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Abstract: Experimental and theoretical studies were carried out on the dynamic deformation and
penetration response characteristics of metal ellipsoidal thin curved shells under impact loads. The
deformation characteristics of the impacted ellipsoid shell was investigated via the use of a light
gas gun to carry out impact loading experiments at different speeds. Ten cases of experiments
were conducted with the impact velocities distributed between 25.69 m/s and 118.97 m/s. Stereo
digital image correlation (3D-DIC) technology was applied to capture the dynamic deformation and
penetration process of the impacted shell. The recovered shells were measured, and the deformation
characteristics were analyzed, along with the dynamic evolution, as observed through 3D-DIC
analysis. Based on the experimental results, the displacement mode was summarized and the
displacement distribution of the locally impacted ellipsoid shell was proposed. The governing
equations were derived for the dynamic deformation and penetration of the impacted ellipsoid shell
by means of the Lagrange equation. The proposed theoretical model was verified based on the
experimental results. Finally, the influence of the curvature distribution on the impact resistance
of ellipsoidal shells is discussed. The results indicated that the proposed theoretical model was
effective in analyzing the large deformation and the penetration speed. Stretching the axial length
of the ellipsoid shell in the impact direction improved its resistance to penetration. Stretching the
axial length of the ellipsoid shell perpendicular to the impact direction improved its resistance to
deformation, but reduced its resistance to penetration. Maintaining the triaxial ratio and appropriately
reducing the size of the ellipsoidal shell improved its resistance to both deformation and penetration.
The above research provides a reference for the analysis of the impact resistance of thin-walled curved
shell structures in engineering.

Keywords: thin ellipsoidal shell; dynamic mechanical behavior; large deformation; lightweight
structures; metallic materials

1. Introduction

Thin curved shells are widely used in engineering practices such as aerospace, ships,
and civil engineering [1]. They are well designed before being applied according to the
requirements, except for some unexpected loading, such as impact. This has a significant
influence on the safety of thin curved shell structures. A typical impact load for the roofs
of large-scale buildings is the impact of a piece of hail during a severe weather event. In
extreme weather, hail stones can be very large, and their impact on the curved shell of
a roof may generate large deformation and even perforation of the shells of these roofs,
which can lead to safety incidents. This kind of unexpected impact load is also a large
threat in the field of aerospace engineering, such as impacts by birds, space debris, and
spare parts falling from spacecraft. Therefore, it is very important, with a high application
value, to investigate local large deformations and perforations of thin curved shells under
impact loads during the structural design stage.

Most corresponding investigations have been performed based on numerical simula-
tion and experiments [2–4], and it still has been frequently investigated in recent years [5].

Materials 2022, 15, 4124. https://doi.org/10.3390/ma15124124 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15124124
https://doi.org/10.3390/ma15124124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma15124124
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15124124?type=check_update&version=1


Materials 2022, 15, 4124 2 of 23

Experimental inventions need a good repeatability, which makes the time and economic
costs very high. Thus, experiments are always implemented to verify theoretical models
and engineering designs. Numerical methods can provide good repeatability and efficiency
in the investigation of the dynamic response of locally impacted thin curved shells. How-
ever, the accuracy of numerical simulation is governed by the size of the mesh employed.
The depressed deformation of the impacted thin curved shell shows a significant local
concentration in which the greatest part of the large deformation is limited to a narrow edge
region that propagates from the center to the final position of the depressed deformation.
Accurate simulation requires either a global fine mesh or an adaptive remesh, according to
the evolution of the deformation. Both of these methods will reduce the analysis efficiency
and make it difficult to provide efficient feedback for the engineering design. Therefore, it is
necessary to develop a theoretical model of the dynamic response of a locally impacted thin
curved shell to provide a more efficient, economic, and intuitive reference for the engineer-
ing design of curved shell structures. The locally distributed curvature can be represented
by an ellipsoidal surface. The reason is that the curved surface can be described by two
principle curvatures. The simplest way to describe this curvature distribution is using an
ellipsoid with different axial lengths representing different curvature radii. Therefore, a
theoretical model for the large deformation of an ellipsoidal shell is necessary in the design
of a thin free-curved shell considering the local impact loading applied in engineering.

A spherical shell is a special form of ellipsoidal shell, which has been applied as
a representation of a free-curved shell, in addition to direct applications in engineering
structures. The reason is that mean Gauss curvature majorly governs the stiffness of
curved shells [6]. Therefore, a curved shell could be represented by a spherical shell whose
curvature is similar to the mean Gauss curvature of the curved shell. As a typical thin
curved shell, spherical shells have been widely investigated in terms of their dynamic
responses. In 1972, Updike et al. performed a series of experiments on the dynamic response
of a semi-spherical shell under axial compression and drop weight impact loads [7–13]. The
deformation mode and energy absorption properties were obtained. The deformation of the
spherical shell was classified into a dimple region and edge region. In 1988, Pogorelov [14]
indicated that most of the deformation of a loaded spherical shell could be described
by means of an isometric transformation. The deformed part could be approximately
considered as the mirror of the original undeformed shell under local impact loading.
Based on this assumption of the deformation mode, the small deformation result was
solved for an elastic semi-spherical shell loaded by applying a concentrated force on top
of the shell. Based on this work, Ning et al. [15] conducted a series of experimental and
theoretical investigations on the elastic and plastic deformation of a shallow spherical shell
impacted by cylindrical projectiles. A displacement mode was proposed for the edge region
with a large deformation concentration, and the influence of the constitutive model was
also discussed. Li et al. [16] improved the displacement mode by considering the radial
displacement and analyzed the perforation response of the impacted shell. In addition,
the influence of parameters in the theoretical model on the deformation and perforation
response of the impacted shell was discussed. Recently, several works have focused on
the dynamic responses of spherical shells [17–20] and some composite structures related
to spherical shells [1]. However, the curvature of a spherical shell is homogeneously
distributed. A spherical shell can be applied as a local approximation of a free-curved
shell, but it is unable to show the influence of the curvature on the dynamic response of the
curved shell. It is difficult to represent the large local deformation of a free-curved shell
using a spherical shell.

Unlike a spherical shell, the curvature is not homogeneously distributed in the case
of an ellipsoidal shell. Therefore, an ellipsoidal shell can be used to represent the local
geometric properties of a free-curved shell. The local dynamic response of a complex curved
shell can be shown by examining the dynamic response of a similar ellipsoidal shell. In
addition, an ellipsoidal shell can be directly applied in engineering designs. Therefore, the
investigation of the dynamic response of an impacted ellipsoidal shell has more extensive
engineering application value. Currently, most investigations of ellipsoidal shells have
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been performed in the fields of forming, stability, and stress analysis. Bushnell [21] found
that the buckling response of the ellipsoidal head used in a pressure container was sensitive
to nonlinear geometric properties, which increased the buckling pressure, and nonlinear
material properties, which decreased the buckling pressure. Chao [22] explored the analysis
of the elastic stress of an ellipsoidal shell with a nozzle under inner pressure. The result
was obtained using a graphical solution, according to the stress concentration coefficients
of intersections based on dimensionless parameters. Błachut and Jaiswal [23] indicated
that defects in ellipsoidal shells had a strong influence on their buckling strength, using a
numerical method. The corresponding influence depended on the shape and location of
the defect. Smith and Błachut [24] investigated the buckling behaviors of outer-pressure-
loaded ellipsoidal shells made of steel by means of experiments and numerical simulations.
Magnucki et al. [25] discussed the influence of the thickness and shape of an ellipsoidal
head on the stress concentration coefficients of a pressure container design, combining
ellipsoidal and cylindrical shell structures. Zheng et al. [26] performed analyses on the
buckling properties of large thin ellipsoidal shell heads affected by defects generated
during welding. Vella et al. [6] indicated that the stiffness of an ellipsoidal shell depended
largely on its mean Gauss curvature, according to their theoretical analysis based on thin-
shell theory. Mansoor-Baghaei and Sadegh [27] provided the closed-form solution of an
elastic thin ellipsoidal shell impacting an elastic plate. The impact process was divided
into two parts—Hertzian deformation from contact and Reissner deformation caused by
membrane and bending effects. This was applied to the calculation of parameters such
as the maximum compressed deformation, the time, and the impact force. Some of the
above investigations were closely related to the dynamic behaviors of ellipsoidal shells.
However, few of them focused on the dynamic deformation and failure of impact-loaded
ellipsoidal shells. A theoretical model of the large elastic deformation of an impacted
ellipsoidal shell would have significant application value in engineering design and would
be considered an important reference for structural impact resistance design in relation
to complex curved shell structures. Investigations of theoretical models of the dynamic
deformation and perforation behaviors of impacted thin ellipsoidal shells are necessary
as such models have important applications in engineering design, including aerospace,
ships, and civil engineering.

In this study, a series of experimental and theoretical analyses was performed to
investigate the large dynamic deformation and perforation behavior of locally impacted
thin ellipsoidal aluminum shells. Based on the experimental measurements, the deforma-
tion characteristics were determined. This made it possible to describe the displacement
distribution in a clear and easy way similar to what was applied to a spherical shell in
our previous work [16]. According to the proposed displacement distribution, the strain
and curvature distributions were obtained by the local curved coordinates provided by the
theory of fields. Based on the Lagrangian equation, the theoretical model was obtained
for governing the large deformation of the ellipsoidal shell locally impacted in the normal
direction. The theoretical model was validated based on the experimental results. Moreover,
the influence of local curvature on the deformation and perforation resistance capability of
ellipsoidal shells was discussed. The results of this study could provide theoretical and
technical support for a free-curved shell design in protective engineering related to impact.

2. Experiments
2.1. Specimens and Experimental Method

A light gas gun was applied to launch the projectiles and to perform the impact
experiments on the dynamic response of thin ellipsoidal aluminum shells. The diameter of
the gun bore was 12.5 mm, and the projectile diameter was 12 mm. Sabot was not used in
the test. The highest pressure used in this series of test was 0.9 MPa, and the corresponding
launching speed was 118.97 m/s, which was the highest impact speed in this study. A
36.23 m/s impact velocity was achieved by a pressure of 0.1 MPa. A pressure lower than
0.1 MPa sometimes did not work. The velocity of 25.69 m/s was achieved by 0.17 MPa
launching, in which the projectile was pushed from the front of the gun to one-quarter
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length of the gun. The loading and test setup are shown in Figure 1. The fixture of the
impacted shell is shown in Figure 2. The boundary condition of the experiment was set as a
clamped boundary condition. The edge of the shell was a flat surface of about 40 mm wide,
as shown in Figure 2. This part of the shell was fixed between two pieces of 1 cm-thick
steel plates by many bolts through the holes in the plates and shells shown in Figure 2.
The steel plates were fixed by 6 bolts on the platform connected to the gas gun. This could
realize a good clamped boundary condition for the impacted shell. The ellipsoidal shell
used in the experiment was the top part of a complete ellipsoid in the axial direction of
c, which represented the minimum axis of the ellipsoid. The geometric properties of the
complete ellipsoid can be described by the relationship between the lengths of all three
axes, which were b : a : c = 300 mm : 200 mm : 100 mm, as applied in the experiments. The
ellipsoidal shell, which was a part of the complete ellipsoid, can be described by means of
the geometric parameters presented in Figure 2, and the corresponding values are given in
Table 1. In addition, the material properties of the ellipsoidal shell are shown in Table 1.
The data were given by the material list provided by the company that manufactures the
aluminum shells. The projectile used in the experiments was a cylinder made of AISI
1045 steel. The radius and length of all the projectiles were 6 mm and 45 mm, respectively.
The projectiles applied in this study were similar to what were used in our previous
investigation [16] for shallow spherical shells under impact loads.

Figure 1. Experimental setup.

Figure 2. Configuration and sizes of shells.

The MatchID system was used to perform the 3D-DIC measurements for the time-
histories of the dynamic response of the impacted ellipsoidal shells and to reconstruct the
displacement distribution during the evolution of the ellipsoidal shell deformation. The
two cameras used in the DIC measurements needed to be calibrated before the experimental
tests, as shown in Figure 3. A grid dot array was applied in the calibration process. A
group of figures from the grid dot array in different directions was captured by both
cameras, and the camera parameters were obtained via graphic matching and based on the
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distances between dots on the grid dot array. These graphical parameters were used in the
reconstruction provided by the 3D-DIC measurements.

Table 1. Geometric and material parameters of thin-walled metal ellipsoidal shells.

Parameter Value

L1(mm) 240
L2(mm) 160
L3(mm) 40

Elastic modulus E(GPa) 69
Mass density ρ(kg ·m−3) 2900

Poisson’s ratio ν 0.3
Yield strength σ0(GPa) 0.12

Figure 3. Calibration of DIC measurements.

2.2. Experimental Results and Analyses
2.2.1. Depressed Deformation Mode and Deformation Boundary Representation

Four deformation modes were observed on the ellipsoidal shells under local impact
loads. According to the shape of the depressed boundary, the deformation modes were
classified into four types, including a circular depressed deformation, ellipsoidal depressed
deformation, ellipsoidal depressed deformation with buckling in only one direction along
the short axis, and ellipsoidal depressed deformation with buckling in two directions along
the short axis. These four deformation modes are denoted Mode I, Mode II, Mode III, and
Mode IV, respectively, as shown in Figure 4.

Figure 4. Deformation mode and evolution of impacted ellipsoidal shell. (I) for mode I, (II) for mode
II, (III) for mode III and (IV) for mode IV. (b) indicates the evolution of the deformation mode III.
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The results presented in Table 2 showed that when the deformation was small, the
depressed deformation boundary of the ellipsoidal shell was elliptical Mode I without
buckling deformation. This was indicated by the deformation mode for high-velocity
impact. The deformation of the lowest velocity impact in the test was Mode II. An impact
at a lower velocity was not performed because it was very difficult for the utilized light
gas gun with almost a 10 m length. However, the impact at a very low velocity would
generate deformation Mode I because of the very small deformation generated by the
low-velocity impact. With the increase in the impact velocity, the deformation developed
from Mode I to Mode II, and with the gradual increase in the impact velocity, the depressed
deformation area gradually increased and the deformation mode further developed into
deformation Mode III, with bilateral buckling deformation along the short axis. When the
impact velocity further increased, the ellipsoidal shell was penetrated at a critical velocity
of 60.78 m/s–66.32 m/s. As shown in Figure 5, the deformation mode of the ellipsoidal
shell changed to Mode III after penetration, the depressed deformation area decreased
sharply with an increase in the impact velocity, and the deformation mode changed to
Mode I through Mode II.

Table 2. Deformation modes of impacted ellipsoidal shells.

Case No. v0(m/s) Modes Case No. v0(m/s) Modes

1 25.69 II 6 66.32 III
2 36.23 III 7 72.98 II
3 47.24 III 8 92.34 II
4 52.70 IV 9 104.94 I
5 60.78 IV 10 118.97 I

Figure 5. Dual axes of the dimple boundary that changed with impact velocities.

Figure 4b shows the development process of deformation Mode III. In the initial stage
of the impact load, the depression deformation was actually Mode II and remained Mode
II throughout the entire impact load process, that is the boundary of the deformation area
was elliptical. In the end stage of deformation development, the shape of the depression
deformation boundary suddenly lost stability, resulting in buckling deformation on the
minor axis side, and finally evolved into deformation Mode III. Deformation Mode IV
underwent a similar development process to that of deformation Mode III. However, for
deformation Mode I, there was no degradation process from an ellipse to a circle, and the
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deformation region boundary of the approximate circle was maintained throughout the
entire deformation development process.

The results of the static analysis and dynamic analysis of high-speed photography
showed that under the impact loads, only two deformation modes were observed in the
impacted ellipsoidal shell in the deformation development stage, namely the approximate
circular deformation (Mode I) in the small deformation stage and the elliptical deformation
(Mode II) in the continuous development process of the deformation. Although buckling
instability occurred in the case of the large deformation that generated deformation Modes
III and IV, the high-speed photography results of the deformation development process
showed that these two modes only changed the shape of depressed deformation and
had no significant influence on the size of the deformation area. When considering the
impact resistance of thin shell structures, the most important factors are the dimple depth,
dimple size, and ballistic limit of the thin shell under impact loading. The dimple size is
represented by the dimple width. The boundary of the depressed deflection was an ellipse,
and the size of this dimple deformation could be described by the long and short axes of
the elliptical boundary of the depressed deflection. Normally, dimple width is defined as
the short axis of the elliptical defect boundary. If the long axis is discussed at the same
time, a label is provided to mark each kind of axis. The largest deflection displacement
that occurred during the deformation was the deflection of the center of the shell. The
corresponding displacement was defined as the dimple depth. The buckling deformation
of the ellipsoidal shell had no considerable influence on the depth or size of the depressed
deformation. In addition, the main buckling came from the minor axis direction, and the
additional deformation caused by buckling was not prominent relative to the minor axis
of the deformation area, which had little impact on the geometric characteristics. This
introduced great convenience into the geometric description of the dynamic deformation of
the ellipsoidal shell under the impact load. In the theoretical analysis, it was not necessary
to consider deformation Modes III and IV. Moreover, the circular deformation boundary
was considered as a special case of the elliptical deformation boundary, which could thus
be described by means of the elliptical deformation characteristics. Therefore, the dynamic
deformation boundary characteristics of the ellipsoidal shell under local impact load could
be fully characterized by deformation Mode II.

On this basis, all the depressed deformation modes were approximated as ellipses, and
the characteristics of the major axis and minor axis of the depressed deformation boundary
were analyzed. The measurements were carried out for the static recovered test piece, and
the results are shown in Figure 5.

As shown in Figure 5, the results indicated that the ballistic limit of the locally im-
pacted ellipsoidal shell was between 60.78 m/s and 66.32 m/s. After being perforated, the
depressed deformation area of the ellipsoidal shell decreased sharply with the increase in
impact velocity. The results in Figure 5 show that before the ellipsoidal shell was perforated,
the ratio of the major axis to the minor axis of the ellipse of the depressed deformation
boundary was between 1.4 and 1.5, which was very close to the ratio of the major axis to the
minor axis of the original ellipsoidal shell. After the shell was perforated, with the increase
in impact velocity, the size of the dimple area decreased rapidly. At the same time, the
proportion of the long and short axes of the ellipse at the depressed deformation boundary
decreased rapidly from 1.5 to 1.0, which meant that the shape of the dimple boundary
changed rapidly from an ellipse into a circle. In terms of the deformation characteristics,
the ratio of the major and minor axes of the ellipse of the dimple boundary changed linearly
with respect to the impact velocity. Because the depressed deformation of the ellipsoidal
shell decreased rapidly after penetration, the residual velocity of the projectile was more
important than the depressed deformation characteristics for the impact resistance charac-
teristics of the ellipsoidal shell. Before penetration, the deformation characteristics of the
ellipsoidal shell played the most important roles in its impact resistance characteristics. The
experimental results showed that in the stage of significant deformation, the parameters
of the ellipse of the deformation boundary demonstrated outstanding characteristics and
the ratio of its major axis to its minor axis was very close to the biaxial ratio of the original
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ellipsoidal shell. With the increase in deformation, the ellipse of the depression boundary
approached the contour ellipse of the original ellipsoidal shell, which was a very important
feature, indicating that, in the process of large deformation depression and its development,
the depressed deformation boundary was almost in the same plane, and the ellipse of
the depression boundary had the same proportion of the major axis and the minor axis
as the ellipse of the ascending surface of the original ellipsoidal shell. This expressed a
very specific relationship of deformation characteristic parameters, which was used for
establishing the corresponding theoretical analysis model.

2.2.2. Characterization and Representation of Dimple Depth

Due to the obvious characteristics of the impact point on the ellipsoidal shell, it was
easy to statically measure the final deformation depth. However, it was difficult to obtain
the distribution of the dimple depth along a certain direction in order to statically measure
the recovered specimen. Manual measurement would introduce many uncertainties. If
the specimen was cut, it might cause the release of the residual deformation, and the
measured result would not show the depth distribution of the final deformed specimen. The
distribution of the dimple depth could be determined, on the other hand, by reconstructing
the deformed surface using the DIC method. The reliability of the results obtained from
the DIC test was verified by comparing the statically measured dimple depth with the DIC
results, and this comparison is shown in Figure 6. The measured data were obtained after
releasing the specimens from the fixtures. The constraint provided by the hoop strain had
a slight release, which generated a tiny release of the constrained elastic deformation. It
was considered as the reason why almost all DIC results were greater than the measured
data, as shown in Figure 6. The average difference between the measurement results of
the two measurement methods was 1.474 mm. This indicated that reliable dimple depth
distribution results could be obtained through the DIC testing.

Figure 6. Comparison between dimple depth captured via DIC and via the static measurement of
recovered specimens, which changed with impact velocities.

The DIC reconstructions of the experimental results are shown in the right-hand image
in Figure 6. Due to the influence of the curvature of the curved shell and the trajectory of
the projectile, the reconstruction of the displacement results exhibited many discontinuous
positions in the long-axis direction at different times in the impact process. Therefore, the
short-axis direction was selected to consider the displacement distribution measured using
the DIC. Combined with the evolution results of the depressed deformation boundary in the
impact process, the dimple boundary was located in the same plane before buckling, and
the dimple elliptical boundary had a curvature very close to that of the original ellipsoidal
shell. This can be observed in Figure 7. That meant that the dimple depth distribution in
the long-axis direction was similar to that in the short-axis direction. The dimple depth
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distribution in the long-axis direction could be obtained through analyzing the dimple
depth distribution in the short-axis direction.

Figure 7. Boundary shape of the depressed deformation.

Figure 8 shows the dimple depth distribution results in the minor-axis direction
obtained via DIC testing when the length of the minor semi-axis in the dimple area was
approximately 80 mm. In Figure 8, the section shape of the minor axis of the original
ellipsoidal shell and its mirror flip shape were observed at the same time. The comparison
between the DIC test results and the mirror flip shape showed that the actual deformation
did not conform to the mirror transformation in the range of 0 to 30 mm, whereas the
mirror transformation showed good agreement with the actual deformation in the range of
30 to 80 mm. That is, in most deformation areas, the dimple depth could be described by
referring to the mirror transformation of the original ellipsoidal shell, whereas for the small
central area, the dimple depth was almost linearly distributed in the minor-axis direction.
In a narrow area near the deformation boundary of the depression, the displacement
distribution had no significant characteristics.

Figure 8. Validation of isometric transformation.

According to the static measurement of the recovered specimens and the dynamic DIC
test results of the impacted ellipsoidal shell, the geometric characteristics of the depressed
deformation were obtained for the ellipsoidal shell under local dynamic impact loading.
In the case of large depressed deformation, the boundary of the deformation area was
almost in the same plane, and the shape of the dimple boundary was an oval. The long
and short axes of the elliptical dimple boundary were in the same proportion as the long
and short axes in the original ellipsoidal shell surface. In most areas of large deformation,
the distribution of dimple depth was the result of the mirror transformation of the original
ellipsoid. In a small part of the central area, the dimple depth was linearly distributed.
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This is summarized in Figure 8 in which the DIC results in the range of [−40, 0] were
almost linearly distributed. The results did not include data in the range of [−15, 0]
because it was covered by the projectile at the given time. There was a narrow edge
area at the depressed deformation boundary. The displacement of the edge area changed
significantly; however, it is not easily described as Region 2, and the displacement cannot be
directly obtained from the images. The experimental methodology included both the final
measurement of the recovered specimens and the dynamic evolution of the deformation.
The characteristics of the deformation were obtained including both spatial distribution
and time evolution. A very clear deformation description was captured by the proposed
experimental methodology, which provided a very strong foundation for establishing the
theoretical model. The experimental results showed that the depressed deformation of
the ellipsoidal shell under local impact load had similar response characteristics to the
spherical shell, which provided a good geometric characteristic support for establishing the
theoretical model of the dynamic response of an impacted ellipsoidal shell. In the theoretical
analysis, an isometric transformation method similar to that of the spherical shell was used
to determine the displacement, strain, and curvature distribution of the ellipsoidal shell,
which provided a foundation for the establishment of the theoretical model.

3. Theoretical Investigation

In our previous study [16], a theoretical model was proposed for spherical shells. The
deformation mode in the spherical shell was very simple. If the buckling was ignored, the
only deformation mode was a circular dimple. Compared with the deformation of the
spherical shell, the ellipsoidal shell was much more complex. Fortunately, an important
assumption applied in the previous studies of spherical shells was available form the
ellipsoidal shell. This was proven by experiments performed in this paper. The first one
was that mirror transformation could also be used for ellipsoidal s for a large central part of
deflection. The second one was that the dimple boundary was in the same iso-surface along
the impact direction and only displacement along the impact direction was considered. This
ensured the dimple shape and gave a method to describe the dimple deformation. Based
on the affine transformation, the ellipsoidal shell could be transformed to a spherical shell.
The elliptical dimple boundary could also be transformed to a circular dimple boundary
similar to the spherical shell. Our previous work provided good references for the work
conducted in this paper. However, there were still some issues in need of solving. The most
important one was the way to calculate the strain and curvature of the deformed shell.

3.1. Displacement Model of Ellipsoidal Shell

Based on the local dynamic normal impact load experiments using ellipsoidal thin
shells, the geometric characteristics of the depressed deformation boundary and surface
were measured, and the depressed deformation mode was obtained. Under the local
normal impact, the depressed deformation of an ellipsoidal thin shell had distinct char-
acteristics. Most areas of the depressed deformation had a good mirror transformation
relationship with the original surface, and only a small part of the depressed deformation
surface in the central area had a linear distribution after deformation. In this section, the
theoretical model of dynamic deformation of an ellipsoidal thin shell under local normal
impact was established based on the energy principle, with particular attention to the
dynamic deformation of an ellipsoidal thin shell. In this case, for the final state, the energy
involved in a small part of the central area was relatively low, considering that of the entire
deformed shell. When the local deformation was small, the kinetic energy of the impact
load was dominant for the dynamic evolution process. The kinetic energy of the non-mirror
deformation in the central area was not important because of its rather low value compared
with the overall energy of the deformed shell. Therefore, an assumption was made for the
theoretical model of the dynamic deformation process of an ellipsoidal thin shell that the
deformation mode of other areas in the depressed deformation area were equivalent to the
mirror transformation of the original surface, except for the edge area. In addition, the edge
of the central impact area was considered a shear plug deformation, and shear plug failure
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and penetration were considered in the final fracture calculations. Furthermore, only the
displacement in the impact loading direction was considered, and the displacement in all
other directions was ignored. Thus, the deformation mode and displacement distribution
of each region were determined. As shown in Figure 9, the deformation of an ellipsoidal
thin shell after impact was divided into four regions: Region 1 was the impact region;
Region 2 was the mirror depression region; Region 3 was the edge region; Region 4 was the
undeformed region.

Figure 9. Deformation features of an impacted ellipsoidal shell.

The displacement of Region 1 is represented by w1 = γ. According to isometric
transformation, the shape of Region 2 was symmetrical to the original shell on the plane
z = z f . Considering a rigid displacement zh led by the inner boundary between Region 2
and Region 3, the displacement distribution of Region 2 of an impacted ellipsoidal shell
was shown as w2 = zh + 2(z− z f ). The displacement w3 in Region 3 was assumed to be a
second-order polynomial distribution in the impact direction. This distribution was solved
by zero- and first-order continuous conditions that needed to be satisfied in both of the two
boundaries of Region 3, that is the inner boundary between Regions 2 and 3 and the outer
boundary between Regions 3 and 4. The solved displacement distribution of Region 3 is
shown in Equation (1), combined with the displacement of Regions 1 and 2.

w1 = γ; w2 = zh + 2(z− z f ); w3 =
(z− z f + zh)

2

zh
(1)

Considering only the displacement in the impact load direction, i.e., axial displacement,
the deformed configuration can be easily described based on the original curved surface
configuration. Taking the impact direction as the z direction, i.e., the height direction
of the ellipsoidal thin shell, all the height descriptions were under the configuration of
the undeformed ellipsoidal thin shell, i.e., the height z f of the boundary of Region 2
corresponding to the original ellipsoidal surface, which was the height of any point on
the deformed ellipsoidal surface on the original ellipsoidal surface. The height difference
between the inner and outer boundaries of Region 3 on the original surface was a parameter
to be determined in the displacement distribution model.

Region 4 was always contained in the displacement mode. That was an undeformed
part of shell, and the boundary displacement was zero, which represented a clamped
constraint. Therefore, an explicit boundary condition was not necessary in the theoretical
model, where the clamped constraint was implied.
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3.2. Distribution of Curvature and Strain

Since there was no displacement and deformation in Region 4, only the deformation
distribution of Regions 1, 2, and 3 needed to be considered. The deformation of Region 1
was considered a shear plug deformation, which was concentrated on the interface between
Regions 1 and 2. According to the displacement distribution, Regions 1 and 2 were
discontinuous and could not describe the shear deformation. Therefore, it was assumed
that a shear deformation region with limited width existed between Regions 1 and 2. The
region was a circular ring; the radial width of the ring was δr, and the displacement was
linearly distributed in the width, which was consistent with the assumptions used for the
analysis of shallow spherical shells given in the literature [16]. The shear strain of the
shear plug deformation was similar to that given in the literature [16] and can be shown
as follows.

ετ =
γ− w2(x = rp, y = 0)

2δr
; ε̇τ =

γ̇− ẇ2(x = rp, y = 0)
2δr

(2)

where ετ and ε̇τ are the shear strain and shear strain rate of Region 1. rp is the radius
of the projectile. The displacement of point x = rp, y = 0 was selected to represent the
displacement and velocity of the outer boundary between Region 1 and Region 2 to give
the displacement and velocity gradient between Regions 1 and 2.

Region 2 was an isometric transformation of the original shell, and the corresponding
membrane forces were 0, which was different from edge Region 3. In addition, both Region
2 and Region 3 exhibited curvature deformation, and the curvature of thin shell can be
calculated based on geometric equations, as expressed in Equation (3) [28].

k1 = − 1
A1

∂

∂ξ

(
1

A1

∂w
∂ξ

)
− 1

A1 A2

∂A1

∂η

(
1

A2

∂w
∂η

)
k2 = − 1

A2

∂

∂η

(
1

A2

∂w
∂η

)
− 1

A1 A2

∂A2

∂ξ

(
1

A1

∂w
∂ξ

)
k12 = − 1

A1 A2

(
∂2w
∂ξ∂η

− 1
A1

∂A1

∂η

∂w
∂ξ
− 1

A2

∂A2

∂ξ

∂w
∂η

) (3)

where Ai(i = 1, 2) represents Lame’s coefficients. w indicates displacement along the nor-
mal direction. The details in the calculation of the above curvatures is given in Appendix A.
In addition, the strain distribution is also provided in Appendix A. Based on the curvatures
and strains derived in Appendix A, the general forces involved in the following section of
governing equations can be expressed.

3.3. Governing Equations

Based on Hamilton’s principle, the governing equations of the dynamic deformation and
the perforation of an impacted ellipsoidal shell could be given by the Lagrangian equations.

∂2T
∂χ̇2 χ̈ +

∂2T
∂χ̇∂χ

χ̇ =
∂T
∂χ
−Qχ

∂2T
∂γ̇2 γ̈ +

∂2T
∂γ̇∂γ

γ̇ =
∂T
∂γ
−Qγ

(4)

where χ, γ are the dimple radius along the short axis and the displacement of Region 1, respec-
tively. T is the kinetic energy of the system. Qi(i = χ, γ) is the general force. The kinetic energy
of the system can be integrated from the shell based on the displacement distributions.

T =
1
2

ρh
∫ ∫

S
ẇ2dS (5)

where ρ and h are the density and thickness of the shell, and this remained constant during
the deformation. S is the area of the depressed part of the deformed shell. The kinetic
energy T is integrated around all regions, including Regions 1, 2, and 3. The governing
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equation depended on the derivation of the kinetic energy, rather than the kinetic energy T.
To obtain the expression of the derivation of the kinetic energy, some simplifications were
needed for the ellipsoidal equation.

z = c

√
(1− x2

a2 −
y2

b2 ) ≈ c
[

1− 1
2

(
x2

a2 +
y2

b2

)]
z f = c

√
(1− χ2

a2 ) ≈ c
[

1− 1
2

χ2

a2

] (6)

According to Equation (6), the velocity distributions of each region of the deformed
shell were simplified as follows:

ẇ1 = γ̇

ẇ2 =
2cχχ̇

a2

ẇ3 =
cχχ̇(χ2b2c2 + 2a2b2ε− acy2 − b2cx2)

a4b2zh

(7)

Substituting Equation (7) into Equation (5), the derivations of the kinetic energy are
given by Equation (8).

∂2T
∂χ̇2 =

χ2( 3
64 A + 3

8 B + 3
2 C + 3

2 D + E
)

F

∂T
∂χ

=
χχ̇2( 3

16 A + 9
8 B + 3

2 C + 3D + E
)

F

∂2T
∂χ̇∂χ

=
2χχ̇

( 3
16 A + 9

8 B + 3
2 C + 3D + E

)
F

∂2T
∂γ̇2 = Mp + πρhr2

p

(8)

where

A = −c3
(

a2κ2 + 3abκ +
8
3

b2
)
(aκ − b)3χ6

B = a2b2c2zh(aκ + 2b)(aκ − b)2χ4

C = −a5b4cz2
hr2

p

D = a4b5cχ2

E = a6b5z3
h

F =
8πcρh

3a9b4z2
h

(9)

κ represents the axial ratio of the ellipsoid describing the boundary of the depressed
deformation. Mp represents the projectile mass.

The corresponding general forces in Equation (4) were obtained as shown in Equation (10).

Qχ = Qχ(1) + Qχ(2) + Qχ(3)

Qγ = −2πhτδr(2rp + δr)

(
1−

γ− w2|x=rp ,y=0

h

)
∂ετ

∂χ

Qχ(1) = −Qγ

Qχ(2) = 0

Qχ(3) = Qχ(3)b + Qχ(3)m

(10)
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where Qχ(2) = 0, because Region 2 was an isometric transformation of the original un-
deformed shell and the corresponding strain was zero. The curvature of Region 2 was
independent of the time evolution of the deformation. Qγ and Qχ(1), as well as the shear
stress τ were provided in [16]. Qχ(3)b represents the contribution from the bending moment,
and Qχ(3)m represents the contribution from the membrane stress. The expression of the
bending curvature was complex. The general force Qχ(3)b was compared with Qχ(3)m for
different dimple widths, and the results are shown in Figure 10.

Figure 10. Comparison between general force Qχ(3)b and Qχ(3)m.

The comparison indicated that general force Qχ(3) was mainly determined by the
membrane stress contribution Qχ(3)m rather than the bending moment contribution Qχ(3)b.
This meant that Qχ(3)b could be ignored. The general force Qχ(3) is expressed as follows:

Qχ(3) = Qχ(3)m =
2bσ0hc2χ

z f

∫ z f

z f−zh

∫ 2π

0

(2(z− z f ) + zh)G
(a2z2 + c2G)zh

zdθdz (11)

where σ0 is the static yield stress of the shell material. θ and G is defined in Appendix A.
In the calculation of the theoretical model, the following initial conditions were applied,

according to the experiments.

χ|t=0 = rp, χ̇|t=0 = 0;

γ|t=0 =
a2h + c(χ2 − r2

p)

a2 , χ̇|t=0 =

√√√√ Mpv2
0

Mpv2
0 + πρhr2

p
;

(12)

where t is the solving time and v0 is the impact velocity of the projectile. rp is the radius
of the projectile. The initial velocity was obtained considering energy conservation by
ignoring the initial deformed energy.

4. Analysis of Theoretical Results and Discussion
4.1. Validation of the Theoretical Model

The results shown in Figure 11 indicated that when the depressed deformation was
large, the theoretical results were in good agreement with the experimental results. In
our previous investigation on spherical shells impacted by flat-nose projectiles [16], the
theoretical predictions on dimple width agreed very well with the experimental results
for all speeds. However, the comparison of dimple width between experimental and
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theoretical results indicated that the theoretical predictions agree well with experiments
only for those results given by a high speed that is smaller than the ballistic limit. That
means only the predictions of dimple width for large deformation agreed well with the
experimental results. The reason is that deformation Mode II is only appropriate for large
deformation, and this deformation mode is the basic assumption made in the theoretical
model. It is known, based on the experimental results, that the depressed deformation area
of the ellipsoidal shell was approximately an ellipse with a ratio between the major and
minor axes that was similar to that of the original ellipsoidal shell. This conformed to the
isometric transformation assumption used in the theoretical model presented in this paper.
Therefore, the theoretical results in the large deformation range were in good agreement
with the experimental results. The relative errors of the predictions for both the short axis
and long axis were less than 5%, as shown in Figure 11. For the case of a small depressed
deformation, it is known from the experiments that the proportion of major and minor
axes in the dimple area gradually decreased with the reduction of the deformation area.
Therefore, the theoretical results in this study involved a level of uncertainty for the case of
small depressed deformation, especially for velocities larger than the ballistic limit. The
relative errors of impacts at low speeds were less than 15% for the short axis and 25% for
the long axis. It could be seen from the experimental results that the proportion of long and
short axes decreased rapidly with the increase in the impact speed. Thus, there was a great
difference between the three experimental points with speeds greater than 90 m/s and the
theoretical prediction value, as shown in Figure 11. The relative errors of the predictions
for both short and long axes increased rapidly with the increase in the impact speed.

Figure 11. Validation of theoretical model via comparison with the experimental results..

In this investigation, it was assumed that the major depressed deformation was an
isometric transformation, in order to simplify the model. Based on this method, the original
ellipsoid equation could be used to describe the depressed deformation. In fact, according
to the comparisons with the experimental results, we found that the theoretical results
obtained under this assumption were consistent with the actual measured results in the
large deformation and penetration analyses. In practical engineering applications, the large
deformation and penetration velocity of ellipsoidal thin shells are key factors that should
be considered. Therefore, the theoretical results obtained using this displacement model
could provide an important reference for practical applications. The proposed theoretical
methodology provided a very efficient model for predicting the general deformation
characteristics with an acceptable accuracy. Although not all accurate details of deformation
were involved in the theoretical predictions, it was much faster than numerical simulation
and more economic than experiments. In addition, it was easy to obtain the influences of
various parameters of the shell on the resistance to impact load. This advantage was applied
in the following analyses and discussion for the influence of the curvature distribution on
the deformation of the impacted ellipsoidal shell.
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4.2. Impact Resistance Affected by Axial Ratio of Ellipsoidal Shell

Ellipsoidal shells could provide different curvature distributions by changing the
triaxial ratio. In order to explore the influence of curvature distribution on the impact
resistance of thin curved shells, the dynamic responses of ellipsoidal shells were theoreti-
cally analyzed for shells with different triaxial ratios, starting with the spherical shells with
an initial triaxial ratio of a : b : c = 1 : 1 : 1. The axial length of b was fixed to 200 mm,
and the impact direction was set to the c axis, respectively. We stretched or compressed
their transverse or longitudinal dimensions to investigate the corresponding change in the
impact resistance of the ellipsoidal shells.

We gradually increased the ratio of a : b from 1 : 1 to 3 : 2, indicating the stretching
of the transverse dimensions of the shell. The specific form of this change is shown in
Figure 12. The impact resistance of the shell was measured based on the dimple width
in the direction of axis b, and the impact speed and dimple width diagram are shown in
Figure 13.

Figure 12. Schematic of shells with different ratios between the a and b axes.

Figure 13. Influence of the ratio between the a and b axes on the dimple depth, generated by projectiles
impacting at different velocities.

The results shown in Figure 13 indicated that with the transverse stretching of the shell,
the penetration speed gradually decreased, and the dimple width of the shell gradually
decreased under the same impact speed. This showed that the deformation resistance
capability could be improved via transverse stretching of the size of the ellipsoidal shell,
but the corresponding penetration resistance capability would be reduced.

In order to explore the influence of the tension or compression of the axis size in
the impact direction of the ellipsoidal shell on its deformation and penetration, a : c was
reduced from 1 : 1 to 2 : 3 and increased to 3 : 2, respectively, to represent its longitudinal
tension and compression. The specific form of this change is shown in Figure 14.
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Figure 14. Schematic of shells with different ratios between the a and c axes.

The impact resistance of the shell was measured based on the dimple width in the
direction of axis a, and diagrams of the impact speed and dimple width are shown in
Figures 15 and 16.

The results shown in Figures 15 and 16 indicated that the longitudinal compression
and tension of the initial spherical shell could be attributed to the longitudinal tension of
the ellipsoidal shell, because its influence on the shell was consistent. The tension or com-
pression of the axis size in the impact direction had an evident influence on the penetration
velocity, rather than on the depressed deformation. This indicated that longitudinal tension
for ellipsoidal shells could improve their penetration resistance capability, but had little
effect on their capability for deformation resistance.

When the shell was stretched laterally, the integral area of kinetic energy and general-
ized force was increased at the same time. The membrane force in the edge area provided
the major part of the generalized force. The transverse stretching of the shell had a great
impact on the generalized force in the edge area, resulting in a reduction of the final de-
pressed deformation. When the shell was stretched longitudinally, it had little effect on the
integral region and then had little effect on the kinetic energy term and the generalized
force term in the governing equation. Therefore, the longitudinal stretching had little effect
on the shell deformation.

In the design process of thin curved shells, not only should one consider the triaxial
ratio, but one should also consider the influence of its scaling on its performance. Scaling
meant that the ratio between all axes was maintained and the lengths of axes were changed.
Therefore, the following analysis was conducted to examine the impact resistance capability
affected by the scaling of ellipsoidal shell size. We gradually enlarged the size of the
ellipsoidal shell to two times that used in the experiment, measured the impact resistance
of the shell according to the short semi-axis length of the dimple area, and constructed a
diagram of the impact velocity and dimple width, as shown in Figure 17.

The results shown in Figure 17 indicated that with the enlargement of the overall size
of the ellipsoidal shell, the penetration velocity decreased gradually, and the depressed de-
formation increased gradually under the same impact velocity. This indicated that the size
of the ellipsoidal shell had an impact on its impact resistance capability. Specifically, when
the triaxial ratio of the ellipsoidal shell remained unchanged, increasing the overall size of
the ellipsoidal shell could reduce its deformation and penetration resistance capabilities.
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Figure 15. Dimple width changes with the increase in shell depth with a constant length of the a axis.

Figure 16. Dimple width changes with a decrease in shell depth with a constant length of the a axis.

Based on the relationship between the impact velocity and dimple width, it could
be observed that the penetration of the shell was induced by the sudden drop in the
dimple width, which was the result of the generalized force in the shear region. Region
1 and Region 2 had generalized forces and generalized forces caused by the shear region,
respectively. These were a pair of reaction forces, required to prevent the development
of the depression in Region 1 and to drive the expansion of the depression in Region 2.
When the calculation process indicated that penetration occurred, these two generalized
forces failed, resulting in the slow expansion of Region 2, which was manifested in the
reduction of the penetration speed. To sum up, the transverse compression, longitudinal
tension, and overall reduction in shell size could increase its penetration speed, because
these dimensional changes increased the action time of the shear generalized force, which
helped the dimple deformation expand.
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Figure 17. Change in deformation parameters with scaling of the ellipsoidal shell.

5. Conclusions

In this work, an experimental study of thin-walled metal ellipsoidal shells under
the impact of cylindrical projectiles was carried out. Based on the experiments, the final
deformation results of ellipsoidal shells under the impact of cylindrical projectiles with
different velocities and the key parameters such as the depression depth and width were
obtained. At the same time, the dynamic deformation process of ellipsoidal shells was
obtained using 3D-DIC technology. The rationality of the use of an isometric transformation
in the large deformation region was verified through experiments, and then, a theoretical
model based on isometric transformation and the Lagrange principle was established. The
theoretical results were in good agreement with the experimental results in the analysis
of the large deformation and penetration velocity, which validated the theoretical model
established in this paper. Finally, the triaxial dimensions of the ellipsoidal shell in the
theoretical model were changed to investigate the influence of the curvature distribution
on the impact resistance of the shell. The main conclusions of the experiment can be listed
as follows:

(1) The depressed deformation of an ellipsoidal shell under an impact load is elliptical,
and the proportions of the long and short axes of the elliptical dimple boundary are
close to those of the initial shell.

(2) The isometric transformation was in good agreement with the actual deformation of
an ellipsoidal shell in the large deformation region.

(3) Enlarging the axial length of an ellipsoidal shell in the impact direction could improve
its resistance to penetration.

(4) Stretching the axial length of an ellipsoidal shell perpendicular to the impact direc-
tion could improve its deformation resistance, but this would reduce its resistance
to penetration.

(5) Keeping the triaxial ratio unchanged and appropriately reducing the size of an el-
lipsoidal shell could improve its resistance to deformation and penetration at the
same time.
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Appendix A

The shell discussed here is a shallow shell, and the displacement along the direction
of impact is approximated as the displacement along the normal direction. The Lame
coefficients and curvatures are all represented by local curvilinear coordinates (ξ, η, ζ). It is
easy to obtain curvilinear coordinates for axial symmetric rotation shells such as spherical
shells and rotation ellipsoidal shells. However, it is difficult to obtain the orthogonal
curvilinear coordinate system of an arbitrary ellipsoidal shell. Therefore, a description
method of an orthogonal curvilinear coordinate system provided using the methods of
the theory of fields was adopted here, that is an orthogonal curvilinear coordinate system
composed of a series of an ellipsoid, a univalent hyperboloid, and a bivalent double surface.
Then, the coordinates (x, y, z) in the global system can be represented by curvilinear
coordinates (ξ, η, ζ). The corresponding base vector is presented in Equation (A1) from
base vectors (~i,~j,~k) in global coordinates.

~gi =
∂x
∂ξ
~i +

∂y
∂η

~j +
∂z
∂ζ
~k (A1)

Curvilinear coordinates (ξ, η, ζ) were constructed using two hyperbolic surfaces de-
scribed by ξ and η and one ellipsoidal surface described by ζ. For a given ellipsoidal shell,
ζ = 0, and the curvatures are governed by ξ and η. The transformation between global
coordinates and orthogonal curvilinear coordinates is given as follows [29]:

x2 =
(ξ + a2)(η + a2)(ζ + a2)

(b2 − a2)(c2 − a2)

y2 =
(ξ + b2)(η + b2)(ζ + b2)

(a2 − b2)(c2 − b2)

z2 =
(ξ + c2)(η + c2)(ζ + c2)

(a2 − c2)(b2 − c2)

(A2)

Lame coefficients are represented as Ai =
√
~gi~gi(i = 1, 2, 3). This method cannot be

reduced to the case of an axisymmetric rotating shell, and if the same method was used
to construct the curvilinear coordinates of an axisymmetric rotating shell, the obtained
curvilinear coordinates would not be orthogonal. Therefore, this method was only available
for the description of ellipsoidal coordinates with unequal triaxial lengths.
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Because Region 2 was an isometric transformation of the original shell surface, there
was no membrane strain in Region 2. Therefore, the rest membrane strain occurred in
Region 3. Based on the experimental analyses, the dimple boundary was almost an ellipse
with the same axial ratio as the original shell. This meant that the dimple boundary
was in an iso-surface of z. Thus, the membrane strain was considered along the normal
direction of the dimple boundary, and there was no circular strain in Region 3. Using
von Karman large deformation theory along the normal direction of the dimple boundary,
the membrane strain was obtained similarly to the spherical shell discussed in [16]. The
ellipsoidal equation was rewritten as x′2 + y′2 + z′2 = 1, where x = ax′, y = by′, z = cz′.
The normal direction in the iso-surface along the z direction satisfied the following relation
for point (x′, y′).

dx′
y′

b2 = dy′
x′

a2 (A3)

The infinitesimal length d along the normal direction is represented as follows.

d =
√

dx2 + dy2 =
√

a2dx′2 + b2dy′2 = a

√
1 +

a2y′2

b2x′2
dx′ (A4)

The differential of the ellipsoidal equation gave the following equation for two points
(x′, y′, z′) and (x′ + dx′, y′ + dy′, z′ − dz′).

(2x′ + dx′)dx′ + (2y′ + dy′)dy′ = (2z′ − dz′)dz′ (A5)

The normal infinitesimal length could be expressed by Equation (A6), based on
Equations (A3) and (A5).

d = ax′
(

1 +
a2y′2

b2x′2

) 3
2

√√√√√1 +

(
1+ a4y′2

b4x′2

)
k

x′2(
1+ a2y′2

b2x′2

)2 − 1

(
1 + a4y′2

b4x′2

)
k = 2z′dz′ − dz′2

(A6)

where k is infinite. Therefore, Equation (A6) could be simplified as follows.

d =
1
2

a
(

1 +
a2y′2

b2x′2

)− 1
2 k

x′
=

1
2

a
(

x′2 + my′2
)− 1

2 k

k = 2z′dz′ − dz′2 u 2z′dz′
(A7)

where m = a2

b2 . The infinitesimal length considering dz in space before deformation is
expressed as follows.

l0 =
√

d2 + dz2 =

√
c2 + a2 z′2

G
dz′ (A8)

The corresponding length after deformation is expressed as follows.

l1 =

√
d2 + (dz− w(z) + w(z− dz))2 =

√
c2
(

1− dw
dz

)2
+ a2 z′2

G
dz′

G = x′2 + my′2 = (1− z′2)
[

a2

b2 sin2 θ + cos2 θ

] (A9)
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The displacement distribution in Region 3 is given in Equation (1), which yields the
displacement differential with respect to z as dw

dz = 2
z−z f +zh

zh
. The strain ε in the radial

normal direction is given as follows.

ε =
l1 − l0

l0
=

√√√√√1 + 4

(z−z f )2

z2
h

+
(z−z f )

zh

1 + a2z′2
c2G

− 1 =
√

1 + 4p− 1

p =

(z−z f )
2

z2
h

+
(z−z f )

zh

1 + a2z′2
c2G

=
(t + 1

2 )
2 − 1

4

1 + a2z′2
c2G

; t =
(z− z f )

zh

(A10)

where t ∈ [−1, 0], which makes |p| < 0.25. Thus, the strain shown in Equation (A10) could
be simplified as follows.

ε u 2p = 2

(z′−z′f )
2

z′2h
+

(z′−z′f )
z′h

1 + a2z′2
c2G

=
2(z′ − z′f )(z

′ − z′f + z′h)c
2G

z′2h (c
2G + a2z′2)

(A11)

where x′ =
√

1− z′2 cos θ and y′ =
√

1− z′2 sin θ represent the ellipsoidal isosurface along
the z direction in cylindrical coordinates.

The final expression of the strain distributed in Region 3 is described by Equation (A11).
It was applied in the expression of general force.
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