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Abstract: Micromechanics models of composite materials are preferred in the analysis and design of
composites for their high computational efficiency. However, the accuracy of the micromechanics
models varies widely, depending on the volume fraction of inclusions and the contrast of phase
properties, which have not been thoroughly studied, primarily due to the lack of complete and
representative experimental data. The recently developed microstructure-free finite element modeling
(MF-FEM) is based on the fact that, for a particulate-reinforced composite, if the characteristic size
of the inclusions is much smaller than the composite representative volume element (RVE), the
elastic properties of the RVE are independent of inclusion shape and size. MF-FEM has a number of
advantages over the conventional microstructure-based finite element modeling. MF-FEM predictions
have good to excellent agreement with the reported experiment results. In this study, predictions
produced by MF-FEM are used in replace of experimental data to compare the accuracy of selected
micromechanics models of particulate composites. The results indicate that, only if both the contrasts
in phase Young’s moduli and phase Poisson’s ratios are small, the micromechanics models are able to
produce accurate predictions. In other cases, they are more or less inaccurate. This study may serve
as a guide for the appropriate use of the micromechanics models.

Keywords: particulate composite; representative volume element; effective property; contrast of
phase properties; phase volume fraction; microstructure-free finite element modeling

1. Introduction

The analytical or semi-analytical solutions developed from micromechanics models
of composite materials provide an efficient method for the prediction of effective elas-
tic properties. Compared with the experimental methods and the computer modeling
approaches, micromechanics-based analytical solutions are preferred by material engi-
neers in the analysis and design of new composites. The design process is usually an
iterative process and often requires a large number of elasticity characterizations for the
intermediate designs, which would be very costly and time-consuming if the experimental
methods or computer modeling were to be used. Most micromechanics models have been
developed for particulate or short-fiber reinforced composites [1–6], primarily due to their
wide applications in engineering structures and industrial products. These micromechan-
ics models are also important for the description of mechanical behavior of functionally
graded materials and structures [7,8]. However, the accuracy of these micromechanics
models varies widely, and it is affected by factors such as the volume fraction of inclusions
and the contrast of phase properties. Information regarding the accuracy variation of the
micromechanics models is necessary for material engineers to appropriately apply them in
composite analysis and design. However, a thorough study on the accuracy variation of
micromechanics models has not yet been conducted, primarily due to the lack of complete
and representative experimental data. Although mechanical testing is the ideal method for
evaluating the accuracy of micromechanics models, mechanical testing is expensive and
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time-consuming. Experimental data reported in the literature do not cover the entire range
of inclusion volume-fraction and are unable to represent the various contrasts of phase
properties, e.g., [9–11] among others. Furthermore, experimental data are often adversely
affected by factors such as experimental setup, defects in test specimens, and random
measurement errors.

Conventional microstructure-based finite element modeling (MB-FEM) is a more
efficient approach than the experimental methods, but it has a number of deficiencies. For
example, it is time-consuming to generate a workable geometric model for the composite
microstructure; it is challenging to achieve a high volume-fraction of inclusions; and the
quality of the finite element mesh is affected by the geometric shape of inclusions and the
minimum distance between neighboring inclusions. The recently developed microstructure-
free finite element modeling (MF-FEM) [12] may eliminate these deficiencies. It has been
demonstrated that the elastic properties predicted by the MF-FEM have good to excellent
agreement with the reported experimental data [12].

In this paper, predictions of MF-FEM are used in replacement of experimental data
to study how the accuracy of micromechanics models varies with the volume fraction of
inclusions and the contrasts of phase properties. The objective of this study is to provide a
guide for the appropriate use of the micromechanics models.

2. Materials and Methods

Elastic properties of representative two-phase composites are predicted by the MF-
FEM, which are used as references in the comparison of selected micromechanics models.
The four particulate composites described in Table 1 are used for the study. They represent
different natural or engineering composite materials, with typical combinations of contrasts
in the phase Young’s moduli and phase Poisson’s ratios. Generally, a phase material that
has larger Young’s modulus would have smaller Poisson’s ratio, and vice versa. The
contrast of a phase property is measured by the ratio of the larger value to the smaller one.

Table 1. Two-phase particulate composites and their phase properties.

Composite #

Softer Phase Stiffer Phase Phase Contrast

Young’s
Modulus

(MPa)

Poisson’s
Ratio

Young’s
Modulus

(MPa)

Poisson’s
Ratio

Young’s
Modulus

Poisson’s
Ratio

1 80.0 0.20 120.0 0.15 Small Small
2 80.0 0.45 120.0 0.15 Small Large
3 80.0 0.20 12,000.0 0.15 Large Small
4 80.0 0.45 12,000.0 0.15 Large Large

The elasticity of a composite material and its constituents are often described by four
elastic constants, i.e., Young’s modulus, shear modulus, bulk modulus, and Poisson’s
ratio. These properties are not independent from each other but are related via the general
elasticity relations. If two of them are known, the rest can be determined from the elasticity
relations. For the above reason, the MF-FEM and the selected micromechanics models are
required to predict at least two of the four elastic properties.

For consistency, the symbols listed in Table 2 are used in the description of elastic
properties of composites and their phases.

Table 2. Symbols of composite and phase properties.

Ei Young’s modulus of phase i E Effective Young’s modulus of the composite
Gi Shear modulus of phase i G Effective shear modulus of the composite
Ki Bulk modulus of phase i K Effective bulk modulus of the composite
νi Poisson’s ratio of phase i ν Effective Poisson’s ratio of the composite
fi Volume fraction of phase i P, Pi Generic property of the composite and phase i
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2.1. Microstructure-Free Finite Element Modeling (MF-FEM) of Composite Representative Volume
Element (RVE)

Microstructure-free finite element modeling (MF-FEM) is a recently developed ap-
proach for the study of particulate composites [12]. The fundamental difference between the
MF-FEM and the conventional microstructure-based finite element modeling (MB-FEM) is
in the way that the inclusions are represented in the finite element model. In the MB-FEM, a
geometric model must be constructed to describe the composite microstructure that consists
of a matrix and inclusions, which involves a great amount of work but it is not necessary.
Based on the continuum mechanics of composites [13–15], for a particulate composite, if
(1) the inclusions have small aspect ratio, (2) their characteristic size is much smaller than
the representative volume element (RVE), and (3) the inclusions have a statistically uniform
random distribution in the RVE, the elastic properties of the RVE are independent of the
shape and size of the inclusions. The above assumptions are also adopted in almost all
the micromechanics models of particulate composites. Previous studies [5,16–18] indicate
that if the maximum characteristic size of inclusions is smaller than 0.04 times of the RVE
dimensions, the RVE elastic properties are almost independent of inclusion shape and size.
Now that the shape and size of small inclusions have no effect, the MF-FEM use elements
to represent the inclusions. In the version of MF-FEM implemented previously [12], first a
uniform mesh of brick elements is generated for the RVE that contains no inclusion; then, a
number of the elements are randomly selected and assigned with the inclusion properties,
and the rest of the elements are set to have the matrix properties. There are different
methods to implement the random selection of elements to represent inclusions. In this
study, the MATLAB function p = randperm(N) is used to generate a random permutation
of the integers from 1 to N without repeating numbers, where N is the total number of
elements in the RVE finite element mesh; the first n elements are selected as the inclusions,
the total volume of the selected n elements is required equal to the volume of inclusions,
the latter is calculated from the desired volume-fraction of inclusions. No periodicity is
required in the distribution of inclusions. One sample of RVE constructed in such a way is
displayed in Figure 1.
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The RVE is in a cubic shape and the dimensionless side length is L = 100, and the
element size is 2. Therefore, the size ratio between the elements and the RVE is 1:50, which
is smaller than the threshold, such that the shape and size of inclusions have no effect on
the elastic properties of the RVE. The task of the MF-FEM is to characterize the effective
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Young’s modulus and effective Poisson’s ratio of the RVE in the three axial directions
displayed in Figure 1.

Theoretically, if the assumptions described in the above are satisfied, the composite
RVE should be isotropic in its elastic properties. However, the actual distribution of
inclusions may not be strictly random and uniform. Therefore, the RVE properties may still
be slightly anisotropic [12]. To eliminate the residual anisotropy, the properties in the x,
y, and z directions are averaged. The boundary conditions used in the characterization of
RVE properties are listed in Table 3.

Table 3. RVE boundary conditions for the characterization of composite effective properties.

RVE Surface
Young’s Modulus ( Ei, i=x,y,z) and Poisson’s Ratio ( νij, i,j=x,y,z)

Ex, νxy, νxz Ey, νyx, νyz Ez, νzx, νzy

x = 0 ux = 0 ux = 0 ux = 0
y = 0 uy = 0 uy = 0 uy = 0
z = 0 uy = 0 uy = 0 uz = 0

x = 100 ux = 1 Homogeneous ux Homogeneous ux
y = 100 Homogeneous uy uy = 1 Homogeneous uy
z = 100 Homogeneous uz Homogeneous uz uz = 1

Based on the mean-field homogenization theory [19,20], the effective Young’s moduli
(Ei) and effective Poisson’s ratios (νij) of the RVE in the three axial directions are determined
from the average stresses (σi) and average strains (εi), i.e.,

Ei =
σi
εi

, (i = x, y, z) (1)

νij = −
εj

εi
, (i, j = x, y, z) (2)

The average stresses and strains are calculated from the finite element stresses (σi) and
strains (εi) via

σi =
1
V

∫
V

σi dV, εi =
1
V

∫
V

εi dV (i = x, y, z) (3)

where V is the volume of the RVE.
The effective Young’s modulus and effective Poisson’s ratio of the RVE are obtained as

E =
Ex + Ey + Ez

3
(4)

ν =
νxy + νyx + νyz + νzy + νzx + νxz

6
(5)

2.2. The Selected Micromechanics Models of Particulate Composites

A large number of micromechanics models have been developed for the prediction of
composite elastic properties [3,5,6] but not all of them will be compared in this study, due
to the capability of the MF-FEM. The selected micromechanics models should satisfy the
following criteria:

1. The micromechanics model was explicitly developed for particulate or short-fiber
reinforced composites, where the composites can be considered a homogeneous and
isotropic material at the length scale of the RVE.

2. The micromechanics model produces explicit analytical solutions for at least two of
the four elastic properties.

3. The analytical solutions do not require an empirical coefficient.

Based on the above criteria, seven micromechanics models were selected. They are the
Voigt and Reuss bounds, the Hashin–Shtrikman bounds, the Voigt–Reuss–Hill average, the
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Mori–Tanaka method, the generalized self-consistent scheme, the isotropized Voigt–Reuss
model, and the product of exponential functions. To be referred later in this study, the
analytical solutions produced by the selected micromechanics models are presented below
with the symbols listed in Table 2.

(1) The Voigt and Reuss (VR) bounds [21,22]

The Voigt and Reuss bounds are also referred to as the rule of mixtures and the inverse
rule of mixtures in the literature when they are applied to predict the elastic properties of
unidirectional fiber-reinforced composites. They are included in this comparison study due
to their capability of providing the upper and lower bounds for the elastic properties of
particulate composites. The Voigt and Reuss (VR) formulas can be generically presented as

PV = f1P1 + f2P2 (6a)

PR =
P1 P2

f1P2 + f2P1
(6b)

where, P and P represent a generic elastic property, which can be any one of the four
elasticity constants; the subscripts V and R indicate Voigt and Reuss models, respectively.
The formulas are often used to estimate bounds for Young’s modulus, sometimes also for
shear modulus, Poisson’s ratio, and bulk modulus.

(2) The Hashin-Shtrikman (HS) bounds [23]

The Hashin-Shtrikman (HS) bound formulas in Equation (7a–d) are derived from the
variational principle of minimum potential energy with the concept of stress polarization,
which have a stricter mathematical base than the VR bounds.

KL = K1 + α1, α1 =
f2(K2 − K1)(3K1 + 4 G1)

3 f2K1 + 3 f1K2 + 4G1
(7a)

KU = K2 − α2, α2 =
f1(K2 − K1)(3K2 + 4G2)

3 f1K2 + 3 f2K1 + 4G2
(7b)

GL = G1 + β1, β1 =
5 f2(G2 − G1)G1(3K1 + 4G1)

(12 f2 + 8)(G1)
2 + (12 f1G2 + (6 f2 + 9)K1)G1 + 6G2K1 f1

(7c)

GU = G2 − β2, β2 =
5 f1(G2 − G1)G2(3K2 + 4G2)

(12 f1 + 8)(G2)
2 + (12 f2G1 + (6 f1 + 9)K2)G2 + 6G1K2 f2

(7d)

The subscripts, L and U, represent the lower and the upper bound of effective bulk
modulus (K) or effective shear modulus (G).

(3) The Voigt–Reuss–Hill (VRH) average [24]

The Voigt–Reuss–Hill average in Equation (8) provides a simple way to estimate the
elastic constants of particulate composites.

P =
PV + PR

2
(8)

where PV and PR are determined by Equation (6a,b).

(4) The Mori–Tanaka (MT) model [25]

The Mori–Tanaka model is based on Eshelby’s elasticity theory for inhomogeneity
in an infinite medium [20,26]. The average internal stress in the matrix is calculated
with the transformation of the strain. Interaction among inclusions and the presence of
a free boundary are considered in the average elastic energy. The MT formulas for the
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determination of effective shear modulus (G) and effective bulk modulus (K) are presented
in Equation (9a,b).

G = G1 +
f2(G1 − G1)

1 + f1(G2−G1)

G1+
G1(9K1+8G1)

6(K1+2G1)

(9a)

K = K1 +
f2(K2 − K1)

1 + f1(K2−K1)

K1+
4
3 G1

(9b)

(5) The Generalized self-consistent (GSC) model [3]

In the generalized self-consistent model, a spherical inclusion is embedded in a con-
centric spherical annulus of the matrix material, which is in turn embedded in an infinite
medium of unknown effective properties. This three-phase model is an improved version
of the original tow-phase self-consistent model [27], where the spherical inclusion is directly
embedded in the infinite medium of unknown effective properties. Although the concept
is simple, the obtained analytical solutions are complex. The effective bulk modulus in
Equation (10b) has the same expression as that in Equation (9b) of the MT model, but the
solution of effective shear modulus is much more complex, as displayed in Equation (10a).

G =

(
−B +

√
B2 − A · C
A

)
G1 (10a)

K = K1 +
f2(K2 − K1)

1 + f1(K2−K1)

K1+
4
3 G1

(10b)

The three coefficients A, B, and C in Equation (10a) are expressed by the phase shear
moduli (G1, G2), phase Poisson’s ratios (ν1, ν2), phase volume fractions ( f1, f2), and another
three coefficients (η1, η2 and η3).

A = 8
(

G2
G1
− 1
)
(4− 5ν1)η1 f

10
3

2 − 2
(

63
(

G2
G1 − 1

)
η2 + 2η1η3

)
f

7
3

2 + 252
(

G2
G1
− 1
)

η2 f
5
3

2 −

50
(

G2
G1
− 1
)(

7− 12ν1 + 8ν2
1
)
η2 f2 + 4(7− 10ν1)η2η3

B = −2
(

G2
G1
− 1
)
(1− 5ν1)η1 f

10
3

2 + 2
(

63
(

G2
G1
− 1
)

η2 + 2η1η3

)
f

7
3

2 − 252
(

G2
G1
− 1
)

η2 f
5
3

2 +

75
(

G2
G1
− 1
)
(3− ν1)η2ν1 f2 +

3
2 (15ν1 − 7)η2η3

C = 4
(

G2
G1
− 1
)
(5ν1 − 7)η1 f

10
3

2 − 2
(

63
(

G2
G1
− 1
)

η2 + 2η1η3

)
f

7
3

2 + 252
(

G2
G1
− 1
)

η2 f
5
3

2 +

25
(

G2
G1
− 1
)(

ν2
1 − 7

)
η2 f2 − (7 + 5ν1)η2η3

The expressions of η1, η2, and η3 are provided below.

η1 =
(

G2
G1
− 1
)
(7− 10ν1)(7 + 5ν2) + 105(ν2 − ν1)

η2 =
(

G2
G1
− 1
)
(7 + 5ν2) + 35(1− ν2)

η3 =
(

G2
G1
− 1
)
(8− 10ν1) + 15(1− ν1)

(6) The Isotropized Voigt-Reuss (Iso-VR) model [28]

The Iso-VR model is the result of isotropization of the conventional Voigt and Reuss
model, which together represent a transversely isotropic material model. The isotropization
assumes that the normal and the shear strain energy in the transversely isotropic model
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are respectively equivalent to those in the isotropized model. The resulting formula is
provided in the equation below.

P =
2

1
PV

+ 1
PR

(11)

The above formula is applicable to effective Young’s modulus and effective shear
modulus [28].

(7) The product of exponential functions (PEF) [29]

The product of exponential functions in Equation (12) was established from experi-
mental data of Young’s moduli measured from bovine bone specimens. The formula is also
applicable to effective shear modulus.

P = P f1
1 · P

f2
2 (12)

In the above equation, P1 and P2 are originally the Young’s moduli of the organic and
the inorganic phase in the bone. Bone is a typical composite material in nature, the formula
is thus included in this comparison study.

Two of the four effective properties that are predicted by the MF-FEM and by each of
the selected micromechanics models are marked in Table 4. The rest of effective properties
are determined via the elasticity relations.

Table 4. Effective properties that are directly determined by MF-FEM and micromechanics models.

Young’s Modulus ( E) Shear Modulus ( G) Bulk Modulus ( K) Poisson’s Ratio ( ν)

MF-FEM x x
VR bounds x x
HS bounds x x

VRH x x
MT x x
GSC x x

Iso-VR x x
PEF x x

In this comparison study, the predictions of MF-FEM serve as the references in replace
of experimental data to compare the accuracy of the selected micromechanics models. For
the micromechanics models that predict specific values of the effective properties, the
accuracy is measured by the relative error defined in Equation (13).

δ =

∣∣PMF−FEM − PMM
∣∣

PMF−FEM
× 100% (13)

where PMF−FEM and PMM are, respectively, the effective property predicted by the MF-FEM
and one of the selected micromechanics models.

For the micromechanics models that estimate bounds, i.e., VR and HS, their per-
formance is evaluated by how well the MF-FEM predictions are enclosed within the
estimated bounds.

3. Results

Figures A1–A4 in the Appendix A present the effective properties of the composites in
Table 1, predicted by the MF-FEM and the selected micromechanics models with the volume
fraction of the stiffer varying from 0.0 to 1.0. Based on the above results, relative errors
in the effective properties predicted by VRH, GSC, MT, Iso-VR, and PEF are calculated
using Equation (13). The obtained relative errors are displayed in Figures A5–A8 in the
Appendix A. The relative errors are inhomogeneous and demonstrate fluctuation over the
range of volume fraction; it is inconvenient to use them to measure the overall accuracy.
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Therefore, averages of the errors, calculated using the following equation, are used to
measure the overall performance of the models.

δ =
∑n

i δi

n
(14)

where i indicates one of the volume fractions f2 = {0.1, 0.2, · · · , 0.9} and n = 9.
The average relative errors in the effective Young’s modulus, shear modulus, bulk

modulus, and Poisson’s ratio of the four composites (Table 1) are displayed in Figure 2.
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The following observations can be made from the results regarding the accuracy of
the five models, i.e., VRH, GSC, MT, Iso-VR, and PEF.

(1) The accuracy of the models is inhomogeneous over the range of volume fraction; see
Figures A5–A8 in the Appendix A. For GSC and MT models, the maximum relative
error usually occurs in the second half of the range. For VRH, Iso-VR, and PEF, the
accuracy fluctuates over the range.

(2) Only for Composite #1, which has small contrasts in both its phase Young’s moduli and
phase Poisson’s ratios, all the models have reasonable accuracy in all four effective prop-
erties. The maximum relative error is below 1%; see Figures A5a, A6a, A7a and A8a,
in addition to Figure 2.

(3) For Composite #2, which has a small contrast of phase Young’s moduli but a large
contrast in phase Poisson’s ratios, the models have acceptable accuracy for effective
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Young’s modulus and effective shear modulus, with the maximum relative error
below 6%. But the accuracy for effective bulk modulus and effective Poisson’s ratio is
quite poor, with average error above 15%.

(4) For Composites #3 and #4, both have a large contrast in phase Young’s moduli, only
if the volume fraction of the stiffer phase is low (<0.2), the models have acceptable
accuracy, cf. Figures A1–A4. None of the models have acceptable overall accuracy, see
Figure 2.

(5) Generally, PEF has better performance than the other models; see Figures A5–A8 and
Figure 2.

The above observations indicate that contrasts in both phase Young’s moduli and
phase Poisson’s ratios affect the accuracy of the models, but the effect from phase Young’s
modulus is dominant.

Results related to the VR and HS bounds are presented in Figures 3–6. A number of
phenomena can be detected from the results.
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• Only if the contrasts of phase Young’s moduli and phase Poisson’s ratios are small,
the VR and HS bounds are able to enclose the MF-FEM predictions.

• The gap between the upper and the lower bound of either HS or VR model is primarily
dependent upon the contrast of phase Young’s moduli. If the contrast of phase Young’s
moduli is small, the bounds are tight; otherwise, the bounds are loose. The contrast of
phase Poisson’s ratios has a much lower significant effect on the gap.

• Contrary to the observations reported in some of the previous studies, the HS bounds
may not be always enclosed by the VR bounds, e.g., the effective Young’s moduli in
Figure 3b, the effective bulk moduli in Figure 5b, and the effective Poisson’s ratios in
Figure 6b. This phenomenon is related to the large contrast of phase Poisson’s ratios.

• MF-FEM predictions may be out of both the HS and VR bounds, e.g., the effective
Young’s moduli in Figure 3b and the effective Poisson’s ratios in Figure 6c.

4. Discussion

The results of this comparison study indicate that the differences between the predic-
tions of MF-FEM and those of the selected micromechanics models are affected by both
the contrasts of phase properties and the volume fractions; the largest differences occur
in Composites #3 and #4, which have large contrasts in phase properties, particularly in
phase Young’s moduli, and when the volume-fraction of the stiffer phase is high. Although
previous experimental studies produced a large volume of data for composites that have
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small contrasts of phase properties and low volume-fractions of inclusions, e.g., [9–11,30,31]
among many others, experimental data for composites that have large contrast and high
volume-fraction of inclusions are rare in the literature for unknown reasons. Nevertheless,
composites that have large phase contrast and high volume-fraction of inclusions indeed
exist, bone is a good example. If bone is considered as an organic-inorganic composite [29],
the organic and the inorganic phases have material properties of extraordinary disparity;
nevertheless, the bone has superior mechanical properties over many engineering materials.

The rationality of using MF-FEM predictions in replacement of experimental data
for the evaluation of micromechanics model accuracy is supported by a number of facts.
First, MF-FEM predictions have good to excellent agreement with the experimental data
produced from composites that have small phase contrast or from composites that have
large phase contrast but low volume-fraction of inclusions [12]. Second, the MF-FEM
is based on the same fundamental assumptions as the selected micromechanics models,
that is, the composite is assumed statistically homogeneous and isotropic, and the mate-
rial properties of the composite are independent of the shape and size of the inclusions.
Theoretically, micromechanics models are more comparable with the MF-FEM than with
mechanical testing, considering that the accuracy of both the MF-FEM and micromechanics
models is only affected by their assumptions, while mechanical testing data may contain
errors from different sources. To make analytical solution possible and simple, various
special assumptions are adopted in the selected micromechanics models, which narrow
the applicable scope of the models and result in low accuracy when the assumptions are
not satisfied. The MF-FEM does not introduce any special assumptions. Therefore, it can
be reasonably stated that the MF-FEM may not be able to completely replace mechanical
testing, but the MF-FEM is more accurate than the micromechanics models.

The differences between the MF-FEM and the selected micromechanics models are
induced mainly by the special assumptions adopted in the models. For example, the
assumption of dilute dispersion is explicitly or implicitly adopted in many micromechanics
models including GSC and MT. By assuming that an inclusion is embedded in an infinite
medium, dilute dispersion disregards the effect of interaction among inclusions. However,
the rationality of this assumption disappears when the volume-fraction of inclusions is
high. For composites that have small contrast of phase properties, the effect of inclusion
interaction is trivial; for composites that have large phase contrast, the effect becomes
much more significant. The dilute dispersion assumption is implicitly adopted in GSC and
MT [32,33]. The limitations of conventional micromechanics models have been theoretically
discussed in the literature [34–37]. The assumption of dilute dispersion is identified as
the fundamental source for the limitations. The effect of dilute dispersion can only be
fully revealed when the volume fraction is close to full packing of inclusions [3]. The
Mori–Tanaka method is found unacceptably inaccurate when it is applied far beyond the
usual dilute range [34]. Both VRH and Iso-VR are based on the iso-strain and iso-stress
assumptions, which represent the two extreme scenarios that phase materials work together.
Under the iso-strain condition, the phase materials work in parallel to achieve maximum
stiffness, while under the iso-stress condition, the phase materials work in series to have
maximum flexibility. The actual situation is somewhere between the two extreme scenarios,
which may not have been accurately represented by either VRH or Iso-VR. The PEF formula
was developed from bone mechanical testing data using statistical methods [29]. Although
the formula is sometimes more accurate than the other models in the tested cases, the
physical meaning of the formula is not as clear as the others. Another common issue
for VRH, Iso-VR, and PEF is that they treat the four elasticity constants as independent
parameters, but they are actually dependent upon each other.

5. Conclusions

In this comparison study, the accuracy of the selected micromechanics models, includ-
ing some of the most commonly used ones, is evaluated against the MF-FEM. The study
results indicate that, only if the particulate composite has small contrasts in both of its phase



Materials 2022, 15, 4021 13 of 18

Young’s moduli and phase Poisson’s ratios, the selected models have reasonable accuracy.
When applied to composites that have large contrasts of phase properties, particularly the
large contrast in phase Young’s moduli, the models may have extremely large error when
the volume-fraction of the stiffer phase is high. The main limitation of the current study is
that it is purely numerical based; an experimental study with the emerging 3D-printing
technique would demonstrate the prospective application of the MF-FEM in engineering.
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Appendix A

Figures A1–A4 present predictions of the four effective properties, i.e., Young’s modu-
lus, shear modulus, bulk modulus, and Poisson’s ratio, by the MF-FEM and by the selected
micromechanics models for the four representative composites in Table 1, with the volume
fraction of the stiffer phase varying from 0.0 to 1.0.
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(a) Young’s modulus; (b) shear modulus; (c) bulk modulus; (d) Poisson’s ratio.
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Figure A3. Composite #3—large contrast in phase Young’s modulus and small contrast in phase
Poisson’s ratio. (a) Young’s modulus; (b) shear modulus; (c) bulk modulus; (d) Poisson’s ratio.
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(a) Young’s modulus; (b) shear modulus; (c) bulk modulus; (d) Poisson’s ratio.

Figures A5–A8 show relative errors measured by Equation (13), in the effective Young’s
modulus, shear modulus, bulk modulus, and Poisson’s ratio.
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