic activity of tiny glass
powder particles in concrete [21,22]. Glass powder generally exhibits a pozzolanic reaction
at a slower rate than cement hydration, depending on its fineness [23]. The extensive
literature shows that glass powder has potential for utilization in concrete applications, so
it is necessary to conduct an extensive study for more utilizations of waste glass powder as
the replacement of cement.

1.2. Silica Fume

Silica fume is a by-product of the manufacturing of silicon metal or ferrosilicon alloys.
The oxidized silicon vapour from the furnace condenses into small spherical particles,
which are collected in silos as a dry powder [24]. Dry powder is frequently made up
of agglomerates that can be several millimetres in size and are difficult to disperse into
individual silica fume spheres using conventional concrete mixing methods [25]. Silica fume
has a lot of surface area, approximately 20,000 m2/kg. The surface area of portland cement
determined by nitrogen absorption, for example, is roughly 1500 m2/kg. The amorphous
character of SiO2 in silica fume, which gives great potential to react in Pozzolanic reactions,
is a particularly favourable attribute when combined with the high surface area values [26].
The surface area is crucial, and it can be improved by de-agglomerating the raw micro silica
powder precisely [26,27]. According to Committee 234 of the American Concrete Institute
(ACI) [28], condensed silica fume is produced by blowing compressed air from underneath
and scattering fume particles in a silo, causing them to agglomerate. The popularity of
condensed silica fume has risen due to the belief that agglomerates are brittle and will
easily dissolve and shatter when mixed with aggregates. Further investigations, according
to the ACI Committee 116R [29], have revealed that this occurs infrequently, and that
major fracturing of the agglomerates does not disintegrate completely in hardened concrete.
According to studies, silica fume agglomerates are larger than cement particles in concrete,
preventing the performance advantages projected from pore-size refinement and matrix
densification. Hooton’s initial findings [30] suggested that silica fume may be used to
control the alkali–silica reaction (ASR), prompting a rise in the use of silica fume in a range
of applications. However, investigations have shown that the existence of agglomerates in
condensed silica fumes, which do not dissolve or scatter uniformly during concrete mixing,
can impair the previously claimed ASR-related advantages [31–36]. Numerous researchers
reported that the production of silica fume is increasing day by day. In addition, the market
size was also forecasted, as shown in Figure 2.
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2. Methodology

Two distinct waste materials with the same quantity have been used for testing and
comparative analysis of the concrete, e.g., glass milling (WGP) and silica fume. Physical
properties of waste materials sample are listed in Table 1.

Table 1. Physical properties of waste materials sample.

Sr. No. Physical Properties
Materials and Measure

Unit
Silica Fume Waste-Glass

Powder

1 Particle Size Distribution <1 10–250 µm
2 Specific Gravity 2.22 2.94 -
3 Bulk Density 380 2540 kg/m3

4 Color Grey White -
5 Surface area 16,000 3130 m2/kg

The comparison is based on the use of waste resources to replace a tiny portion of
portland cement. This replacement must not modify the water content of the concrete, as it
does with ordinary concrete. Water, ordinary and portland cement, aggregates, and waste
material are the key components of this concrete mixture. During this process, suitable
cooling processes are used together with material testing to achieve the desired strength.
After selecting the optimal w/c ratio through suitable mix trials, the mix design is created.
The proportions of the materials are likewise appropriate to the design.

Sample Preparation and Experimentation

The M-20 mix percentage is used to prepare samples. In M-20, M denotes Mix and
20 refers to the characteristic strength (fck) of that mix, i.e., 20 MPa, cement, sand, and
aggregates are used for mixing in the ratio of 1:1.5:3. M-20 signifies mixture of cement,
sand, and aggregate that are prepared in such a manner that a cement concrete cube of
size 15 cm × 15 cm × 15 cm is formed with characteristic strength (fck) of 20 MPa while
examining it after being cured for 28 days. The characteristic strength (fck) signifies the
strength under which not over 5% of test results are predictable to fail.

Table 2 lists the rest of the information. 24 cubes of each waste material were con-
structed to investigate the impact of WGP and silica fume as partial cement replacements.
For both waste products, the water to cement and cement to sand ratios are 0.6 and 1:3,
respectively, throughout the design process.

Table 2. Mix Design and Proportions with details.

Entity Proportion

Cement (kg/m3) 399.2
Fine Aggregate (kg/m3) 672.8
Coarse Aggregate (kg/m3) 1097.2
Water (Litres/m3) 191.6
Water Cement Ratio 0.48
Mix Ratio 1:1.5:3
Proportion M 20

The combination was produced with typical or standard proportions for testing
purposes (M-20). The initial sample was made or the first mix was made entirely of
cement, with no waste material substituted. Different waste materials are used to make
different specimens, but the requirements and standards remain the same. In other
words, the standards for preparing waste glass powder samples are comparable to those
for silica fume samples. Cement is partially replaced in concrete by waste materials at
a 5 percent ratio. The WMx-1 mix represents a 5% substitution of waste material for
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cement. As a result, Mx-0 contains 100% cement, whereas Mx-1 includes 95 percent
cement and 5% waste material. Mx-2 includes 90% cement and 10% waste material,
whereas Mx-3 contains 85% cement and 15% waste material. Samples of waste material
cubes measuring 150 mm × 150 mm × 150 mm were made (mm). The whole design of
the mixing proportion of samples is provided in Table 3, with WGP samples identified
by the letter “W” and silica fume samples marked by the letter “S”.

Table 3. Concrete Mix design Summery.

Mix Designation Cement Glass Powder/
Silica Fume Fine Aggregate Coarse Aggregate

Mx-0 100% 0% 100% 100%
WMx-1/SMx-1 95% 5% 100% 100%
WMx-2/SMx-2 90% 10% 100% 100%
WMx-3/SMx-3 85% 15% 100% 100%

Six samples (three for each set and each material) for each test have been prepared
with replacement of cement from waste material and without replacement of any cement
particle, respectively.

Firstly, concrete paste has been prepared with a proper proportion of the materials. To
analyze the properties of prepared concrete the specimens were cast and cured prior. For
the curing stage of the sample, proper environmental conditions have been maintained till
the completion of the experiments. A humidity chamber is used for keeping the samples
for one day from the setting, where the temperature range is maintained as 20–21 ◦C
and humidity is about 96–97%. Ideal standard testing conditions (T = 20 ◦C and Relative
humidity = 100%, with water immerged sample) were also used for samples after the
completion of the primary stage. The conditions were maintained until the testing duration
(7 and 28 days).

The complete procedure of testing has been shown in Figure 3. The procedure
involves the collection of constituents, and the mixing, pouring, curing, and test-
ing process to complete the procedure. The prepared sample was put to the test for
two different types of concrete tests: fresh concrete and secondly hardened concrete.
The slump test and the compaction factor test are two primary tests. Secondary testing,
on the other hand, includes the compressive strength test (Make: Aimil CTM IS: 14858
(2000) with an accuracy of ±1%) and the flexural strength test (Make: Aimil FTM, IS 516
BS1881, with an accuracy of ±1%). For strength testing, a compression testing machine
with a capacity of 2000 KN was used. The ASTM standards were used to conduct the
slump test while compaction factor has been determined based on IS1199:1999 stan-
dards. Similarly, compression strength test was performed with standards ASTME-9
while flexural strength test was performed with standards ASTMC-293. The average
of three tests has been calculated for the average compression strength and average
flexural strength.
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3. Results and Discussion

To check the feasibility in construction and other applications, both waste materials
have undergone extensive characterizations. The sample of SF was taken from the local site
of the Hisar (Haryana) region of India. The sample was cleaned properly and put into the
oven at 150 ◦C for removal of the moisture content prior from being used in the different
laboratory level tests. It looks like grey powder to the naked eye, as seen in Figure 4a. In
the instance of waste glass powder, however, white transparent bottles were collected and
properly cleansed with clean water. With the use of a roller ball mill, clean bottles were
crushed and finely ground into powder for up to 1 h, and the powder form of waste glass
was stored in a separate bucket. Figure 4b depicts the true image of WGP, which includes a
crushed bottle and a powdered form of glass. The WGP appears to be a pure white powder,
according to the researchers. In the basic concrete, this WGP and silica fume are utilised to
substitute cement.

To measure the fineness or particles size of the materials, sieve analysis has been done.
The particle size distribution of both waste items is determined using a mechanical sieve
shaker. Standard sieves of brass with a metallic net of different grades are used. The sieves
are arranged in such a way that the pan collects finer particles. Figure 5a,b illustrate the
detailed particle size distributions of silica fume and WGP, respectively. It was discovered
that over 70% of silica fume particles were finer than 0.10 microns and approximately 96%
were finer than 0.30 microns. While around 48 percent of WGP particles are finer than
45 microns and approximately 40% are finer than 32 microns. For testing reasons, the finest
form of particles (0.1 µm) were deposited separately and used to substitute cement in
the concrete.
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The morphology of these waste items is also studied using the finest particles or the
particles collected through PAN by using the ASTM D422 standard. The morphology and
elemental content of the materials were studied using a scanning electron microscopy-
energy dispersive X-ray spectroscope (Model: JEOL, 6510 LV). Figure 6a,b show SEM
images of silica fume and WGP, respectively.
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Both materials’ particles have a smooth surface morphology, according to the findings.
In comparison to smooth spherical, agglomerated particles of silica fume, WGP particles
are shredded, uneven, and angular in shape.

The elemental composition of materials is determined with an energy-dispersive
X-ray spectroscope (EDS). Figure 7a,b show the exact chemical compositions of silica
fume and WGP. The silica fume powder was found to be predominantly enriched with
silica (SiO2), with a tiny fraction of CaO and C having a marginal 2.06% LOI. CaO has
1.92 percent and C has 1.12 percent, while Na2O, MgO, K2O, Al2O3, and other oxides
have 2.02 percent.
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In the instance of WGP, it was revealed that the powder is primarily enriched with silica
and calcium, with modest amounts of Na and Al. Both materials were found to be mostly
enriched in amorphous silica (SiO2), which has a high specific surface area. They can react
with portlandite and exhibit pozzolanic properties under these conditions [14,15,18,25].
This could lead to the use of both elements in concrete in place of expensive cement.

XRD characterization of the powders was performed with the specifications utilising
monochromatic Cu K-radiation operating at 50 kV and 80 mA to explore the availability of
phases in the materials. For the testing, a Philips X-ray diffraction with an angular speed of
2◦/min and a step of 0.02◦ was used. During the testing, the temperature range for two
was 4◦–60◦. In Figure 8, an XRD pattern of silica fume is depicted. (a) A single intense
peak is observed around 21.6◦, which confirmed the presence of silica fumes [38]. The
presence of a broad peak demonstrated that the silica fumes used in this research work
are amorphous because silica fumes are composed of silica, which is non-crystalline [25].
Therefore, a broad peak is reflected in the XRD pattern. The XRD pattern of waste glass
powder, on the other hand, is likewise shown in Figure 7b. The amorphous nature, which
is characteristic of glassy materials, is also blamed for the large, diffracted peaks. The WGP
does not contain any high peaks; rather, a widespread diffraction peak between 20◦ and
40◦ was found, indicating the presence of a glassy phase. The highest peak of SiO2 was
found at 27◦, while the maximum peak of CaO was found between 23◦ and 35◦. A previous
study has provided similar results [17].

FTIR transmission spectrum of silica fume and WGP are shown in Figure 9. This
measurement was carried out to demonstrate the characteristics of chemical bonding.
As discussed in the XRD analysis that silica is the major content of silica fumes, hence,
characteristic peaks of silica are observed in the FTIR spectrum. The Si–O–Si asymmetric
stretching bonding is responsible for the exceptionally strong absorption band detected
around 1085 cm−1. This band is not only very bright, but it also has asymmetric bands
that can be used as a diagnostic sign for the presence of silica in a sample. The band
seen at 486 cm−1 is linked to the bending vibration of the O–Si–O bond. Furthermore, the
719 cm−1 band is caused by in-plane bending vibrations of Si–O bonds [25]. The FTIR
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spectra of glass waste revealed a broad and intense band at 1085 cm−1, which corresponds
to the Si–O asymmetric stretching vibrations in the SiO4 tetrahedral groups, and another
at 485 cm−1, which corresponds to the O–Si–O bending vibrations in the SiO4 groups. A
broad band was detected at 1646 and 3450 cm−1, respectively, ascribed to the δ–H–O–H
and reticular v-OH functional groups.
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One of the most important features of concrete mix design is workability, which is
the time and work it takes to handle, install, compact, and finish new concrete. Slump,
mini-slump flow, and slump flow tests are the most common procedures for testing the
workability of concrete. The most essential factor in determining workability is the amount
of water present. Slump tests were performed on both samples in this investigation. The
slump test and compaction factor test were performed independently for each mix design
of the concrete sample before the other tests.

Figure 10 depicts the impact of replacement on workability, slump flow, and com-
paction factor. In the case of silica fume, it has been observed that the slump decreases as
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the percentage of silica fume replaced in the concrete increases. In concrete, it has been
noticed that as the percentage replacements of silica fume increase from 0% to 15%, the
slump flow decreases from 50 mm to 45 mm. With an increase in percentage substitutions
of silica fume in concrete, the result indicates a declining trend in workability. With a
rise in percentage substitutions of silica fume in concrete, the slump value, as well as
the compression factor, lowers. Because of its large surface area, silica fume with a high
percentage reduces workability [39]. This could be due to the small particle size, which
allows a lot of water to absorb on the surface [39].
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Furthermore, silica fume’s spherical form reduces water absorption; antiparticle fric-
tion is reduced since the particles serve as little bearings. The water-reducing ingredient
is widely used with silica fume in order for it to compact easily with cement grains and
act as a lubricant [40,41]. However, compared to silica fume, the replacement of WGP
has a negative effect on workability. It appears that workability improves as the ratio of
WGP replacement in concrete increases. The slump value, as well as the compaction factor,
improves as the percentage of WGP in the concrete is increased. The slump flow in concrete
increases from 50 mm to 60 mm as the percentage replacement of WGP increases from 0
to 15%. With an increase in the substitution of WGP in basic concrete, a rising trend in
workability was noticed.

According to the findings, the slump flow of concrete containing glass powder as a
replacement for cement increases as the glass powder content increases. The glassy surface
and low water absorption behaviour of glass powder could cause an increase in slump.
Furthermore, glass powder has coarse particles when compared to cement, which may
have led to the increase in a slump. Glass powder has a lower water absorption rate and
a smoother texture than cement particles, which increases workability [42–44]. Another
explanation for the increase in workability is the dilution of the cement. Because of the
aforementioned reasons, cement hydration products grow more slowly in the early minutes.
As a result, there are not enough products on the market that combine various particles.
The overall surface area of the cement and glass powder mixture is reduced because glass
powder has a lower specific surface area than cement [45–49].

As a result of the reduced water demand for particle surface lubrication, the slump
flow increases. On the other hand, the value of the compaction factor is found as 0.86 to 0.9
for WGP and 0.92 to 0.86 for silica fume concerning the replacement of 0 to 15% waste from
basic concrete. The compaction factor of concrete decreases with an increase in percentage
replacements of silica fume in it, while in the case of WGP it shows a different or opposite
trend as shown in Figure 10b.

Following initial testing, each sample was evaluated for compressive and flexural
strengths. When compared to other samples, the WMx-3 sample is expected to have a
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higher or maximum Compress (WMx-0, 1, and 2). Similarly, when compared to other
samples, the SMx-3 sample has a greater or maximum compressive strength (SMx-0, 1,
and 2). The results show that when 15% of the cement in both samples is replaced, the
compressive strength of the concrete increases.

When compared to any of the WMx samples, the maximum compressive strength was
found in samples SMx-3 (24.44 N/mm2) for 7 days and SMx-3 (32.69 N/mm2) for 28 days.
It was discovered that when adding 15% WGP, the average compressive strength improves
by approximately 31% in 7 days and 16.5 percent in 28 days, while adding 15% silica fume,
the average compressive strength increases by approximately 46% in 7 days and 16% in
28 days, respectively. Mx-0 < Mx-1 < Mx-2 < Mx-3. Figure 11 depicts the variation in the
average compressive strength of different samples and periods. The results showed that
both waste products may be used to replace cement to a maximum of 15%. When compared
to WGP, however, a sample of silica fume had the highest compressive strength. This could
be attributed to the pozzolanic characteristics of silica fume [50–56].

Materials 2022, 15, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 11. (a) Silica fume, (b) WGP, and (c) comparison of both waste products variation in average 
compressive strength of different samples and durations. 

For the flexural strength test, a similar set of trials was carried out. The average 
flexural strength of different samples and durations is shown in Figure 12. The flexural 
strength of concrete containing 15% waste material is higher than that of the reference 
concrete, as can be shown. In comparison to the no-replacement case, the highest increase 
in AFS was found when 15% of the cement was replaced with waste materials (WGP and 
silica fume). The increase in AFS of the WGP (WMx-3) sample was determined to be ap-
proximately 26 percent at the age of 7 days, and about 15.2 percent at the age of 28 days. 
Similarly, the increase in AFS of the silica fume (WMx-3) sample was determined to be 
around 95 percent at the age of 7 days, and approximately 68 percent at the age of 28 
days. For both waste sources, the order of increasing AFS in the concrete sample is as 
follows: Mx-0 < Mx-1 < Mx-2 < Mx-3. The maximum replacement (15%) of cement from 
WGP exhibits the greatest improvement in AFS, according to the findings. It was also 
discovered that the improvement in the AFS for silica fume samples is substantially more 
than for the tougher WGP sample. The findings show comparable patterns to those seen 
in the research [8,13]. 

Figure 11. (a) Silica fume, (b) WGP, and (c) comparison of both waste products variation in average
compressive strength of different samples and durations.

For the flexural strength test, a similar set of trials was carried out. The average
flexural strength of different samples and durations is shown in Figure 12. The flexural
strength of concrete containing 15% waste material is higher than that of the reference
concrete, as can be shown. In comparison to the no-replacement case, the highest increase
in AFS was found when 15% of the cement was replaced with waste materials (WGP
and silica fume). The increase in AFS of the WGP (WMx-3) sample was determined to
be approximately 26 percent at the age of 7 days, and about 15.2 percent at the age of
28 days. Similarly, the increase in AFS of the silica fume (WMx-3) sample was determined
to be around 95 percent at the age of 7 days, and approximately 68 percent at the age of
28 days. For both waste sources, the order of increasing AFS in the concrete sample is as
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follows: Mx-0 < Mx-1 < Mx-2 < Mx-3. The maximum replacement (15%) of cement from
WGP exhibits the greatest improvement in AFS, according to the findings. It was also
discovered that the improvement in the AFS for silica fume samples is substantially more
than for the tougher WGP sample. The findings show comparable patterns to those seen in
the research [8,13].
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According to the findings, the value of both strengths (CS and FS) is lower in the
curing age of 7 days compared to the curing age of 28 days for both waste materials.
During the investigation, however, the variation in increments was also noticed. The rate of
improvement in the concrete’s compressive and flexural strength was substantially faster
in the 7-day instance than in the 28-day example. The strength (CS and FS) of concrete
improves with the curing age or time for any single design group, but at a slower rate
than at the beginning. This could be owing to the waste materials’ delayed pozzolanic
reactivity [10,16].

4. Conclusions

In this present work, the compressive strength of concrete was found to be increased
with the incorporation of WGP and silica fume. In addition, the compressive strength
and hardness of concrete were also affected by altering the waste material weight ratio.
It was observed that after replacing 15% of the WGP, the average compressive strength
of concrete rose by 31% after 7 days and by 16.5% after 28 days. In the case of 7 days,
approximately 46% of the average compressive strength increases with the addition of
15% silica fume, while the improvement is 16% in the case of 28 days. When 15% of
the concrete was replaced with silica fume, the improvement in concrete strength was
substantially higher than when the same quantity of concrete was replaced with WGP. The
slump value and compaction factor of both waste materials show opposite trends; in silica
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fume the value of the slump and compaction factor decreases with the replacements, which
shows less workability, while in case of WGP, both values increase and are responsible
for the good workability. Both the waste materials show better chemical bonding and
pozzolanic properties with the replacements, that further tends to make them suitable for
better alternative of cement in concrete. Hence, it was concluded that concrete strength
increased with the replacement of cement content from WGP and silica fume.
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