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Abstract: Pine timber of Polish origin intended for structural purposes is characterized by significant
variability in the quality parameters. Technological suitability determined on the basis of relevant
international classifications is based on the assessment of both selected mechanical and physical
properties of wood. Moreover, the description of visual properties is also a valuable indicator
regarding defect distribution. In the group of quality features playing a crucial role in the classification
of sawn timber, there are knots, disruptions of grains, cracks, etc. Thus, the aim of the research was
to determine the correlation between the presence of selected defects and the strength properties of
individual timber pieces. This type of study is based on a nondestructive test method that allows
for high optimization of sawn materials processing. In the case of sawn timber of Polish origin,
the modulus of elasticity (MOE) determined using the sonic test is commonly used as a criterion.
The research material was harvested from southern Poland. The results of the conducted studies
confirmed a correlation between an increasing occurrence of particular types of defects and the results
of MOE. Furthermore, as a result of the performed investigations, no significant effect of narrow
surface cracks on strength properties was observed.

Keywords: structural timber; pine sawn timber; wood defects; modulus of elasticity; strength properties

1. Introduction

The suitability of sawn materials is strongly dependent on the structure of the wood
and the frequency of wood defect occurrence. The features commonly used to characterize
both the cross-section and the external shape of the log can often translate into the strength
characteristic affecting its suitability for structural application. The proper management of
cutting processes indicates which quality standards should be applied depending on the
wood species, its dimensions, and its origin. Proposing the appropriate optimization model
is crucial for wood sorting and helps to solve the problem of planning the production of
construction sawn timber [1,2]. The currently applied optimization systems for sorting
structural timber (e.g., MiCROTEC and LuxScan) are based on the identification of defects
and their acceptability in various strength functions created for semifinished products.
Only models that focus on maximizing the use of information concerning the quality
characteristics of a given wood species guarantee the achievement of the finished product
with an appropriate strength class and overall assumed production results.

The timber assessment systems used to ensure optimal wood processing into struc-
tural semifinished products are most often based on visual assessment, determination of
the dynamic modulus of elasticity, or both methods combined together. The identified
anatomical defects, which include, among others, knots, slopes of grain, and resinosis,
play a decisive role in classification systems as well as defects occurring due to secondary
processing, i.e., cracks, discolorations, rots, and curvatures [3,4]. In the group of the above-
mentioned coniferous wood defects, knots most often play a crucial role in the process of
optimizing the obtainment of structural semifinished products. The results have shown
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that in the case of coniferous wood species, knots constitute up to 75% of defects, affecting
the qualitative classification of the obtained sawn timber [5]. At the same time, the presence
of knots strongly influences the strength of the wood determined using the modulus of
elasticity [6]. This parameter is especially important since it is the basis for the comparative
assessment of the technical value of wood originating from Poland [7–11]. Knots disturb
the homogeneity of the wood structure by a local increase in hardness and density and a
change in the direction of the fibers [12–14]. Moreover, the presence of knots negatively
affects tensile, longitudinal compression, and static bending strength when compared
with knot-free wood. The deterioration in strength strongly depends on the dimension,
soundness, and distribution of knots within the investigated element.

The horizontal cracks occurring along the length of the sawn timber piece also play a
significant role in terms of strength properties [15,16]. In the case of surface assessment, an
important role is played by the area of the cracks characterized based on their width and
length. However, the verification of depth is the most important for predicting a decrease in
strength properties. In general, as the depth and length of the cracks increase, deterioration
in the loads transferred by structural materials also increase [17].

The slope of the grains in wood materials indicates the deviation of the anatomical
elements of wood from the longitudinal axis of the sawn timber [18]. This defect in the
wood structure causes a reduction in its mechanical strength, which means that it cannot
carry the assumed loads envisaged for full-value wooden materials in a building.

Modern optical systems are based on four-sided scanning of sawn timber surfaces.
The use of numerical programs allows an image of defect distribution to be processed, and,
as a result, a signal that optimizes the process of sorting sawn timber into construction
elements can be generated [19–21]. The assessment of defect distribution for all planes
of sawn timber allow for the identification of the intensity of undesirable features and
linking them with strength. This process consists of processing the image of sawn timber
into cross-sectional zones and verifying both the longitudinal and transverse intensity and
the distribution of defects according to a predetermined division algorithm. The division
formula is influenced by assigning the given parameters to the zones of sawn timber that
define their unacceptable ranges. This formula is closely related to the species of wood since
the defects for different species are subjected to a different strength classification. Therefore,
optimization of the strength sorting process based on optical verification consists of finding
a relationship regarding knowledge about the occurrence of defects as a function of the
dimensions assigned to zones for different strengths of a considered species of wood. The
evaluation process ends by generating a feedback signal, which consequently optimizes
the sorting process.

The process of zoning, i.e., automatic detection of significant sections with defects,
allows to calculate the area of their occurrence as the ratio of their surface area to the total
surface of the timber [22–24]. In addition, existing algorithms are able to correctly fit the
modulus of elasticity (determined dynamically or sonically) to the intensity of sections on
various surfaces of the sawn timber, with an emphasis on knots, slope of fibers, or cracks.
Furthermore, it allows to predict the bending strength, which is also related to the share
of the selected defects. Adjustment of the determination of the R2 model presenting the
effect of knots in the discussed algorithms for Douglas fir (Pseudotsuga enziesii) is assessed
at the level between 0.59 and 0.72, and for Norwegian spruce (Picea abies), between 0.42
and 0.50. Studies have shown that determining the area of knots and the dynamic modulus
of elasticity can provide an accurate estimate of bending strength values [25–28].

The currently developed three-dimensional visualization systems for assessing the
distribution of defects are based on implemented control systems through a relational data
model with four types of parameter classification, i.e., width, length of defects, and their
intensity of occurrence. The developed tools are based on a system of comparing the total
values of identified defects to their dimensions, shape, or position on both the length and
width of a sawn timber piece [19,29].
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On the basis of nondestructive testing, it is possible to determine the impact of both
the quality of raw material and the impact of selected factors on the properties of structural
timber intended for specific applications in construction. The correlation between the
examined visual features and physical-mechanical properties are the basic indicators
determining the suitability of materials for their use in building structures. The bending
strength has a strong impact on the design of wooden structures, and it is often determined
during nondestructive tests (NDT) with the simultaneous determination of the modulus
of elasticity [9,30,31]. Currently, NDT based on ultrasound are one of the most popular
methods of various material investigations, and they are used both in scientific research and
in various industry branches [32–38]. The possibility of qualitative (strength) classification
of wood based on the propagation speed of ultrasonic and elasticity vibration waves
results from the fact that the investigated values depend on the moisture content (MC), the
occurrence of defects, species, and the direction of propagation that define its mechanical
properties [39–48]. The use of these methods is associated with the determination of
the sonic modulus of elasticity (correlated with the static modulus), which allows for
the complete assessment of wood quality [49–51]. NDT, however, require considerable
knowledge about the properties and structure of wood, the expected distribution of defects
and inhomogeneities, as well as the features of the measuring device.

The main purpose of the present work was aimed to confirm the impact of the number
and intensity of defects on the planes of sawn timber on the evaluation of its strength
parameters. The sonic modulus of elasticity was used as the indicator providing infor-
mation regarding the technical parameters of timber. The conducted research was aimed
at indicating the quality of Polish pine wood and determining its suitability for use in
construction. The assessment concerned the verification of the suitability of pine wood from
western Poland in industrial practice and the verification of visual methods of classification
for coniferous sawn timber.

2. Materials and Methods

Pine timber pieces (Pinus sylvestris L.) with a dimension of 3500 mm × 175 mm ×
22 mm were obtained from large-sized roundwood harvested from mixed forest habitat
in the Olesno Forest District (southern Poland, division 14d, 120-year-old stand, fertile
soils of podzolic and brown type: clay sands and sandy loams). The habitat type is one
of the factors that determine the classification of individual forest areas [52]. The type
of forest soil is strictly defined, and it reflects the fertility of the land on which the trees
grow. Consequently, it determines the future species composition of the region and both
growth and quality development. The appropriate selection of three species, based on
the knowledge of their ecological conditions, ensures better land use and natural soil
protection [53,54].

The present study assessed defects in the anatomical structure and secondary defects
(cracks) in the obtained sawn timber. Visual examination of the sawn timber was carried out
with the use of a four-sided optical scanner Q-Scan 604, produced by the Polish company
Woodinspector form Lublin, Poland. The experimental material was tested by measuring
defects, such as knots and disruptions of grains for individual planes, and automatically
digitizing and mapping in terms of the frequency of defects present in the examined surface
(Figures 1–3). Most of the processes in automated timber sorting are related to defect
recognition. For crucial defects, proper designations were adopted for knots:

• knots_0 for sizes up to 10 mm;
• knots_1 for sizes up to 20 mm;
• knots_2 for sizes up to 30 mm;
• knots_3 for sizes over 30 mm;

and for cracks:

• pek0 for cracks up to 1 mm;
• pek1 for cracks over 1 mm.
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During the analysis, the zones were separated along the length of tested sawn timber
and on its cross-section: for wide planes (site_0 and site_1, or both site_0/1) and for narrow
planes (site_2 and site_3, or both site_2/3).

The collected information was then compared to the mechanical and physical prop-
erties, i.e., modulus of elasticity and apparent density. Strength grading was carried out
using an MTG device from the Dutch company Brookhuis Electronics BV (Brookhuis Ap-
plied Technologies, Eschede, The Netherlands). The operation of the device is based on
measurements of the frequency of wood vibrations caused by dynamic hitting of the end
of the tested piece of wood. The device records the time it takes for an acoustic wave to
pass through a material of known length, and the propagation speed of the wave can be
determined. This speed strongly depends on the structure and damage of the material. In
the case of wood, its value is several times higher for the direction of wave propagation
along than across the grain. As previously stated in the literature, this method allows
to determine the dynamic modulus of elasticity [48]. The MC of wood was determined
using a Tanel HIT-3 produced by the Polish company Tanel form Gliwice, Poland, moisture
meter with an accuracy of 0.1% just before testing its mechanical properties. During the
MC measurements, the nominal density of pine wood and the temperature of the room
in which the tests were carried out were assessed and taken into account. The density of
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each board was determined using the stereometric method (EN 384 [55]). The conversion
of MOE to a MC of 12% was performed using the Bauschinger formula (Formula (1)):

MOE12 = MOEw(1 + αw × (w − 12)) (1)

where:
MOE12—modulus of elasticity for MC of 12%, kN/mm2;
MOEW—modulus of elasticity for given MC, kN/mm2;
αw—coefficient of change in modulus of elasticity of wood with a change in its MC by 1%;
w—MC of wood during testing, %.

Both the mechanical properties and wood density are summarized in Table 1.

Table 1. Properties of research material.

Property Moisture Content (%) Density for MC of 12% (kg/m3) MOE for MC of 12% (kN/mm2)

Average value 13.0 500.7 10,656
Minimum value 11.9 428.6 7674
Maximum value 14.1 545.8 12,835

Standard deviation 0.5 30.3 1344

Note. MOEdyn, dynamic modulus of elasticity; MC, moisture content.

Verification of the relationship between the quality characteristics and the sonic modu-
lus of elasticity consisted of measuring the defects of the sawn timber, including the knotted
zone, disruptions of grains and cracks, and their reference in the plane to the confirmed
strength evaluation index.

3. Results and Discussion

In the conducted research, the relation between the modulus of elasticity and the
density of sawn timber with a moisture content of 12% (ρ12) was determined. The obtained
results show a correlation at a level of R2 = 0.804, which can also be described by the
following function: MOE = −0.0187ρ2 + 58.32 ρ − 138,831 (Figure 4). Thus, the analyzed
values indicate a high level of fit between the MOE and the density of the tested pine timber.
Moreover, the Spearman’s rank correlation coefficient was R = 0.896 at a significance
level of p < 0.001, which shows a high level of correlation between the results of the
determined properties.
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The effect of the frequency of knot occurrence along the length of the tested pine sawn
timber on the MOE results was also investigated (Figure 5).
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The results confirm the observations previously described by Lin et al. [29], Lukace-
vic et al. [56], and Wright et al. [57] regarding the effect of knot presence on MOE values.
In the case of analyzing the effect of the quantity of knots occurring on the wide planes,
the Spearman’s rank coefficient was R = −0.67 at a significance level of p < 0.001, which
can be described by the function y0/1 = 3.0198x2 − 273.02x + 15,881. At the same time,
the Spearman’s rank coefficient was R = −0.30 when analyzing the effect of knot occur-
rence within the narrow planes on the MOE results, and it can be described as follows:
y2/3 = −2.6031x2 + 15.916x +11,953.

In order to specify the effect of knot presence on the length of evaluated sawn timber,
measurements of the dimensions of knots were conducted. Based on that, the knots were
labeled as 0, 1, 2, and 3. The results are presented in Figure 6.
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The outcomes confirm a low correlation between the share of knots and the MOE
values for those labeled as 0 (up to 10 mm) and 1 (up to 20 mm). At the same time, the
negative impact of the increase in the share of the large knots on MOE values was noted.
The Spearman’s rank correlation coefficient was R = −0.336 for knots labeled as 2 (up to
20 mm) and R = −0.57 for the largest knots labeled as 3 (dimensions over 30 mm).

The occurrence of knots is associated with a change in the anatomical structure of wood.
The resulting disruptions of grains may cause a deterioration in the strength parameters,
e.g., represented by MOE values, as shown in Figure 7. The presented averaged percentage
indicators illustrate the major dispersion of the obtained results concerning the frequency
of the disruption of grain occurrence along the length of the investigated sawn timber piece.
However, at the same time, the distribution of values draws attention to the tendency of
the MOE results to decrease along with an increase in the share of the disruptions of grains
on the surface of the timber. The Spearman’s rank correlation coefficient was R = −0.749 at
a significance level of p < 0.001. The results confirm previous studies on the direct effect of
lumber fiber deviation on strength [17,58–60].
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Figure 7. The effect of disruptions of grains on the results of MOE.

Another factor influencing the strength properties of wood is the presence of cracks,
which can be called interruptions in the continuity of the material structure. The impact of
the number of cracks on individual planes of sawn timber on the MOE results is presented
in Figure 8. In most cases, cracks in the wood structure are caused by desorption changes.
The damage is more intense in the area of the fiber cross-section. Studies have shown that
as the number of cracks increase, the values of MOE noticeably decrease. This observation
confirms the results of previous research conducted by Schajer et al. [26], Olsson et al. [58,61],
Burchelt et al. [17], and Yu et al. [62] concerning the effect of the presence of cracks on
the timber strength index determined using the modulus of elasticity. The Spearman’s
rank correlation coefficient for wide planes labeled as 0 and 1 had slightly negative values
of R = −0.342 and R = −0.356, respectively. In the case of analyzing the impact of cracks
occurring on both wide planes (0 and 1), there was a strongly negative value of R = −0.741,
which indicates a particularly negative effect of their presence on MOE.

Despite considerable variability in the distribution of narrow cracks up to 1 mm
(labeled as 0) and those characterized by a width of over 1 mm (labeled as 1) in the tested
sawn timber, their effect on the MOE results was determined (Figure 9). The outcomes did
not show an effect of the presence of narrow cracks on the investigated parameter. On the
other hand, in the case of wider ones, an adverse effect on the MOE results was confirmed.
The reason for this is a greater depth of cracks in the structure of timber. Spearman’s rank
correlation coefficient for pek0 showed a slightly negative impact of R = −0.342, while the
effect of wide cracks (pek1) was strongly negative with R = −0.741.
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Verification of the cracks’ surface share in the investigated pine sawn timber allows
for the evaluation of secondary damage in the tested piece (Figure 10). The result of the
average share of the cracked surface was approx. 0.03%. The distribution of cracks on the
planes of timber had a strong negative effect on the outcomes of MOE. The Spearman’s
rank correlation coefficient was R = −0.824 for the analyzed features.

The investigated effect of the qualitative assessment of sawn timber on the outcomes of
MOE showed significant roles for both knots with major dimensions and cracks. However,
the influence of small knots on the value of MOE was not confirmed. Research into the
correlation between the area of defects and the MOE values of timber obtained from Poland
confirms the significant role of this indicator in the assessment of mechanical properties.

Based on the obtained results presenting the technological characteristics of Polish
sawn timber, it was possible to assess the impact of defects on the quality of the material.
The modulus of elasticity is an indicator of structural timber usability, and it translates into
the potential application in this constantly developing branch of industry. As it was shown,
its values are related to the share of specific defects in the structure of wood material [25–28].
In the case of sawn timber of Polish origin, the values of MOE are strongly influenced by
the dimensions of knots. The effect of the number of knots is much less noticeable. Thus,
the research confirmed that it is mainly the share of large knots that is the main factor
affecting the results of MOE. The share of knots up to 10 mm was not of such importance in
the conducted research. Studies have also confirmed a strong negative correlation between
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MOE and the increasing occurrence of the disruptions of grains. The overall research
regarding the impact of this defect confirms that there is a strong relationship between the
mechanical characteristics of wood and the deviations in grain course resulting from the
change in the structure of wood tissue in the area around the knot [63,64]. Not only do
the defects resulting from the disturbed anatomy of wood have a significant effect on its
strength characteristics, but the secondary defects such as cracks also have a noticeable
influence on them. The decrease in wood strength results from the change in the structure
of the wood in the area that breaks the continuity of material, and it depends on its extent.
It was confirmed that the presence of cracks having larger widths affected the timber
properties more [15,17,65,66]. The present work is the basis for further verifications of the
structural features of pine wood of Polish origin oriented toward visual strength sorting.
The decrease in strength classes could be determined by an increase in the share of defects
in terms of their surface area. It is an indicator that also translates into their distribution on a
cross-section, which has been previously confirmed by numerous studies using innovative
techniques, such as computed tomography [67–70].
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4. Conclusions

- The distribution of knots in pine timber grown in western Poland is characterized
by a high frequency of their distribution and considerable size. This may indicate a
major variability in the quality characteristics of the raw material harvested from the
pine stands.

- It was examined how the intensity of sound and rotten knots in the tested material
translates into the strength indicators. It was found that the share of large knots (over
30 mm) caused the most notable decrease in MOE values.

- The correlation between the modulus of elasticity and the intensity of knot distribution
was positive. There was no evidence of a relationship between half-rotten knots and
the tested strength indicator, which, however, taking into account the small share of
this defect (approx. 1%), does not confirm a lack of correlation in general.

- Despite a significant share of knots with a dimension of up to 20 mm in the pine
timber, the effect of their presence on the MOE results was not confirmed.

- Surface cracks had a slight impact on the MOE values of the tested batch of material.
On the other hand, the increase in the share of wide cracks occurring on the surface of
the sawn timber significantly affected its strength. The research allowed to determine
the level of crack area severity for pine materials and the impact of these defects on
technical performance (achieving a specific strength).
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- Along with an increasing level of accuracy in the qualitative characterization of struc-
tural sawn timber, it is possible to improve semifinished product sorting efficiency
with the use of surface defects analysis. The measurements based on the available
image analysis systems allow to locate defects with high accuracy. They are guide-
lines for the creation of algorithms that allow to determine optimal solutions for the
identification of pine wood strength classes.
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43. Fabisiak, E.; Moliński, W.; Roszyk, E. The Propagation Velocity of Ultrasound Waves along the Grain in the Juvenile and Mature,
Normal and Reaction Wood of Pine (Pinus sylvestris L.). Ann. Wars. Univ. Life Sci.-SGGW For. Wood Technol. 2007, 62, 200–206.

44. Misztal, B. Forecasting in Time of Rheological Defections of Truss Girders, Consolidated from Wood, Wood-Based Material and
Steel. In Proceedings of the 9th World Conference on Timber Engineering, Portland, OR, USA, 6–10 August 2006.
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