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Abstract: Our study investigates the geotechnical engineering properties of cement fly ash gravel
mixtures in the laboratory. Gravels with three different size ranges were blended with cement and
fly ash. The mixture properties were investigated, including the porosity, density, permeability,
unconfined compressive and splitting tensile strengths, cohesion, and friction angle after curing for
28, 50, and 90 days, respectively. The experimental results revealed that the gravel sizes and fly
ash contents significantly influenced the strength characteristics. The permeability coefficients of
the cement fly ash gravel mixtures were 0.9 to 1.7 cm/s, much higher than a soil-cement column.
The unconfined compressive strengths and splitting tensile strengths were found to be from 3.75 to
18.5 MPa and from 0.5 to 2.5 MPa, respectively. The cohesion and friction angle values ranged from
2.2 to 5.3 MPa and 30 to 40 degrees. The mixture strength was 6 to 30 times higher than a soil-cement
column. The 15% fly ash provided the best strength characteristics as it exhibited the most significant
calcium silicate hydrate contents. Thus, using cement fly ash gravel column-supported embankments
is more productive than using a soil-cement column and granular pile to increase the column-bearing
capacity and overall stability and accelerate the consolidation process.

Keywords: column; consolidation; highway and railway embankments; soil improvement; strength

1. Introduction

Since soft clay has a low shear strength, high compressibility, and low permeability,
the construction of highway and railway embankments on the soft clay layer results in
slope instability, low bearing capacity, and significant settlement problems. Such problems
can create construction delays and additional rebuilding costs [1]. Moreover, consoli-
dation settlement caused by dissipating excess pore water pressure takes a long period
because of the low permeability of the soft clay. Therefore, a soil improvement technique,
a column-supported embankment, has been commonly introduced to maintain slope sta-
bility, increase the bearing capacity, and reduce settlement [2], as shown in Figure 1. The
columns used for supporting embankments built on soft clay foundations include concrete
piles, granular columns (stone columns or sand compaction piles), and soil-cement columns
(Figure 2). Concrete piles have high strength and can be driven through the stiff to hard
clay layers to obtain high pile capacity and reduce embankment settlement. Granular
piles are built by driving a steel casing to the hard clay layer from the ground surface.
The clays contained in the case are removed and replaced with stones, gravels, or sands
to enhance the bearing capacity of the soft clay [2]. The granular pile can accelerate the

Materials 2022, 15, 3972. https://doi.org/10.3390/ma15113972 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15113972
https://doi.org/10.3390/ma15113972
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4234-0575
https://doi.org/10.3390/ma15113972
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15113972?type=check_update&version=1


Materials 2022, 15, 3972 2 of 17

consolidation process induced in the soft clay since it acts as a vertical drain because of
the high permeability of sand or stone used. The excess pore water pressure generated by
the traffic and embankment loads can be rapidly dissipated through vastly interconnected
pores between particles of sand and stone [2]. However, the primary disadvantage of
granular piles is that the aggregates used to create the columns are cohesionless materials
without internal bonds. The granular pile’s typical cohesion and friction angle values
ranged from 1 to 10 kPa and 30 to 40◦, respectively [2–4]. The perpendicular stress from
the embankments is required to produce shear strength. Therefore, the granular piles are
ineffective under low vertical stress situations, including those located at the embankment
toe and granular piles used for lateral support work in soft clay.
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Figure 1. A typical cross-section of column-supported highway and railway embankments on a soft
clay foundation.
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The soil-cement column technique is a possible method to avoid such problems. This
technique has the advantage of rapid construction since it involves the in situ mixing
of soft clay and cement power or cement slurry [5–7]. The cement-treated soft clay has
high internal bonds between clay particles induced by cement hydration products during
chemical reactions. The soil-cement columns have a high unconfined compressive strength
from 0.6 to 2 MPa without requiring high perpendicular stress like the granular piles [8,9].
For a high embankment, the embedment of the soil-cement columns in hard clay (Figure 2)
is needed to derive the fixity situation, increasing the column-bearing capacity and overall
stability [1]. Since the soil-cement columns have low tensile strength, tensile or flexural
failure can occur for columns located at the embankment toe [10,11]. Although the concrete
pile has a much higher strength than the granular pile and soil-cement column, the concrete
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pile is also more expensive due to the material cost. Thus, the concrete pile is unsuitable for
supporting the embankment in terms of cost-effectiveness.

Pervious concrete is a particular type of concrete with a high porosity utilized for
concrete flatwork applications allowing water to pass directly through, such as parking
and light traffic areas, residential streets, and greenhouses [12]. Pervious concrete consists
of cement, large coarse aggregate, and water with little to no fine aggregates, and the
mixture has a water-to-cement ratio of 0.28 to 0.40 [12,13]. The admixture and aggregate
characteristics significantly affect porous concrete’s strength and porosity [14–22]. The
pervious concrete consists of cement, large coarse aggregate, and water with little to no fine
aggregates and has a common unconfined compressive strength of 2.8 to 28 MPa [12] up
to 50 MPa [14]. However, the high-performance pervious concrete exhibits a compressive
strength of 15 to 65 MPa [15,17]. The Portland cement pervious concrete’s tensile strength
falls between 0.2 and 2.4 MPa and 1 and 10.4 MPa, respectively, corresponding to the tensile
strength to compressive strength ratio of 0.14–0.17. [16,22]. The elastic modulus of high-
performance pervious concrete is 26 to 41 GPa and increases with increasing compressive
strength [17]. The pervious concrete has a porosity value of 18 to 35% [12], contributing
to flowability [14–22]. The permeability coefficient of pervious concrete is between 0.01
and 14 cm/s [14–22], which is high enough to be considered a porous material. Standard
concrete’s cohesion and friction angle values obtained from triaxial compression tests were
5–19 MPa and 27–39◦, respectively [23]. However, some of the rocks’ cohesion and friction
angle values based on triaxial compression tests ranged from 4.5 to 36 MPa and 28 to
45◦, respectively [24]. Although the strengths of pervious concrete are higher than the
granular pile and soil-cement column, this type is an improper column to support highway
and railway embankments. Its strength surpasses the required values, leading to high
construction costs.

Fly ash is a byproduct of coal power plants, and its production rate is higher than
the rates of recycling and reuse [25,26]. Even though fly ash generates a slower hydration
reaction than cement in concrete, it provides notable environmental advantages, such as
relieving air and reducing water pollution [27]. Controlled low strength material, also
known as flowable fill, is a weak, runny concrete mix. It is considered impervious concrete
used in construction for non-structural purposes such as backfill or road bases. Controlled
low strength material consists of fly ash, cement, sand, water, and 8–25% entrained air
and has a strength of less than 8.3 MPa [28]. The replacement of cement with 35% fly ash
provided a desirable compressive strength of the recycled aggregate concrete. Reduced
strength is observed for fly ash replacement levels > 35% [29]. The recycled aggregate
concrete containing fly ash exhibits higher strength than sole cement concrete [29] because
the fineness of the ground fly ash particle can fill the voids between the cement and
aggregates. Moreover, fly ash expedites the pozzolanic reaction, producing additional
calcium silicate hydrates. Thus, interfacial bonding between the aggregates and pastes was
improved, resulting in the increased strength of the cement–fly ash concrete [29–31].

The current study introduces cement fly ash gravel (CFG) mixtures created by mixing
cement, fly ash, and gravel as a column to support embankments built on soft clay instead
of the concrete pile, granular pile, or soil-cement column. The cement was partially replaced
with fly ash to save the cement cost and relieve environmental problems related to using
cement alone [26]. Thus, the raw materials used for the CFG mixture utilizes are different
from pervious concrete and controlled low strength material. Moreover, using the CFG
mixture in civil engineering works differs from pervious concrete and controlled low
strength material, as earlier mentioned. The CFG column exhibits high bonding and can
be embedded in the stiff to hard clay layer (Figure 2), employing a similar construction
method to a granular pile. The strength of the CFG column is sufficiently high to resist high
embankment stress, and the material cost of the CFG column is safer than porous concrete
and regular concrete.

The bearing capacity of a single CFG column subjected to embankment loads, as
shown in Figure 3, is governed either by the shear strength of the soil (soil failure) or by
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the strength of the CFG column (column failure). The soil failure depends on both the skin
friction resistance of the column and the point resistance, while the column failure depends
on the unconfined compressive strength of the CFG mixture. The slope stability failure of
the CFG column-improved soft clay depends on the shear strengths of CFG columns and
unimproved soft clay. The shear strength parameters required for slope stability calculation
include internal friction angle and cohesion. Moreover, the embankment and traffic loads
can induce consolidation settlement of the CFG column-improved soft clay. However,
limited previous experimental studies on the geotechnical properties of CFG mixtures
using various gravel sizes and fly ash replacement levels have been performed. In our
study, the studied properties of the CFG mixtures were porosity, density, permeability
coefficient, unconfined compressive and tensile strengths, elastic modulus, cohesion, and
internal friction angle. All samples were cured at 28, 50, and 90 days before testing.
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Figure 3. Various failure modes and settlement of a CFG column-supported embankment built on
soft clay.

2. Materials and Methods
2.1. Materials

The type I ordinary Portland cement type and fly ash, as shown in Figure 4a,b was
used as cementitious and pozzolanic materials for the current study. Fly ash was obtained
from an electric power plant, which is located in the Lampang province of Thailand. Photos
obtained from scanning electron microscopy (SEM) techniques in Figure 4c,d reveal that
cement particles exhibited rough surfaces and nonuniform angular shapes, whereas the
fly ash particles showed spherical shapes with uneven surfaces. The fly ash has a specific
gravity of 2.53 and fineness of 3200 to 3600 cm2/g. Table 1 shows the chemical composition
of cement and fly ash based on X-ray fluorescence analysis and illustrates that CaO and
SiO2 were the primary compounds of cement and fly ash, respectively. Fly ash contains
combinations of SiO2, Al2O3, and Fe2O3 between 50 and 70%; thus, the fly ash used in
this study is considered class C following ASTM standard C 618 [32]. The class-C fly ash
has both pozzolanic and cementitious properties because its high CaO amount, 17.85%, is
more effective than class F fly ash. In addition to being a good pozzolan, class-C fly ash is
more available and cheaper than other binders in Thailand, such as blast furnace slag, red
mud, and metakaolin. Thus, class-C fly ash was chosen as a supplementary cementitious
material for this study.
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Table 1. Chemical compositions of type 1 ordinary Portland cement and class-C fly ash used.

Compound Cement Fly ash
(%) (%)

CaO 62.81 17.85
SiO2 21.20 37.34

Al2O3 4.95 18.63
Fe2O3 2.82 13.17
Other 8.22 13.01

Limestone gravels were derived from Saraburi province, Thailand. This province is a
primary source for supplying the natural gravel for construction materials. Gravels of three
different sizes were employed as coarse aggregates to produce CFG mixtures, including
small (SG), mixed gravel (MG), and large gravel (LG). The SG and MG have size ranges of
4.75–9.5 mm and 9.5–19.5 mm, as shown in Figure 4e,f, respectively. The MG comprises a
combination of 50% small gravel and 50% large gravel. The gravel particles are rough and
sharp, showing good strength characteristics. The gravel properties are listed in Table 2.

Table 2. Summary of gravel aggregate properties.

Test Description SL MG LG
4.76–9.51 mm 4.76–12.70 mm 9.51–12.70 mm

Absorption (%) 1.41 1.47 1.62
Specific gravity 2.61 2.61 2.61

Bulk specific gravity 2.26 2.29 2.23
Bulk density (kg/m3) 1535 1562 1505

Los Angeles abrasion (%) 17.5 16.2 15.4

2.2. Specimen Preparations

Since the cylindrical sample used in the triaxial compression test had a diameter of
50 mm and a height of 100 mm, the same sample size was used to determine density,
porosity, and permeability coefficient values and compressive and splitting tensile strength
tests to avoid the sample size effect. The cement contents were partially replaced with fly
ash at levels of 5 to 25% by cement weight. The water–cement ratio was fixed to 0.32, and
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the curing periods were 28, 50, and 90 days. The mixture was prepared sufficiently for one
sample only to control the mixing quality. The CFG mixture proportions are listed in Table 3.
The gravel, cement, and fly in a concrete mixer first mixed ash for 2 min; then the water was
added, and the mixture was blended for 3 min. The uniformity and homogeneity of the
specimen were satisfied by visual observation. Each sample was contained in a cylindrical
steel mold, which could be split into two parts to avoid the specimen disturbance and was
greased with lubrication oil. After completing the molding process for 24 h, the specimen
was immediately removed. The mass and size of the sample were recorded before curing
in the water bath. Figure 5 shows the CFG specimen before testing.

Table 3. Mixture proportions for one cylinder of the CFG column.

Designation SG LG Cement Fly ash Water
(g) (g) (%) (g) (%) (g) (g)

SG-F0 400 - 100 88.0 0 -

28.16

SG-F5 400 - 95 83.6 5 4.4
SG-F10 400 - 90 79.2 10 8.8
SG-F15 400 - 85 74.8 15 13.2
SG-F20 400 - 80 70.4 20 17.6
SG-F25 400 - 75 66.0 25 22.0
LG-F0 - 400 100 88.0 0 -
LG-F5 - 400 95 83.6 5 4.4
LG-F10 - 400 90 79.2 10 8.8
LG-F15 - 400 85 74.8 15 13.2
LG-F20 - 400 80 70.4 20 17.6
LG-F25 - 400 75 66.0 25 22.0
MG-F0 200 200 100 88.0 0 -
MG-F5 200 200 95 83.6 5 4.4
MG-F10 200 200 90 79.2 10 8.8
MG-F15 200 200 85 74.8 15 13.2
MG-F20 200 200 80 70.4 20 17.6
MG-F25 200 200 75 66.0 25 22.0
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2.3. Methods

This section describes the testing details and procedures of tests. When the assigned
curing time of the specimen for each test was achieved, the test was then instantly per-
formed. The acceptance criterion was designated that the individual test values of three
samples, molded with the same characteristics, must deviate from the mean test value by
less than 10% to avoid the error caused by the discreteness of the sample. For all tests in
this study, an average value of the test results based on three specimens was reported.

2.3.1. Density and Porosity

The density (ρ) and porosity (n) of the CFG samples were determined following the
ASTM C1754 standard test method for the density and void content of hardened porous
concrete [33]. The specimen was oven-dried at a temperature of 38 ◦C for 24 h, and the
dry mass was subsequently measured after removing it from the oven. The ρ and n were
calculated as follows:

ρ =
Md

Vavg
(1)

where:

Md = dry mass of the specimen (kg)
Vavg = average volume of the sample (m3)

n =

[
1 −

(
Md − Msub

ρwVavg

)]
× 100% (2)

where:

Msub = submerged mass of the specimen (kg)
ρw = density of water at temperature of the water bath (kg/m3)

The test apparatus for measuring the submerged mass of the specimen is presented in
Figure 6a.

2.3.2. Permeability Coefficient

The permeability coefficient of the CFG sample was determined following the ASTM
D2434 standard test method for the permeability of granular soils [34] by adapting the
falling head test method. The test apparatus is illustrated in Figure 6b. The CFG sample
was placed in a cylindrical plastic tube. The tube was tight to prevent water leakage along
the sides of the sample. The small gap between the specimen and tube at the bottom was
sealed to avoid water infiltration through the edge of the tube. The permeability coefficient
rate of porous concrete was subsequently calculated by Equation (3).

k =
aL
At

× ln
h1

h2
(3)

where:

k = permeability coefficient of the CFG sample (cm/s)
a = area of the cylindrical tube (cm2)
A = area of the specimen (cm2)
L = length of the sample (cm)
t = time for water to pass from level h1 to h2 (s) through the tube

2.3.3. Unconfined Compression and Splitting Tension Tests

Before testing, the stone cap was used to cover both ends of the specimen to ensure
that the end part was flat. The unconfined compressive strength (qu) and splitting tensile
strength (qt) were determined according to the ASTM C39 [35] and ASTM C496/C496M-
17 [36], respectively. Both tests were performed on the specimens using the automatic
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loading machine with a capacity of 100 kN (Figure 6c,d). Vertical stresses with a stress
rate of 0.25 MPa/s were applied to the specimen until failure. Two 50-mm capacity linear
variable differential transducers (LVDTs) were used to determine the average vertical
displacement of the sample in unconfined compression tests. This setup helps to calculate
the qu and elasticity modulus (E50), which is defined as the secant modulus at 50% of the
qu. The qu was taken to be the maximum compressive stress. The E50 of each sample
could be estimated from the slope of the stress-strain curve obtained from the unconfined
compression test.
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2.3.4. Triaxial Compression Test

The triaxial compression test was performed according to the ASTM D2664-95a test [37]
for determining shear strength parameters, including cohesion (c) and internal friction
angle (ϕ) of the CFG specimen under triaxial stresses. The specimen was inserted into
the rubber sealing sleeve. The covered sample was delivered into Hoek’s cell, as shown
in Figure 7a,b. Our study used oil and hydraulic pumps to generate confine pressures.
The confining pressure (σ3) applied to the sample ranges between 0, 1, 2, and 4 MPa. The
universal testing machine with a capacity of 100 kN was used to apply the deviator stress
(σ1 – σ3) to the specimen until failure with a stress rate of 0.15 MPa/s. The c and ϕ values
of the CFG specimens were calculated based on the Mohr-Coulomb failure criterion. The
major principal stress (σ1) can be taken as σ1 = σ3 + (σ1 – σ3), whereas the minor principal
stress is equal to the confining pressure (σ3). Figure 8 shows an example of plotting the
Mohr’s circles at failure obtained from triaxial tests for this study. The failure envelope
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can be obtained by drawing a line that touches all Mohr’s circles. The failure envelope is
approximately a straight line intercepting the y-axis and can be expressed by the equation:

τ = c + σ tan ϕ (4)

where:

τ = shear strength (MPa)
σ = normal stress on the failure plane (MPa)
c = cohesion of the CFG specimen (MPa)
ϕ = internal friction angle of the CFG specimen (degree)
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3. Results and Discussion
3.1. Porosity

Figure 9a illustrates the effects of gravel size, fly ash content, and curing periods for
the Porosity (n) of the CFG mixture. The n values for CFG mixtures vary between 25.9 and
31.2%, falling in the range of conventional porous concrete obtained from previous studies
due to the same gravel size ranges [15,17,18,21,38]. The MG, containing various particle
sizes, exhibited the best particle placement. Thus, the MG showed the smallest n values
for the same fly ash contents and curing times. However, the LG with the largest internal
pores between particles exhibited the greatest n. The SG, having smaller internal pores than
LG and poorer particle size distribution than MG, showed n values falling between MG
and LG. The n values decreased as the fly ash contents increased from 5 to 15%. However,
since the fly ash content was more than 15%, the n values increased. Fly ash acts as a
filling material like fine aggregates to fill voids between the gravel particles in the CFG
mixtures, reducing the porosity. Fly ash is a pozzolan reacting with cement and water
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to form additional calcium silicate hydrates (CSH). The CSH expanded with curing time
induced by pozzolanic reaction and could fill the CFG mixture’s pores. This phenomenon
decreases the n values with increasing curing periods from 28 to 90 days [29]. Thus, 15%
fly ash provided the best fulfillment of filling materials and pozzolanic reaction products in
the CFG mixtures’ pores.
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Figure 9. Relationships between (a) porosity and fly ash content, (b) density and fly ash content, and
(c) density and porosity.

3.2. Density

Figure 9b presents the effects of fly ash content, gravel size, and curing time on
the density (ρ) of CFG mixtures. The ρ of the CFG mixtures ranged between 1780 and
1860 kg/m3, with an average value of 1820 kg/m3. The ρ was significantly influenced by
fly ash content for any gravel size and curing time. The ρ increased proportionally with
increasing fly ash content of 5 to 15%. The 15% fly ash provided the highest ρ because it
exhibited the smallest n, as discussed in Section 3.1. The ρ of the CFG mixtures is smaller
than standard concrete (2400 kg/m3) and falls in the range of porous concrete (1500 to
2000 kg/m3) [16,22]. The ρ of the CFG mixtures increased with increasing curing periods
due to the pozzolanic reaction and was affected by gravel sizes due to the particle packing
effect. As expected, the ρ of the CFG mixtures increased with decreasing n, as shown in
Figure 9c. The ρ−n relationship obtained from the present research in Figure 9c illustrates
the exponential decay function as follows: ρ (kg/m3) = 218e−0.0064n(%).
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3.3. Permeability Coefficient

Figure 10a shows that the permeability coefficient (k) and porosity (n) had similar
characteristics. The k values decreased as the fly ash contents increased from 5 to 15%.
However, since the fly ash content was more than 15%, the k values increased. The k values
of the CFG mixtures varied between 0.9 and 1.7 cm/s. The LG gave the k values of 1.4 to
1.7 cm/s, which falls in clean gravel (>1.0 cm/s) [39]. However, the SG and MG provided
k values of 0.9 and 1.2 cm/s, equivalent to clean sand, gravel-sand mixtures, and clean
gravel. Therefore, CFG with LG can serve as an excellent drainage material, while CFG
using SG and MG can be a good drainage material. Notably, the CFG with SG was more
permeable than the CFG utilizing MG for use as a CFG column.
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Figure 10. Relationships between (a) permeability coefficient and fly ash content and (b) permeability
coefficient porosity.

The CFG provided a lower k than the pervious concrete obtained by Bhutta et al. [21]
by approximately 3–4 times due to using larger coarse aggregates than this study. However,
the k values of CFG mixtures were higher than that of the high-performance pervious
concrete using smaller aggregates with silica fume and silica powder studied by Zhong
and Wille [17]. The k values for the pervious concrete utilizing gravel sizes and admixtures
by Ibrahim et al. [16] were close to that for the CFG mixtures. Figure 10b illustrates the
correlation between the k and n of CFG mixtures derived from this study. As expected, the
k of the CFG mixtures increased with increasing n. The ρ−n correlation was modeled as a
polynomial quadratic function as follows: k (cm/s) = 16.54 − 1.25n + 0.025n2.

3.4. Unconfined Compressive Strength

Figure 11a presents the effects of fly ash content, curing period, and gravel size on the
unconfined compressive strength (qu) of CFG mixtures. The qu varied from 3.8 to 18.2 MPa.
The average qu value was 11 MPa, greater than the qu of the soil-cement column (1 MPa)
by 4–18 times. The fly ash content significantly impacted qu for any gravel size and curing
time. The qu values increased proportionally as the fly ash content increased from 5 to 15%.
The 15% fly ash content exhibited the highest qu values, corresponding to the lowest n and
greatest ρ, as described in Sections 3.1 and 3.2. The qu values were reduced in all curing
periods as the fly ash content raised above 15%, according to other aggregates blended
with cement and fly ash [29]. For example, the qu values at 28 days for MG-F0 and MG-F15
were 11.0 and 16.5 MPa, respectively. The qu value at 90 days for MG-F15 was 18.2 MPa.
Thus, replacing cement with 15% fly ash increased the qu by 65%.
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Figure 11. Relationships of (a) unconfined compressive strength versus fly ash content, (b) relation-
ship of elastic modulus and unconfined compressive strength, (c) splitting tensile strength versus fly
ash content, (d) relationship of splitting tensile strength and unconfined compressive strength.

Fly ash acts as a filling material to fill voids between the cement and gravel particles in
the CFG mixtures, reducing the porosity. The class-C fly ash with high reactivity also acts
as a pozzolanic material because SiO2 and Al2O3 react with calcium hydroxide (CaOH2)
generated by the cement hydration process to form additional calcium silicate hydrates
(CSH) [29–31]. These characteristics decrease the porosity and increase the strength of the
CFG mixtures with increasing curing periods from 28 to 90 days [29–31]. Even though the
substitution rate of fly ash increased, the porosity decreased. Therefore, the qu values for
CFG mixtures without fly ash, including SG-F0, MG-F0, and LG-F0, were lower than the qu
values for CFG mixtures with fly ash at all curing periods.

Regarding 15% fly ash for 28 days, the MG-F15 exhibited the highest qu value at
16.5 MPa. However, the SG-F15 and LG-F15 revealed reducing qu values of 7.0 and 3.8 MPa,
lower than MG-F15 by 58 and 77%, respectively. Therefore, the gravel sizes significantly
affected the qu values of the CFG mixtures. It can be concluded that 15% fly ash provided the
best fulfillment of filling materials and pozzolanic reaction products in the CFG mixtures’
pores, resulting in the greatest strength.
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3.5. Elasticity Modulus

Figure 11b presents the relationship between the E50 and qu of CFG mixtures. The
variations in E50 were 2900 to 4400 MPa, corresponding to qu values of 6.7 to 12.9 MPa.
The E50 value of the CFG mixtures is approximately nine times lower than that of high-
performance pervious concrete [17], ranging from 26 to 41 GPa because of the larger voids
in the CFG mixture.

3.6. Splitting Tensile Strength

Figure 11c shows the splitting tensile strength (qt) characteristics of the CFG mix-
tures. The CFG samples showed qt = 10–14%qu. The MG-F15 exhibited the highest qt
values of 2.2 MPa and 2.5 MPa at 28 and 90 days, respectively. Thus, the qt increased by
approximately 14% due to the curing effect. The qt values of CFG mixtures reported in
this study are close to the qt values of the Portland cement pervious concrete using similar
gravel sizes between 4.5 and 12.5 mm and water–cement ratios of 0.30 to 0.40 revealed
by Ibrahim et al. [16] and Joshaghani et al. [22]. The relationship between qt and qu in
Figure 11d shows that qt values are dependent on qu values. As the qu increases, the qt also
linearly increases. The relationship is expressed as a linear function: qt = 0.12qu.

3.7. Cohesion and Internal Friction Angle

Figure 12a,b show the influence of fly ash content, curing period, and gravel size on
the c and ϕ values of the CFG mixtures. The characteristics of c and qu are similar because
these shear strength parameters are related to the internal bonds of cement–fly ash paste
in CFG mixtures. Unlike the characteristics of ϕ, this shear strength parameter depends
on the overall friction of the materials used in CFG mixtures, including cement–fly ash
paste, fly ash, and gravel, and examines the different failure planes. Therefore, the ϕ values
are different in each mixture proportion and independent of the curing periods. However,
some factors affecting the failure planes of the CFG samples include the homogeneity
and uniformity of mixtures induced by mixing various materials. These factors provide
the scatter results, as illustrated in Figure 12b, and thus no clear trend of internal friction
characteristics for the CFG mixtures was observed.
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Figure 12. Relationships of (a) cohesion and fly ash content, (b) internal friction angle and fly
ash content.

The c values varied from 1.4 to 5.4 MPa, with an average of 3.4 MPa, which is
greater than the cohesion of the soil-cement column (0.5 MPa) [8,9] by 2.8–10 times.
Öztekin et al. [23] determined c and ϕ values based on triaxial compression tests for
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normal concrete samples using aggregate sizes between 4–16 mm, cement contents of
350–500 kg/m3, and water–cement ratios of 0.30–0.60, providing the compressive strength
values of 22–53 MPa. The c and ϕ values fell between 5.2 and 12.8 MPa and 27 to 34◦, respec-
tively. Yu et al. [40] performed a triaxial compression test on the porous cement concrete
specimens utilizing the aggregate sizes of 4.75–9.5, cement contents of 1560–1700 km/m3,
aggregate contents of 100–125 km/m3, and water amount of 340–415 km/m3. The results
showed that the porous cement concrete samples had a porosity of 20% and exhibited
compressive strength values of 21–32 MPa. The c and ϕ values varied from 5.2 to 12.8 MPa
and 38 to 42◦, respectively.

Öztekin et al. [23] and Yu et al. [40] concluded that the c values depended on the
compressive strength, whereas the ϕ values depended on aggregates’ gradation. Therefore,
the c values of the CFG mixtures were smaller than normal concrete (5.2–12.8 MPa) [23] and
porous cement concrete (5.2–12.8 MPa) [40] due to significant differences in compressive
strength. Replacing cement with 15% fly ash exhibited maximum c values for all gravel
sizes and curing times. The MG samples showed the greatest c values compared with SG
and LG samples. The ϕ values of the CFG mixtures varied between 30 and 42◦, falling
in the range of the internal friction angle of gravel used as the stone column (30–40◦) [2]
normal concrete (27–34◦) [23], and porous cement concrete (38–42◦) [40]. Thus, the CFG
column-bearing capacity and CFG column improved soft clay could be more than the
stone column due to the high cohesion of the CFG mixtures. By contrast, those could be
greater than the soil-cement column (zero friction angle) because of the higher cohesion
and friction angle of the CFG mixtures.

3.8. Failure Modes of the CFG Sample

Figure 13a–c show the typical failure modes of the MG-15 samples subjected to uncon-
fined compression and triaxial compression and splitting tension tests, respectively. The
CFG samples’ diagonal shear fracture mode was detected under unconfined and triaxial
compression tests, as shown in Figure 9a,b, respectively. The primary fractures were re-
vealed in the cement–fly ash paste and the interfacial gravel and cement–fly ash paste. No
fractures in the gravel body were observed since its strength is higher than the cement–fly
ash paste. The failure planes containing the most considerable void, the weakest plane of
the mixtures, were detected [41]. Thus, the strength of the CFG paste and void spread were
two primary parameters influencing the failure mode of CFG samples. The failure mode
affects the strength of various concrete types [19]. The general failure mode of a regular
concrete sample is well-formed cones [42], causing higher strength than the CFG sample.
The failure mode of CFG samples subjected to a splitting tension test was a single vertical
tensile crack in CFG samples passing through interfacial gravel and cement–fly ash [43],
as shown in Figure 13c. A single crack was observed in the middle of the cylindrical CFG
sample, the weakest plane containing large voids [44,45].
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4. Conclusions

Our research presents cement fly ash gravel (CFG) mixtures for use as column-
supported highway and railway embankments built on a soft clay foundation. The geotech-
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nical properties of CFG mixtures were experimentally investigated. Based on the results of
our study, the following conclusions can be drawn:

1. Porosity is the primary factor governing the geotechnical properties of the CFG
mixtures. The gravel size and cement significantly influenced the porosity–fly ash
paste properties, depending on the curing period and fly ash content. The gravel
containing a wide size range had the best particle packing, resulting in minor porosity
and high strength.

2. The CFG mixtures had much higher permeability than the soil-cement columns
3. The unconfined compressive strength and cohesion of the CFG mixture are 3–13 times

greater than that of the soil-cement column. By contrast, the internal friction angle of
the CFG mixture is similar to the granular pile or stone column.

4. The cohesion and unconfined compressive strength characteristics are similar because
these shear strength parameters are related to the internal bonds of cement–fly ash
paste in the CFG mixtures. By contrast, the internal friction angle characteristics
depend on the overall friction of the materials used in the CFG mixtures.

5. The CFG column capacity and CFG column-improved soft clay can be more than the
stone column due to the high cohesion and friction angle of the CFG mixtures, which
is higher than the soil-cement column with its zero-friction angle.

6. The cement replacement with 15% fly ash indicated the greatest strength and minor
Porosity since 15% fly ash contributed the best void filling and proper portions of
silicon dioxide and calcium hydroxide to produce a considerable amount of hydration
and pozzolanic reaction products to fill the voids.

7. Using a cement fly ash gravel column for supporting embankments constructed on
soft clay was more effective than using a soil-cement column and granular pile to
enhance column-bearing capacity and the overall stability, reduce settlement and
accelerate the consolidation process of the improved soft clay due to higher strength,
stiffness, and permeability of fly ash gravel columns.
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