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Abstract: A steel fiber-reinforced recycled concrete (SFRRC) is a porous material, and its macrome-
chanical properties are affected by its microstructure. To elucidate the change rules and internal
mechanisms of the mechanical properties of SFRRCs, the mechanical properties and failure modes of
SFRRCs were studied at different water–cement ratio, replacement rate of recycled concrete aggregate
(RCA), and steel fiber content. Moreover, the microstructures of the interface transition zones (ITZ) of
the SFRRC specimens were tested by scanning electron microscopy and mercury intrusion, and the
effect of the microscopic pore structure on the macromechanical properties of SFRRC was analyzed.
The research results showed that an appropriate amount of steel fibers could reduce the size and
number of cracks in the ITZ and improve the pore structure of an SFRRC. Based on the fractal
dimension, porosity and other factors, the quantitative relationship between the macromechanical
properties and microscopic pore structure parameters of SFRRCs was established.

Keywords: steel fiber-reinforced recycled concrete; macromechanical properties; microstructure;
interface transition zone

1. Introduction

Since the beginning of the 21st century, concrete has been the most important material
basis for urban construction, and its demand has also been increasing. Currently, the
annual output of concrete globally is approximately 4 billion m3, and the output of China
accounts for approximately 70% of the global total. In urban construction, the demolition
of old buildings produces a large amount of construction and demolition waste, which
causes environmental pollution [1,2]. Concurrently, the demand for aggregates for concrete
production is increasing. Recycled concrete aggregates (RCAs) produced from waste con-
crete by crushing, screening, and cleaning are used to replace natural concrete aggregates
(NCAs), which can effectively solve the dual problems of environment and resources, with
very significant economic, social, and environmental benefits [3].

Research results show that RCAs are damaged during the production process, which
produces numerous microcracks inside them [4]. Simultaneously, RCAs feature more
edges and corners than NCAs, and hardened cement mortar can become attached to their
surfaces, as shown in Figure 1. Because of these factors, RCAs have higher porosity and
water absorption than NCAs, and their physical properties are poor [5]. To improve the
mechanical properties of recycled aggregate concrete (RAC), scholars usually use concrete-
modification technology. These modification techniques mainly include removing the
cement mortar on the surface of the RCA (physical method) [6–8], filling the pores and
cracks inside the RCA with chemical solutions (chemical method) [9–11], and doping fibers
to improve the pore structure of the interface transition zone (ITZ) [12–14]. Compared
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with the complicated operation process of physical and chemical methods, the method of
doping fibers is more convenient.
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Figure 1. Recycled concrete aggregates.

In engineering practice, commonly used fibers are steel fiber (SF) [15], polypropylene
fiber [16], copper fiber [17] and basalt fiber [18]. Because SFs can improve and inhibit
the development of concrete cracks, improve the quality of RAC, and at the same time,
steel fibers can be mass-produced and cheap, the research and application of steel fiber-
reinforced concrete has developed rapidly in recent years [19]. According to Bentur, the
mechanical properties of steel fiber-reinforced concrete is primarily determined by the
bonding properties between the SFs and cement matrix [20]. The ITZ is a weak zone
between the SF surfaces and the concrete matrix, as shown in Figure 2. The porosity of
the ITZ is relatively high, and its width is approximately 40 µm. The pullout process
of the SFs in the matrix is the relative slipping of the SFs caused by the destruction of
the structure of the ITZ. Hannawi believes that the SFs have a more hydrophilic surface,
and the surrounding cement paste will hydrate and fill the space between the SF and
the cement matrix, making its interface transition zone more compact [21]. However, the
research on SFRRCs mainly focuses on the macromechanical properties, which are mainly
qualitative descriptions. SFRRC is a porous material whose pore structure determines the
macromechanical properties. The relationship between the macromechanical properties of
SFRRC and the microscopic pore structure has not been discussed in detail, which requires
further quantitative research.
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Figure 2. Interface transition zone of SFRRC.

Therefore, the main purpose of this study is to explore the relationship between the
macromechanical properties of SFRRC and the microscopic pore structure. This work
tested the macromechanical properties and microstructure of nine sets of SFRRC specimens
with different water–cement ratios, RCAs replacement rates, and SFs content. Finally, a
modified formula for the calculation of the strength of SFRRCs based on natural concrete is
proposed, and the reasons for the variation of macromechanical properties of SFRRCs from
the perspective of microstructure were revealed, and a quantitative relationship between
the strength of SFRRCs and microscopic pore structure parameters was proposed.
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2. Materials and Methods
2.1. Materials

The coarse aggregates (RCAs and NCAs) used in this study were purchased from
Shaanxi Hong Wei Ecological Environmental Protection Technology Co., Ltd. (Xi’an, China),
and the fine aggregates were natural river sand from Xi’an, Shaanxi Province. Among
them, RCAs mainly come from the waste concrete blocks generated from the demolition of
old buildings (20–30 years old) in Xi’an city, the strength of these concrete blocks is about
C20 to C40, and the adhered mortar content of RCAs is in the range of 40–45%. The size
ranges of the coarse and fine aggregates were 5–20 mm and 0–5 mm, respectively, and the
particle dimension distributions of the aggregates are shown in Figure 3. It can be seen
that the aggregates satisfied the ASTM-C33 [22] limit requirements. The primary physical
properties of the employed RCAs, NCAs, and sand were tested in accordance with the
Chinese code GB/T14685-2011 [23]; these are listed in Table 1. The results show that the
density of the RCAs is lower than those of the NCAs and that the crushing index and water
absorption are higher than those of the NCAs; this is related to the adhesion of the old
bonding mortar to the surface of the RCAs and the internal microcracks.
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Table 1. Physical properties of RCAs, NCAs, and sand.

Properties RCA NCA Sand

Particle size (mm) 5–10 10–20 5–10 10–20 0–5
Apparent density (kg/m3) 2640 2650 2810 2820 2620

Bulk Density (kg/m3) 1290 1330 1510 1550 1520
Water absorption (%) 7.3 5.6 0.8 0.3 0.7
Crushing index (%) — 13.5 — 8.1 —
Fineness modulus — — — — 2.76

The shear-cut type of the SFs used in this study, which are wavy overall, is shown in
Figure 4. The length (lf) of the SFs is 38.0 mm, the equivalent diameter (df) is 0.6 mm, the
aspect ratio (lf/df) is 63.3, and the tensile strength is 1000 MPa. The cementitious materials
used in all the mixtures were cement (P.O42.5), whose physical and chemical properties
are listed in Table 2. The water-reducing agent used in this test is polycarboxylic acid
high-performance water-reducing agent, the water reduction rate was approximately 25%,
and its indexes are shown in Table 3.
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Table 2. Physical and Chemical properties of cement.

Setting Time (min) Chemical Composition (%)
Strength (MPa)

Compressive Strength Flexural Strength

Initial Set Final Set CaO SiO2 Al2O3 Fe2O3 S03 MgO K2O 3d 28d 3d 28d
180 280 60.3 22.5 7.2 3.6 2.1 2.3 0.8 39.1 50.9 6.5 8.1

Table 3. Physical and chemical compositions of water-reducing agent.

Density
(g/cm3)

Solid Content
(%)

Chloride Ion
Content

(%)

Alkali
Content

(%)

pH
Value

Water
Reduction

Rate
(%)

1.062 23.7 0 1.13 6.5 25

2.2. Mixture Proportions and Specimen Preparation

In this research, the effects of the water–cement ratio (w/c), replacement rate of the
RCAs (ra), and SF volume content (vsf) on the mechanical properties of SFRRCs were
studied. To effectively analyze the influence of various factors on the mechanical properties
of SFRRCs, orthogonal experiments were conducted, as summarized in Table 4. Based on
previous research [24], in these tests, the unit water consumption and the sand rate were
set as 160 kg/m3 and 0.44, respectively. The mixture proportions for the SFRRC specimens
are listed in Table 5.

Table 4. Orthogonal test factors and levels of SFRC.

Levels
Factors

w/c (A) ra (B) vsf (C)

1 0.4 30% 0%
2 0.47 50% 1%
3 0.54 100% 2%

Note: w/c: water–cement ratio; ra: replacement ratio of RCAs; vsf: SF volume content.
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Table 5. Mixture proportions of specimens (kg/m3).

Groups Orthogonal
Design Water Cement Sand NCA RCA Steel

Fiber
Extra
Water

Water-Reducing
Agent

SFRRC-1 A1B1C1D1 160 400 788 702 301 0 18 4
SFRRC-2 A1B2C2D2 160 400 753 479 479 78 29 4
SFRRC-3 A1B3C3D3 160 400 719 0 915 156 56 4
SFRRC-4 A2B1C2D3 160 340 779 694 298 78 18 3.4
SFRRC-5 A2B2C3D1 160 340 745 474 474 156 29 3.4
SFRRC-6 A2B3C1D2 160 340 814 0 1036 0 63 3.4
SFRRC-7 A3B1C3D2 160 296 765 681 292 156 18 2.96
SFRRC-8 A3B2C1D3 160 296 833 530 530 0 32 2.96
SFRRC-9 A3B3C2D1 160 296 799 0 1017 78 62 2.96

Note: The extra water is calculated from the water absorption of the RCA and is absorbed by the RCA and does
not participate in the hydration reaction of the cement.

The mixing process to form SFRRC specimens with improved properties is shown in
Figure 5, which can be summarized as the following phases:
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Figure 5. SFRC mixing process.

Phase I: First, the RCAs and extra water are mixed for 7 min to ensure the RCAs reach
a saturated dry surface. Subsequently, they are mixed for 3 min.

Phase II: The NCAs, sand and cement are mixed for 2 min, and the SFs are added in
the process of mixing in a manner that they are evenly dispersed in the dry mixture.

Phase III: Finally, water and a water-reducing agent are added to the mixer and stirred
for 2 min, and subsequently the mixture is placed into molds.

For each mixture, six cubic and prismatic specimens were prepared for testing the
cubic compressive strength (f cu), splitting tensile strength (f ts), axial compressive strength
(f c), and elastic modulus (Ec) of the SFRRCs. Their dimensions were 100 mm × 100 mm ×
100 mm and 150 mm × 150 mm × 300 mm, respectively.

2.3. Test Procedures
2.3.1. Mechanical Properties Test

A TYE-2000E machine was used for all tests, which is shown in Figure 6. The test
method was in accordance with the “Standard for test method of mechanical properties on
ordinary concrete” (GB/T50081-2002) [25]. The loading rate of the testing machine was set
as 0.5 MPa/s until failure of the cubic and prism specimens occurred to obtain f cu and f c.
When testing f ts, the loading rate was 0.05 MPa/s, and f ts is calculated using Equation (1).

fts =
2F
πA

= 0.637
F
A

(1)

where F is the ultimate load and A is the splitting surface area. Because the cube test block
was a nonstandard test block, f ts was multiplied by a conversion factor of 0.85 [25].
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Figure 6. Pressure-testing machine.

Figure 7 depicts the mechanical property test setup. In the splitting tensile test, a
circular arc steel shim and a wooden shim were placed between the pressure plate and
the specimen. In the elastic modulus test, the test distance was 150 mm in the mid of the
prism sample, and two dial gauges were placed on both sides of the test piece to measure
the displacement.

Materials 2022, 15, x FOR PEER REVIEW 6 of 22 
 

 

 

Figure 6. Pressure-testing machine. 

ts

2
0.637

F F
f

A A
= =  (1) 

where F is the ultimate load and A is the splitting surface area. Because the cube test block 

was a nonstandard test block, fts was multiplied by a conversion factor of 0.85 [25]. 

Figure 7 depicts the mechanical property test setup. In the splitting tensile test, a cir-

cular arc steel shim and a wooden shim were placed between the pressure plate and the 

specimen. In the elastic modulus test, the test distance was 150 mm in the mid of the prism 

sample, and two dial gauges were placed on both sides of the test piece to measure the 

displacement. 

  

(a) (b) 

Figure 7. Mechanical property test setup: (a) Splitting tensile test; (b) Elastic modulus test. 

The specimen needs to be preloaded to ensure axial loading. First, loading from 0 to 

0.5 MPa (F0) is applied, which is followed by a constant load for 60 s. Subsequently, a load 

equal to the stress of fc/3 load (Fa) is applied, followed again by a constant load for 60 s to 

ensure that the deformation difference between the two sides is less than 20%. This loop 

is repeated thrice, following which the preloading ends. After unloading the load, the load 

is increased from 0 to F0, the deformation value, L0, is recorded; subsequently a load from 

Figure 7. Mechanical property test setup: (a) Splitting tensile test; (b) Elastic modulus test.

The specimen needs to be preloaded to ensure axial loading. First, loading from 0
to 0.5 MPa (F0) is applied, which is followed by a constant load for 60 s. Subsequently, a
load equal to the stress of f c/3 load (Fa) is applied, followed again by a constant load for
60 s to ensure that the deformation difference between the two sides is less than 20%. This
loop is repeated thrice, following which the preloading ends. After unloading the load, the
load is increased from 0 to F0, the deformation value, L0, is recorded; subsequently a load
from F0 to Fa is added, and the deformation value, La, is recorded. Finally, the deformation
measuring instrument is removed, and the specimen is loaded to failure. The difference
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between the failure load and the previously measured axial compressive strength should
not exceed 20%. The elastic modulus is calculated using Equation (2).

Ec =
Fa − F0

A
× L

La − L0
(2)

where Ec is the elastic modulus, Fa is taken as f c/3, F0 is taken as 0.5 MPa, A is the pressure-
bearing area of the specimen, L is the test distance of the specimen, and La and L0 are the
average deformation values on the two sides when the loads are Fa and F0, respectively.

2.3.2. Microstructure Test

Concrete is a type of porous material, and it has various pore shapes. Mercury
intrusion porosimetry (MIP) is frequently used to analyze the microscopic pore structure
of materials. A scanning electron microscope has a high resolution, magnification, and
large depth of field, and it can analyze the characteristics of a material at the nanometer
level. Thus, the microscopic morphologies of the SFRRC specimens were analyzed using
scanning electron microscopy (SEM), and their pore structures were analyzed via MIP.
In this research, the SEM experiments employed a Gemini SEM300 scanning electron
microscope (Oberkochen, Germany) with a resolution of 0.8 nm and an acceleration voltage
of 30 KV. The MIP experiments were conducted using an American AutoPore IV 9500
(Norcross, GA, USA), and the pressure range was 0.003–300 MPa. The test instruments are
shown in Figure 8.
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3. Results and Discussion
3.1. Failure Mode of SFRRC

Before the tests, the specimens are placed in a curing chamber for 28 days. The
temperature and relative humidity of the curing chamber are, respectively, 20 ± 2 ◦C and
not less than 95%.

In the cubic compressive tests, a specimen without SFs undergoes compression defor-
mation and transverse elongation deformation during compression. At the initial stages
of loading, microcracks appear on the surface of the concrete and gradually develop into
edges and corners. With an increase in the load, the rapid development of microcracks
occurs, expanding both the concrete inside and the surface of the specimen, with the latter
severely falling off. Finally, the concrete is crushed, and the failure mode exhibits a wedge
shape on the surface of the specimen, which is understandably brittle failure. During the
compressive failure process, cracks appear later in the specimens mixed with SFs than
in the specimens without SFs. The cracks are significantly small in the early stages, and
the microcracks gradually develop and become larger in the later stages, with reduced
peeling of the surface of the test specimen. Until the end of the loading of a specimen with
SFs, the specimen does not undergo wedge failure and maintains good integrity, showing
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remarkable plastic failure. A large amount of SFs implies fewer cracks, less shedding,
and good integrity. It is found that the addition of SFs improves the failure mode of the
concrete and transforms it from brittle failure to plastic failure. The failure modes in the
axial compressive strength tests are basically the same as those in the cubic compressive
strength tests. The typical failure modes in the cubic and prismatic axial compressive tests
of the SFRRC specimens are shown in Figures 9 and 10, respectively. The failure modes
of the SFRRCs with different replacement ratios for the RCAs and water-to-binder ratios
are similar.
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In the splitting tensile tests, a specimen without SFs starts to show microcracks along
the shims as the load is first increased. When the ultimate splitting strength is reached, the
cracks rapidly penetrate the bottom and top surfaces of the specimen, at which time the
load drops sharply, and the specimen is split into two parts. The damage is heard with a
notable ringing sound, which belongs to brittle failure. The failure surface of the specimen
shows that the fracture occurs mainly at the intersection of the aggregates and the cement
mortar, and the aggregates themselves are not pulled off. The failure mode of a specimen
changes significantly after the addition of SFs. As the load is increased, the cracks on the
surface of the concrete gradually increase, a part of the concrete begins to fall off, and cracks
develop through the bottom and top surfaces. However, the specimen is not split into two
parts owing to the connection of the SFs between the cracks. The SFRRC has good integrity,
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and its failure mode belongs to plastic failure. The results show that the admixture of SFs
effectively inhibits the development of cracks. The SFs consumes a large part of the energy,
and cracks are produced mainly on the surface of the specimen during the failure process
and the concrete is not severely peeled off and broken, and these phenomena become more
significant with the increase in the SF admixture. The typical failure modes of the SFRRC
specimens in the splitting tensile tests are shown in Figure 11.
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3.2. Mechanical Properties of SFRRC

Loads are applied to the specimens by a pressure-testing machine, and the f cu, f ts, f c,
and Ec of each group of specimens are obtained, as summarized in Table 6. The values in
Table 6 are the averages of the test results of three specimens in each group.

Table 6. Test results of mechanical properties.

Groups Orthogonal Design f cu (MPa) f ts (MPa) f ts/f cu f c (MPa) f c/f cu Ec (MPa)

SFRRC-1 A1B1C1D1 48.4 3.74 0.077 34.4 0.71 32,900
SFRRC-2 A1B2C2D2 51.9 4.46 0.086 37.4 0.72 32,700
SFRRC-3 A1B3C3D3 47.1 5.10 0.108 35.6 0.79 26,400
SFRRC-4 A2B1C2D3 39.2 4.10 0.104 28.2 0.72 32,000
SFRRC-5 A2B2C3D1 37.0 4.29 0.116 25.2 0.71 29,200
SFRRC-6 A2B3C1D2 35.1 2.87 0.082 26.8 0.73 25,400
SFRRC-7 A3B1C3D2 36.0 4.39 0.122 24.8 0.72 30,500
SFRRC-8 A3B2C1D3 33.8 2.61 0.077 24.0 0.71 27,400
SFRRC-9 A3B3C2D1 32.7 3.29 0.100 23.9 0.74 24,100

It can be found that there is a significant linear relationship between f cu and f c, with
the ratio fluctuating at approximately 0.73, which is similar to that of natural concrete. The
ratio of f ts to f c significantly fluctuates, which is mainly due to the large influence of the
SFs on the splitting tensile behavior of the concrete. f cu and f ts are the main mechanical
properties of concrete. The results in Table 6 are processed according to the orthogonal test
analysis method, and the mean response analysis of the mechanical properties is shown in
Figure 12.

It was found that f cu decreases with the increase in w/c and ra, which is consistent
with the research results of [26]. The f cu and f ts of the SFRRCs only decreased by 6.38%
and 1.06% when ra increased from 50% to 100%, so it is recommended that ra be increased
to achieve more consumption of recycled aggregates in actual engineering. The SFs had a
particularly significant influence on f ts, when the SFs volume content is 1% and 2%, the f ts
increases by 28.66% and 49.51%. At the same time, the f cu increased by 5.55% and 2.45%,
indicating that too much SFs dosing will instead reduce the f cu of SFRRC, after considering
f cu simultaneously, it is recommended that the amount of SFs should not be extremely
large. Since SFs have a significant impact on the mechanical properties of recycled concrete,
the microstructure of SFRRC will be analyzed in detail in the follow-up, and the reasons for
the change in macromechanical properties will be explained through the microstructure.
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3.3. Strength Calculation Model

Tensile strength is an important property for reflecting the cracking resistance of
concrete, and most scholars advocate the use of splitting tensile tests of cylinders or cubes
to indirectly determine the tensile strength of concrete [27]. Elastic modulus (Ec) reflects
the relationship between the stress and deformation of a material in elastic state, and it is
a necessary parameter for calculating deformation in concrete structure design [28]. The
results of numerous studies have shown that there is a relationship between the f ts, Ec, and
f cu of concrete [29,30]. In this study, f ts and Ec are evaluated according to Chinese code
GB50010-2010 [31] as follows:

fts = 0.19 f 0.75
cu (3)

Ec =
105

2.2 + 34.7/ fcu
(4)

Similar formulas are available in the code, ACI318-14 [32], as expressed in Equations
(5) and (6).

fts = 0.55 f 0.5
cu (5)

Ec = 4700
√

fcu (6)

The calculation results of the above formula are compared with the test results of this
study, and the connections between f ts, Ec, and f cu are drawn as scatter points in Figure 13.
It can be seen that the test values of f ts are larger than the standard calculated values,
mainly because of the significant enhancement in f ts caused by the SFs. In general, SFs
enhance the Ec of concrete, whereas the RAC shows a suppressive effect, and a combined
effect of the two factors in a test value of Ec is a large deviation from the standard calculated
values. Therefore, the calculation formula for natural concrete is unsuitable for the SFRRCs.

According to the formula in the standard, f ts and Ec are still calculated from f cu.
Considering the influence of different factors in the orthogonal tests on the f cu of the
SFRRCs, multiple parameters need to be defined to predict f cu. Assuming that there are
linear relationships between the f cu of SFRRCs and the water–cement ratio, replacement
rate of the RCAs, and SF volume content, a calculation model for SFRRCs based on the
following formula is proposed:

fcu = b1 + b2(w/c) + b3ra + b4λm (7)

fts = c1 f c2
cu(1 + c3λm)(1 + c4ra) (8)

Ec =
105

2.2 + 34.7/ fcu
(1 + d1λm)(1 + d2ra) (9)
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where bi (I = 1–4) are the regression coefficients of the compressive strength, w/c is the
water–cement ratio, ra is the replacement rate of the RCAs, λm is the product of the SF
volume content and the aspect ratio of the SFs, ci (I = 1–4) are the regression coefficients
of the splitting tensile strength, and di (I = 1, 2) are the regression coefficients of the
elastic modulus.
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(b) Relationship between f cu and Ec.

The formulas for the f cu, f ts, and Ec of SFRRCs were established by regression analy-
sis. As expected, Figure 14 shows that the fitting coefficients are sufficient for satisfying
the requirement. To verify the reliability of Equations (7)–(9), the data of Gao [33,34],
Carneiro [35], Yazc [36], Ahmadi [37], and Kachouh [38] were used to compare the calcula-
tion results of the formula with the test results. The results are listed in Table 7. It can be
found that the predicted values are very close to the actual values. The maximum error
of f cu and f ts is approximately 20%, the average error is approximately 5%, the maximum
error of Ec is approximately 10%, and the average error is approximately 2%. Conse-
quently, the modified formulas can be applied to predict the f cu, f ts, and Ec of SFRRCs with
satisfactory accuracy.

3.4. Morphology of ITZ

Concrete is a composite material consisting of three parts: aggregates, mortar, and
aggregate–mortar ITZ, where the ITZ is the weakest region in concrete and has a significant
impact on the strength of concrete. Figure 15 shows the morphology of the ITZs of the
SFRRCs with different SF volume contents.

From Figure 15a, it can be found that there is a microcrack between the SFs and the
cement matrix. The SFs are pulled out from the cement matrix mainly because the ITZ
structure is damaged, which eventually leads to the relative sliding of the SFs and the
matrix. From Figure 15b,c, it can be found that the holes and cracks near the ITZ are
significantly reduced at 1% SF doping compared to that in the specimens without SFs.
However, the number and size of the cracks near the ITZ increases significantly when the
SF dosing is 2%.
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Figure 14. Accuracy of prediction model for mechanical properties of SFRRC: (a) Compressive
strength; (b) Splitting tensile strength; (c) Elastic modulus.

3.5. Microstructural Analysis of the SFRRC

For the aggregate ITZ, when cement is dissolved in water, the dissolved ions diffuse
and enter the water film. The active order of ions is Na+ > K+ > SO4

2− > Al3+ > Ca2+ > Si4+,
and the first products to be formed in the water film are hexagonal-shaped calcium hy-
droxide (CH) and needle-shaped ettringite (AFt). Compared to the cement matrix, the
water–cement ratio in the ITZ is higher, and its ion saturation is lower. Thus, CH and AFt
can grow freely and oriented on the aggregate surface without restriction. This prevents
the calcium silicate hydrate (CSH) gel from contacting the aggregates and increases the
porosity close to the ITZ. As the ion concentration in the ITZ decreases, the amount of the
CSH gel is reduced, which eventually leads to the formation of a loose network structure
in the ITZ. Therefore, the weakest position in the ITZ of the aggregates is that close to the
surface of the aggregates. Similarly, the mechanical properties of an SFRRC also strongly
depend on the microstructure of the ITZ, i.e., the area where the SFs are in contact with the
cement matrix. Results of the SEM with energy-dispersive X-ray analysis (SEM-EDXA) for
an SF-cement matrix-based ITZ are shown in Figure 16. Figure 16b,c show the effect of area
A (25–35 µm from the SF surface) and area B (5–15 µm from the SF surface) magnified by
5000 times, respectively.
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Table 7. Experimental data and information about prediction.

Source No.

Compressive Strength (MPa) Splitting Tensile Strength (MPa) Elastic Modulus (MPa)

fcu=91.853+106.905(w/c)+0.043ra+0.737λm fts=0.267f0.677
cu (1+0.371λm)(1−0.056ra) Ec= 105

2.2+34.7/fcu
(1+0.021λm)(1−0.211ra)

(R2 = 0.87) (R2 = 0.97) (R2 = 0.94)

Calculated Tested Calculated/
Tested Calculated Tested Calculated/

Tested Calculated Tested Calculated/
Tested

Article

SFRRC-1 48.1 48.4 0.994 3.63 3.74 0.971 32,100 32,900 0.976
SFRRC-2 47.1 51.9 0.908 4.64 4.46 1.040 31,600 32,700 0.966
SFRRC-3 44.9 47.1 0.953 5.03 5.10 0.986 27,600 26,400 1.045
SFRRC-4 40.9 39.2 1.043 3.89 4.10 0.949 30,800 32,000 0.963
SFRRC-5 38.9 37.0 1.051 4.40 4.29 1.026 29,300 29,200 1.003
SFRRC-6 38.0 35.1 1.083 2.80 2.87 0.976 24,800 25,400 0.976
SFRRC-7 32.6 36.0 0.906 4.37 4.39 0.995 30,400 30,500 0.997
SFRRC-8 33.0 33.8 0.976 2.81 2.61 1.077 27,700 27,400 1.011
SFRRC-9 29.7 32.7 0.908 3.30 3.29 1.003 24,500 24,100 1.017

Literature
[33]

CR0F1 54.6 45.4 1.203 — — — 34,100 33,000 1.033
CR30F1 51.5 46.0 1.120 — — — 32,100 34,600 0.928
CR50F1 49.8 46.8 1.064 — — — 30,800 38,400 0.802
CR100F1 45.0 47.2 0.953 — — — 27,200 37,800 0.720
CR50F0 49.4 44.9 1.100 — — — 30,100 29,700 1.010

CR50F0.5 49.6 45.6 1.088 — — — 30,400 34,000 0.894
CR50F1.5 49.9 48.1 1.037 — — — 31,100 41,900 0.742
CR50F2 50.1 49.9 1.004 — — — 31,600 42,900 0.737

Literature
[34]

N-C30R50F1 36.0 38.0 0.947 3.76 3.53 1.065 — — —
N-C45R50F1 49.0 54.1 0.906 4.78 4.47 1.069 — — —
N-C60R50F1 57.6 71.5 0.806 5.78 4.94 1.170 — — —
N-C45R0F1 55.5 61.5 0.902 5.37 4.59 1.170 — — —

N-C45R30F1 51.60 56.0 0.921 4.95 4.53 1.093 — — —
N-C45R100F1 42.4 48.1 0.881 4.29 4.12 1.041 — — —
N-C45R50F0 48.6 52.7 0.922 3.80 3.85 0.987 — — —

N-C45R50F0.5 48.8 53.9 0.905 4.31 4.24 1.017 — — —
N-C45R50F1.5 49.1 54.6 0.899 5.27 4.53 1.163 — — —
N-C45R50F2.0 49.3 55.1 0.895 5.77 4.63 1.246 — — —

Literature
[35]

REF 43.0 29.9 1.438 2.66 3.21 0.829 29,800 31,100 0.958
RFCA 39.9 37.7 1.058 3.07 3.53 0.870 30,400 29,200 1.041

SF-REF 43.3 34.3 1.262 3.44 3.96 0.869 31,400 30,900 1.016
SF-RFCA 40.2 41.5 0.969 3.86 4.48 0.862 31,600 32,100 0.984

Literature
[36]

C20 30.9 29.4 1.051 2.63 2.51 1.048 29,600 26,700 1.109
C20-10K 31 30.6 1.013 2.76 2.62 1.053 30,000 27,600 1.087
C20-20K 31 31.1 0.997 2.84 2.7 1.052 30,200 28,000 1.079
C20-30K 31 31.5 0.984 2.92 2.85 1.025 30,400 28,300 1.074
C20-40K 31 31.9 0.972 3.00 2.98 1.007 30,500 29,200 1.045
C20-60K 31.1 33.2 0.937 3.19 3.15 1.013 31,000 29,800 1.040
C20-80K 31.2 33.5 0.931 3.31 3.22 1.028 31,200 30,300 1.030

C40 54.3 49.9 1.088 3.77 4.12 0.915 34,500 32,100 1.075
C40-10U 54.3 52.4 1.036 4.04 4.28 0.944 35,000 33,200 1.054
C40-20U 54.4 52.7 1.032 4.21 4.44 0.948 35,100 33,700 1.042
C40-30U 54.5 53.9 1.011 4.42 4.59 0.963 35,400 34,100 1.038
C40-40U 54.5 55 0.991 4.64 4.81 0.965 35,600 35,100 1.014
C40-60U 54.6 56.1 0.973 5.01 5 1.002 35,900 35,600 1.008
C40-80U 54.8 56.9 0.963 5.37 5.27 1.019 36,200 36,300 0.997

Literature
[37]

R0F0 43 37.1 1.159 3.08 3.30 0.933 — — —
R50F0 36.5 34.9 1.046 2.88 3.00 0.960 — — —
R100F0 29.9 33.5 0.893 2.72 2.90 0.938 — — —
R0F0/5 43.2 38.3 1.128 3.44 4.30 0.800 — — —
R50F0/5 36.60 38.5 0.951 3.36 3.90 0.861 — — —

R100F0/5 30.1 34.8 0.865 3.05 3.70 0.824 — — —
R0F1 43.3 33.1 1.308 3.38 5.50 0.615 — — —

R50F1 36.8 32.2 1.143 3.23 4.60 0.702 — — —
R100F1 30.2 29.5 1.024 2.95 4.30 0.686 — — —

Literature
[38]

R0SF0 — — — — — — 31,700 37,100 0.854
R30SF0 — — — — — — 28,200 30,000 0.940
R70SF0 — — — — — — 24,000 21,400 1.121

R100SF0 — — — — — — 21,900 19,900 1.101
R30SF1 — — — — — — 28,900 32,200 0.898
R70SF1 — — — — — — 25,300 23,700 1.068

R100SF1 — — — — — — 22,700 20,800 1.091
R30SF2 — — — — — — 29,600 33,000 0.897
R70SF2 — — — — — — 25,900 25,100 1.032

R100SF2 — — — — — — 23,200 21,200 1.094
R30SF3 — — — — — — 30,400 34,500 0.881
R70SF3 — — — — — — 26,600 27,000 0.985

R100SF3 — — — — — — 23,900 22,100 1.081

Note: No. represents name of test specimen in the literature.
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Figure 15. Morphologies of ITZs: (a) vsf = 1%; (b) vsf = 0%; (c) vsf = 2%. Figure 15. Morphologies of ITZs: (a) vsf = 1%; (b) vsf = 0%; (c) vsf = 2%.

It can be seen that, as the distance from the surfaces of the SFs increases, the concentra-
tion of Fe2+ ions first decreases and subsequently increases. At 25–35 µm from the surfaces
of the SFs, the Fe2+ ion concentration is close to the lowest value. After 40 µm, the Fe2+ ion
concentration begins to level off, and at 100 µm, it is the inherent Fe2+ ion concentration
of the cement itself. The results show that a part of the Fe2+ ions can be dissolved from
the surfaces of the SFs, which is different from an ordinary aggregate interface. This part
of the Fe2+ ions enters the water film, and the superposition of the ions dissolved in the
cement and the ions dissolved from the SFs makes the concentration of ions in the interface
higher than that in the ordinary aggregate interface. Fe2+ ions can reduce some of the
adverse effects of the water film, and more CSH is formed close to the SFs. This increases
the probability of the CSH contacting the SFs and causes it to fill the porous structure close
to the surface of the SFs, therefore enhancing the compactness of the structure. The Fe2+

ion concentration is lower in the A area slightly further from the fiber surface, and the
needle-shaped AFt and hexagonal-shaped CH mainly accumulated in the area. Owing
to the influence of solid particle shape, the sparse accumulation of particles around the
side wall produces numerous pores, resulting in the formation of a loose structure in the
ITZ around the aggregates, which can be considered to be a weaker area in the SF–matrix.
However, excessive SFs can have a detrimental effect on the concrete, which requires a
more detailed analysis of the microscopic pore structure parameters.
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Figure 16. Micromorphology of SFRRC: (a) Element fraction by EDXA; (b) A area; (c) B area.

4. Internal Mechanisms of the Mechanical Properties in SFRRC
4.1. Microscopic Pore Structure Analysis

The microscopic pore structures of the SFRRCs were determined using the MIP
method, and the pore structure parameters of each specimen are listed in Table 8 and
shown in Figure 17. The pore structures can be divided into four levels according to the
pore size [39]: harmless pores (diameter < 20 nm), less-harmful pores (diameter 20–50 nm),
harmful pores (diameter 50–200 nm), and more-harmful pores (diameter > 200 nm).

Table 8. Pore characteristic parameters and strength of SFRRCs.

Groups Orthogonal
Design

Total Porosity
(%)

Total Pore
Volume (mL/g)

Average Pore
Diameter (nm)

f cu
(MPa)

f ts
(MPa)

SFRRC-1 A1B1C1D1 15.56 0.0727 32.56 48.4 3.74
SFRRC-2 A1B2C2D2 11.88 0.0591 15.88 51.9 4.46
SFRRC-3 A1B3C3D3 15.12 0.0716 30.73 47.1 5.10
SFRRC-4 A2B1C2D3 13.88 0.0712 17.32 39.2 4.10
SFRRC-5 A2B2C3D1 18.13 0.0863 30.17 37.0 4.29
SFRRC-6 A2B3C1D2 18.77 0.0993 36.61 35.1 2.87
SFRRC-7 A3B1C3D2 19.17 0.0879 33.69 36.0 4.39
SFRRC-8 A3B2C1D3 20.32 0.1031 39.81 33.8 2.61
SFRRC-9 A3B3C2D1 18.88 0.0921 19.7 32.7 3.29
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Figure 17. Pore characteristic parameters: (a) Pore size distribution; (b) Total porosity and pore diameter.

From Table 8 and Figure 17, it can be found that the water–cement ratio, replacement
rate of the RCAs, and SFs have little effect on the content of the harmful pores in the SFRRCs.
With the increase in the water-binder ratio and the RCA replacement rate, the porosity and
volume percentages of the less-harmful, harmful, and more-harmful pores of the specimens
increase, whereas the volume percentage of the harmless pores decreases. With the increase
in the SF volume content, the porosity and pore size of the SFRRCs show first a decreasing
and subsequently an increasing trend. When the SF volume content is 1%, the total porosity
and average pore diameter of the SFRRCs are the smallest, which are 18.33% and 51.42%
lower than those of the specimens without SFs, respectively. When the SF volume content is
2%, all pore structure parameters of the SFRRCs show an increasing trend. Compared to the
SFRRC with 1% SF volume content, the total porosity and pore size of the former increase
by 17.41% and 78.64%, respectively. The results show that mixing an appropriate amount of
the SFs into the concrete can effectively prevent the generation of the concrete microcracks
caused by water loss and reduce the size and number of microcracks. These therefore
reduce the total porosity of concrete and make the distribution of the pore structure more
reasonable. When the amount of the SFs is extremely large, their agglomeration occurs in
the concrete, resulting in an uneven distribution of the pore structure, and increasing the
total porosity and pore size of the concrete. It is generally believed that the f cu of an SFRRC
mainly depends on the compactness of its matrix, and the f ts of an SFRRC mainly depends
on the bonding strength of the SF–matrix interface. The SFs can bond with the matrix well
and have the effect of strengthening and toughening the concrete; therefore, the f ts of the
concrete is significantly improved with the increase in the SFs. However, excessive addition
of the SFs adversely affects the pore structure of the concrete, resulting in a decrease in f cu.

4.2. Relationship between Strength and Pore Structure of SFRRCs

The static pore structure of concrete as a porous medium is generally analyzed using
the Menger sponge model, and this method has been recognized by many researchers [40].
As shown in Figure 18, each side of the initial element with side length R is equally
divided into m parts, following which m3-small cube elements are obtained and n small
cube elements are randomly eliminated. After k times, the number of remaining cubes is
(m3 − n)k and the side length of the smallest cube unit is rk = R/mk. The fractal dimension,
Dm, of the sponge model is calculated using the box-counting method, as expressed below:

Dm = lim
k→+∞

ln
(
m3 − n

)k

ln
(
mk/R

) = ln
(

m3 − n
)

/ln m (10)
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According to the fractal theory, the remaining cube volume, Vs, of the sponge model
has a power relationship with the length, rk, of the smallest cube elements, and their
derivatives can be obtained as follows:

ln Vs

ln rk
=

ln [(m3 − n)k × (R/mk)
3
]

ln (R/mk
) ∝ (3− Dm) (11)

The remaining cube volume of the sponge model is:

Vs ∝ rk
3−Dm (12)

The pore volume of the remaining cube, Vp, is:

Vp = R3 −Vs (13)

Based on Equations (12) and (13), the following formula is obtained:

lg(−dVp/drk) ∝ (2− Dm)lg rk (14)

It can be seen from Figure 19 that the variation law of the total porosity of the SFRRCs
is opposite to the variation law of the fractal dimension, which indicates that porosity can
reflect the variations in the pore structure composition and distribution in the concrete to a
certain extent. A large fractal dimension implies a highly complex pore structure and high
composition in the concrete, and a high tortuosity of the capillary pores.

f cu and f ts are the most basic mechanical indicators of the macroscopic properties
of concrete, and the magnitude of the strength is closely related to the microscopic pore
structure. Research results show that the mechanical strength of concrete is related to its
porosity [41], pore size distribution, and fractal dimension, and researchers commonly
use porosity or fractal dimension to calculate the strength of concrete. The results of the
quadratic polynomial fitting of the relations between the porosity, fractal dimension, and
strength of the concrete are shown in Figure 20.

It can be seen from Equation (14) that the logarithm of −dVp/drk and rk have a linear
relationship, and the fractal dimension, Dm, can be obtained by fitting of the curve, and the
result is shown in Figure 19.
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It can be found that the fitting between the concrete strength and the porosity or the
fractal dimension needs to be improved. To obtain a higher precision calculation model,
it is necessary to consider the effects of both the porosity and fractal dimension, and the
influence coefficients of the SF volume content and the replacement rate of the RCAs should
be added. Based on the above analysis results, a calculation model of SFRRC strength based
on the following formula is proposed:

f = (e1P2
t + e2D2

m + e3PtDm + e4Pt + e5Dm + e6)(1 + e7λm)(1 + e8ra) (15)

where f is the SFRRC strength, ei (I = 1–8) are the regression coefficients of strength, Dm is
the fractal dimension, λm is the product of the SF volume content and the aspect ratio of
the SFs, and ra is the replacement rate of the RCAs.

Based on Equation (15), the relationships between the concrete strength and the
pore structure parameters, SF volume content, and RCA ratio were obtained by multiple
regression analysis, and f cu and f ts are calculated as shown in Figure 21. It can be found
that the r-squared of the multifactor calculation models for f cu and f ts are 0.89 and 0.97,
respectively. Moreover, the maximum errors of the compressive strength and splitting
tensile strength do not exceed 10% and 5%, respectively, indicating that the regression
effect is significant. Therefore, the calculation model results are in good agreement with the
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experimental results and can accurately describe the quantitative relationships between the
macromechanical properties of SFRRCs and the microscopic pore structure parameters.
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5. Conclusions

This study investigated the mechanical properties of SFRRCs with different water–
cement ratios, RCA replacement rates, and SF volume contents by orthogonal tests. Com-
bined with an SFRRC microstructure analysis, the following conclusions were drawn:

• The SFs can inhibit the development of SFRRC cracks, increase the strength and
ductility of the SFRRC, and significantly improve the failure mode of the SFRRC,
changing it from brittle failure to plastic failure.

• With the increase in the SF volume content, the f ts of the SFRRCs increase significantly.
When the SFs volume content is 1% and 2%, the f ts increases by 28.66% and 49.51%.
At the same time, the f cu increased by 5.55% and 2.45%, indicating that too much SFs
dosing will instead reduce the f cu of SFRRC, which is related to the microscopic pore
structure of SFRRCs.

• The formula for calculating concrete strength in the code is not applicable to SFRRCs.
By a multifactor analysis, a mechanical calculation model for SFRRCs is obtained using
Equations (7)–(9), and the calculation and test results have a high degree of fit.

• The Fe2+ ions dissolved on the surface of the SFs can improve the structure of the ITZ
and increase the bonding strength of the interface. The weak region of the SF–matrix
ITZ is approximately 25–35 µm from the SF surfaces, which is related to the concentra-
tion of Fe2+ ions.

• When the SF volume content is 1%, the total porosity and average pore diameter of
the SFRRCs are 18.33% and 51.42% lower than those of the specimens without SFs.
Compared to the SFRRC with 1% SF volume content, the total porosity and pore size
of SFRRCs increased by 17.41% and 78.64%, respectively, when the SF content was
2%. This phenomenon is because adding the appropriate amount of SFs reduces the
size and number of cracks in the ITZ and makes the pore structure distributions of the
SFRRCs more reasonable. An excessive amount of SFs causes an uneven distribution of
the pore structure, increasing the total pore space and the pore size, therefore reducing
the compressive strength of the SFRRCs.

• It is inaccurate to use the porosity or the fractal dimension alone to calculate the
strength of an SFRRC. The regression of a multifactor strength calculation model
using the fractal dimension, porosity, SF volume content, and RCA replacement rate
is significant, and the model can accurately describe the quantitative relationships
between the strength of the SFRRCs and the pore structure parameters.
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