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Abstract: The present study is intended to develop and test a cost-effective and efficient printing
method for fabricating flexible metamaterial film with high electromagnetic wave absorptivity. The
film can be easily applied to the surfaces with curved aspects. Firstly, numerical parametric study
of the absorption characteristics of the film is performed for the range of frequency varying from
2.0 to 9.0 GHz based on commercial software package. Secondly, the flexible metamaterial films
are fabricated, and experiments are conducted. The flexible metamaterial film consists of a flexible
dielectric film made of polyimide (PI) and an array of split-ring resonators. The split-ring resonators of
different geometric dimensions are fabricated on the PI film surface by using a silver nanoparticles ink
jet printer. The performance of the flexible structure is then measured and dependence of operation
frequency with higher absorptivity on the dimensions of the split-ring resonators is investigated. A
comparison between the numerical and experimental data shows that the numerical predictions of
the operation frequency with higher absorptivity closely agree with the experimental data.

Keywords: flexible metamaterial structure; manufacturing; numerical simulation; experiments;
electromagnetic wave absorption

1. Introduction

Metamaterials are unique structures which have negative permittivity and negative
magnetic permeability, as originally described by Veselago [1]. Their electromagnetic wave
absorption may reach a high value if the structures are properly designed. A metamaterial
absorber mainly consists of three layers: (1) an array of periodically arranged metallic
patterns, (2) a dielectric layer and (3) a continuous metallic layer. The array of metallic
patterns is used for minimizing the reflectance of electromagnetic (EM) waves by impedance
matching with incident medium. By placing the array of metallic patterns on the dielectric
layer, both negative permittivity and negative permeability may be yielded. The continuous
metallic layer is used to hinder the transmission. However, if the transmission is allowed,
the continuous metallic layer may not be necessary. The characteristic length of the structure
has a subtle influence on the wavelength of the absorbed electromagnetic wave. The
complex structure may then be treated as a homogeneous medium based on the effective-
medium theory [2], with which the effective EM properties can be determined. Numerous
existing studies, to name a few, Shelby et al. [3] and Cho et al. [4], have already proven that
the native refractive index can indeed be realized practically by implementing a periodic
metallic array on semiconductor.

Metamaterials can be applied in a number of engineering applications such as EM
wave absorber [5–8], electromagnetic wave cloaking [9], super-lenses [10], filter [11],
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antenna [12], shielding the electromagnetic wave [13], solar cell [14], and so on. The
feature of increasing the electromagnetic wave absorption can be employed in stealth
technology, and the shielding effects is critical to the protection of human body from the
electromagnetic field in natural environment. Winson et al. [5] studied a hybrid broadband
radar absorber by using metamaterial and graphene. Authors performed numerical sim-
ulation of the EM wave from 1 to 60 GHz, and they also conducted experiments on the
absorptivity from 9.9 to 10.2 GHz and found an absorptivity of 96.05%. Mondal et al. [13]
designed a structure of metamaterial which can used in microwave shielding applications.
Their simulation results showed strong electromagnetic interference shielding effectiveness
(SE). One of their test cases reached 99% in absorptivity of the polluting electromagnetic
wave in the X- and Ku-band frequency ranges.

On the other hand, it has been recognized that the geometry of the periodic metallic
array patterns exhibits remarkable effects on the operation frequency and the absorptivity.
Therefore, the attention of the related researchers has been drawn to the effects of a variety
of the geometry such as split-ring resonators [15,16], flower-shaped structure [17], fishnet-
shaped structure [18,19], lumped elements [20] and many more [21–23].

It is also important to note that in these existing reports [3–22], the metamaterials
structures were basically nonflexible such that they could not be applied to the surfaces
with curved aspects. Unfortunately, only a few studies took the flexible structure into
account. For example, Yoo et al. [23] used a planar and flexible dielectric Teflon layer to
make the metamaterial and obtained the low-frequency perfect absorption with very small
unit-cell size in snake-shape structure. Zheng et al. [24] developed a flexible metamaterial
absorber with two resonators and four resonances located in GHz and THz ranges. They
used a sandwich microstructure consisting of periodic metallic patches on a metasurface,
a dielectric of FR4 board on the interlayer, and a continuous copper film on the substrate.
More recently, Zhao et al. [25] developed a transparent flexible metamaterial absorber
(MMA), consisting of a multilayered structure with a transparent polyvinyl chloride layer
and a periodic indium-tin-oxide patch array attached to a polyethylene terephthalate
film layer.

A metamaterial absorber is a type of metamaterial intended to efficiently absorb elec-
tromagnetic radiation, as has already been discussed in Refs. [1–25]. The metamaterials are
those in which the resonant state with significant changes in electromagnetic responses and
thus producing extreme values of effective permittivity and permeability within a range
about the resonant frequency. Such metamaterials enabled advancements in the fields of
electromagnetics. It has been found that the effective permittivity and permeability can
be engineered to create high absorption by manipulating resonances to absorb both the
incident electric and magnetic field. The present study aims to develop a cost-effective and
efficient fabrication method for the flexible metamaterial structures with high electromag-
netic wave absorptivity. The structure mainly consists of a flexible dielectric layer made of
polyimide (PI) and an array of split-ring resonators. The split-ring resonators of different
geometric dimensions can be easily printed on the PI layer by using a silver nanoparticles
ink jet printer. Therefore, the costly fabrication process for the split-ring resonators can
be replaced with the printing method. Numerical simulation and experiments on the
absorption characteristics of the film are performed within the range from 2.0 to 9.0 GHz.

2. Flexible Metamaterial Film with Array of Silver Split-Ring Resonators

The flexible metamaterial film with array of silver split-ring resonators is shown
in Figure 1a. The silver rectangle-shaped patterns are printed on one surface of the PI
layer. The thickness of the PI film is 125 m, and the thickness of the silver patterns 17 µm.
Figure 1b illustrates a unit cell and the notations of its dimensions. The array is arranged
with a spacing of 2C between two patterns and the size of each pattern is Lp × Lp. The
thickness of the wire is W and the split gap D. The geometric parameters (Lp, C, D and W)
of the structure are adjusted in a numerical parametric study to achieve higher absorptivity.
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Figure 1. Flexible metamaterial structure. (a) Metamaterial film, (b) Unit cell and its dimensions.

3. Numerical Methods

The Materials and Methods should be described with sufficient details to allow others
to replicate and build on the published results. Please note that the publication of your
manuscript implies that you must make all materials, data, computer code, and protocols
associated with the publication available to readers. Please disclose at the submission stage
any restrictions on the availability of materials or information. New methods and protocols
should be described in detail while well-established methods can be briefly described and
appropriately cited.

3.1. Mathematical Equations

The numerical simulation is performed based on a commercial software package.
However, in this section the mathematical equations are described briefly. The relation
between permittivity and permeability are described with dispersion relation [26]. In
electromagnetic theory, these two basic parameters are essential to the propagation of
the electromagnetic waves, which can be governed by the Maxwell’s equations which
combining the Faraday’s law, Ampere’s law, Gauss’s law and Gauss’s law for magnetism as

∇×
⇀
E = −∂

⇀
B

∂t
(1)

∇×
⇀
H =

⇀
J +

∂
⇀
D

∂t
(2)
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∇·
⇀
D = ρ (3)

∇·
⇀
B = 0 (4)

where
⇀
E is the electric field intensity (V/m),

⇀
D the electric flux density (C/m2),

⇀
H the

magnetic field intensity (A/m),
⇀
B the magnetic flux density (T),

⇀
J the current density

(A/m2) and ρ the electric charge density (C/m3).
To understand electromagnetic phenomena, it is essential to solve Maxwell’s equations

numerically. In the frequency domain, Maxwell’s equations reduce to

∇× µr
−1
(
∇×

→
E
)
− k2

(
εr −

iσ
ωε0

)→
E = 0 (5)

where ω is frequency of wave, k wave number determined with k = ω
√

ε0µ0 = ω/c, in
which ε0 is the vacuum permittivity, µ0 is the vacuum permeability and c is the speed
of light which equals 2.9979 × 108 m/s. In addition, εr, µr, and σ are the relative per-
mittivity, relative permeability, and electrical conductivity, respectively. For a simple
two-dimensional problem, theoretical approach for analytically solving the above equa-
tions was presented in two dimensions by Gric et al. [27]. However, in the present three-
dimensional simulation, a three-dimensional finite element frequency domain analysis for
solution of Equation (5) is performed based on the framework of a commercial software
package, COMSOL.

3.2. Physical Model and Boundary Conditions

Figure 2 shows the physical model and the boundary conditions. To simplify the
model, the solution domain includes only a unit cell of metamaterials and the upper and
lower air spaces. As plotted in in Figure 2, Plane 1 is set to be the top incident surface
where an incoming 1-W TE wave is emitted toward the cell. Plane 2 is located beneath the
unit cell which receives the transmitted electromagnetic energy.
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The vertical faces around the structure are set to be Floquet periodic boundaries such
that the waves are transposed from the source to destination boundary with the appropriate
phase shift. The unit cell of metamaterial is placed on the polyimide film. The direction of
the incident waves is normal to the metamaterial surface. The electric and magnetic field
can be discretized into two polarizations with field normal to the boundary. Continuity
boundary condition is applied at all inner interfaces.

S-parameters are calculated and used as measure of reflected power and transmitted
power in a network as a function of frequency.

S11 =

√
E1,r√
E1,i

(6)

S21 =

√
E2,t√
E1,i

(7)

where S11 is the reflection coefficient and S21 is the transmission coefficient, in which E1,i is
power emitted from plane 1, E1,r is power reflected from metamaterial structure and back
to plane 1, and E2,t is power transmitted through metamaterial and received by plane 2. By
Kirchhoff’s radiation law, absorptivity (α) in this case is determined by

α(ω) = 1−
∣∣S11

∣∣2 − ∣∣S21
∣∣2 (8)

For a metamaterial having a third continuous metallic layer that will block the EM
wave and result in no transmission through the structure,

∣∣S21
∣∣→ 0 , and hence

α(ω) = 1−
∣∣S11

∣∣2 (9)

3.3. Numerical Parametric Study

The effects of geometric parameters (Lp, C, D and W) are evaluated by using the
numerical method. Dependence of absorptivity on frequency at specific combinations of
the geometric parameters is investigated. Herein, three baseline split-ring resonators (SRR1,
SRR2 and SRR3) are considered firstly, and their dimensions are given in Figure 3. The sizes
of the test cases are assigned to be 5 mm with SRR1, 6 mm with SRR2 and 7 mm with SRR3.
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Figure 4 shows the dependence of absorptivity on the frequency of the EM wave for
case SRR2. In the present study, Equation (8) is used to calculate the absorptivity of the
metamaterial structure. It is found that for this case the maximum absorptivity reaches 0.99
at around 5.3 GHz and minimum absorptivity 0.43 at 3.7 GHz. Apparently, for SRR2, the
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operation frequency ought to be 5.3 GHz. Furthermore, similar analysis depicts that the
operation frequencies for SRR1 and SRR2 are 6.5 GHz and 4.3 GHz, respectively.
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Figure 4. Absorptivity vs frequency, for SRR2.

To obtain a deeper insight into the electromagnetic fields for the three baseline cases at
their respective operation frequencies, Table 1 conveys the distributions of the magnitudes
of electric field intensity, magnetic field intensity, and magnetic energy density for SRR1 at
6.5 GHz, SRR2 at 5.3 GHz, and SRR3 at 4.3 GHz individually. This table basically provides
the numerical predictions of effects of size (Lp) on the electromagnetic resonance in the
metamaterial structures. It is noted that for all the cases, higher electric field intensity is
found within the slit at the center. It is because the effect of electric field concentration
occurs within the slit, mainly in the dielectric layer, and the free electrons in the conductor
collectively resonate and couple with the external electromagnetic wave to generate an
enhanced electric field. As the size of the split-ring resonator becomes smaller, both the
intensities in electric and magnetic fields become higher. Furthermore, stronger magnetic
field intensity or energy is distributed along the perimeter of the rectangle. The distribution
of magnitude of magnetic field intensity is bilaterally symmetric with respect to the vertical
central line and nearly forms a cycle in magnetic field.

Next, the parametric study is extended to cover more general cases. Table 2 displays a
part of numerical predictions of the operation frequency with different combinations of the
geometric parameters. Note that in the parametric study, as one parameter is varied, the
other three parameters are fixed. The effects of each geometric parameter can be observed
according to the numerical data provided. It is found that an increase in Lp leads to a
decrease in the operation frequency. However, on the contrary, the operation frequency
increases when the dimension of C, D or W is elevated. For the cases considered in this table,
the operation frequency ranges between 4.2 and 5.8 GHz. It is noticed that an adjustment in
the geometric parameters could alter the operation frequency of the metamaterial structure.
The dependence of operation frequency with higher absorptivity on the dimensions of the
split-ring resonators is actually essential for optimization of the patterns. However, since
the combined influence of the geometric parameters is rather complicated, further study of
this issue is still necessary.
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Table 1. Numerical predictions of electromagnetic fields for the test cases.

Lp= 5 mm at 6.5 GHz
(SRR1)

Lp= 6 mm at 5.3 GHz
(SRR2)

Lp= 7 mm 4.3 GHz
(SRR3)

Magnitude of electric
field intensity

[V/m]
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4. Experimental Methods

The split-ring resonators of different geometric dimensions are fabricated on the PI
film surface by using a silver nanoparticles ink jet printer. When necessary, an electromag-
netically transparent protective layer may be sprayed on the surface for resisting oxidation,
abrasion and dirt. The thicknesses of the PI film and the split-ring resonators are 125 and
17 µm, respectively. The temperature-resistant PI film is able to endure a temperature up
to 400 ◦C. Figure 5 gives the photographs of the fabricated products. The three baseline
split-ring resonators are shown in Figure 5a.
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The silver nanoparticles ink jet printing process is selected in this study since it is
efficient, simple, and inexpensive for printing the patterns on flexible materials such as
PI film. Besides, during the printing process no chemical waste is generated, and thus
no post-processing costs are required. The silver particle agglomeration can be improved
by using dispersants, surfactants, and polymers in order to have a jetting of high quality.
The patterns are fabricated by inkjet printing technique using Fujifilm Dimatix printer
(DMP 2850) shown in Figure 6. The printer uses piezoelectric inkjet technology which
allows depositing fluids materials on substrate. The silver nanoparticle ink is required to be
sonicated around 15 min to avoid the agglomerate between the particles. The fluid (~3 mL)
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is then placed into the cartridge with a syringe, a needle and 0.2 m filter. The filter is used
to filter out the particles that are bigger than 0.2 m to prevent the nozzle head clog.
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Figure 6. Silver nanoparticles ink jet printer.

Schematic of the experimental system is illustrated in Figure 7a and the photograph
of the vector network analysis is given in Figure 7b. The vector network analyzer, Rohde
& Schwarz ZNB8 VNA, which produces microwave in the frequency range of 2~8.5 GHz
is adopted to measure the network scattering parameters (S-parameters). The equipment
enables the RF transmission between the transmitting and the receiving antennas. The
SRR specimens are placed in between the two antennas. Note that getting the calibration
plane dialed in correctly is the most crucial step in matching the network design. A poor
calibration can result in significantly different results. The characteristics of the three
fabricated SRRs are then measured and dependence of operation frequency with higher
absorptivity on the dimensions of the split-ring resonators is investigated. Due to the
limitation of the experimental system, the experimental chamber is not isolated perfectly
and hence, over the air (OTA) testing is conducted to find the operation frequency with
maximum absorptivity.
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Figure 7. Experimental apparatus. (a) Schematic of experimental system, (b) Vector network analyzer.

The measured quantity from the vector network analyzer is the transmission coeffi-
cient, S21. Then, based on the obtained results of S21, a logarithmic transmission coefficient,
S21 can be further obtained as

S21 = 20 log
∣∣S21

∣∣ (10)

where S21 is in decibels (dB).

5. Experimental Results and Discussion

Figure 8 shows the experimental results of S21 versus frequency for the case SRR1,
whose size is 5 mm, under the inevitable indoor noise. Nonetheless, in this figure the
transmission coefficient for the PI film without the pattern array is also provided for
reference. In comparison between the two curves with and without the printed patterns,
one can find a significant drop for the curve with SRR1 at 6.6 GHz. As the value of S21 at
this frequency is introduced into Equations (8) and (10), one can obtained the maximum
absorptivity of 97.45%.
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Plotted in Figure 9 is the transmission coefficient for SRR2 with pattern size of 6 mm.
For this particular case, the negative peak of S21 is found at frequency of 5.4 GHz. The
negative peak transmission coefficient yields a maximum absorptivity of 96.6%.
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Similar results for SRR3 with pattern size of 7 mm are conveyed in Figure 10. It is
clearly seen that the negative peak of the transmission coefficient is −54.7 dB at 4.3 GHz
and the maximum absorptivity is 99.8% at this frequency.
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In Figures 8–10, the spectrums corresponding to the pure PI film without SRRs are
also provided using the red-dot curves in respective figures to show the influences of
the existence of SRRs. One thus can see clearly the contribution from the SRR structure
itself. The separate plots may be helpful for the difference between the PI film with and
without SRRs. Therefore, In Figure 11, three plots, Figure 11a–c, are provided to display
the difference for cases with SRR1, SRR2 and SRR3, respectively.
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Table 3 summarizes the comparison in operation frequency between the numerical
and the experimental data. Again, it is seen that an increase in pattern size results in a
decrease in the operation frequency. In this table, the trends of the two sets of data closely
agree with each other.

Table 3. Comparison between numerical and experimental data in operation frequency.

Case
Operation Frequency [GHz]

Numerical Simulation Experiments

SRR1 6.5 6.6
SRR2 5.3 5.4
SRR3 4.3 4.3

6. Conclusions

A cost-effective and efficient fabrication method for the flexible metamaterial structures
with high electromagnetic wave absorptivity is developed and tested in this study. The
structure mainly consists of a flexible dielectric layer made of polyimide (PI) and an array
of split-ring resonators. The split-ring resonators of different geometric dimensions can
be easily printed on the PI layer by using a silver nanoparticles ink jet printer. Therefore,
the costly fabrication process for the split-ring resonators can be replaced with printing
method. Numerical simulation and experiments on the absorption characteristics of the
film are performed within the range from 2.0 to 9.0 GHz.

It is noticed that an adjustment in the geometric parameters could alter the operation
frequency of the metamaterial structure. An increase in pattern size results in a decrease
in the operation frequency. For investigating the size effects, three baseline split-ring
resonators, SRR1, SRR2 and SRR3, are fabricated and measurements are conducted. Experi-
mental results show that as the pattern size Lp is increased from 5 to 7 mm, the operation
frequency with higher absorptivity is decreased from 6.6 to 4.3 GHz. For the three particular
cases, the absorptivity can reach 96.6~99.8%. A comparison between the numerical and
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experimental data shows that the numerical predictions of the operation frequency with
higher absorptivity closely agree with the experimental data.

However, when more dimensions, such as C, D or W, are taken into consideration, nu-
merical predictions show that the operation frequency may increase with these dimensions.
It implies that the combined influence of the geometric parameters is rather complicated
and further study of this issue is still necessary.
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