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Abstract: The paper presents a program for simulating electron scattering in layered materials
ProxyFn. Calculations show that the absorbed energy density is three-dimensional, while the con-
tribution of the forward-scattered electrons is better described by a power function rather than the
commonly used Gaussian. It is shown that for the practical correction of the proximity effect, it
is possible, nevertheless, to use the classical two-dimensional proximity function containing three
parameters: α, β, η. A method for determining the parameters α, β, η from three-dimensional
calculations based on MC simulation and development consideration is proposed. A good agreement
of the obtained parameters and experimental data for various substrates and electron energies is
shown. Thus, a method for calculating the parameters of the classical proximity function for arbitrary
layered substrates based on the Monte Carlo simulation has been developed.

Keywords: electron-beam lithography; Monte Carlo method; proximity function; electrons scattering

1. Introduction

One of the most common methods for creating micro- and nanostructures in mi-
croelectronics is electron-beam lithography (EBL). Although EBL is less productive than
photolithography, it turns out to be very convenient to create small structures consisting
of elements of very different sizes. This makes it in demand when creating micro- and
nano-objects for scientific research. Such structures can be used for studies of supercon-
ductivity [1,2], X-ray radiation [3–5], electrophysical properties of various materials (for
example, graphene [6,7]) and in many other areas of physics.

One of the features of EBL is the effect of electrons back-scattered in the substrate
on the electronic resist. In this case, they carry out additional exposure of the electron
resist on an area usually much larger than the size of the primary electron beam. This
effect is commonly called the “proximity effect” [8]. Taking into account the influence and
correction of the “proximity effect” on the dose absorbed by the electronic resist allows
increasing the accuracy of electron lithography, shortens the time to fabricate structures
and increases the yield of a suitable product, since it reduces the sensitivity of lithography
to random errors. To correct the influence of the “proximity effect” when calculating the
exposure dose, the proximity function (PF) is used, i.e., the distribution of the absorbed
energy in the electron resist during electron-beam scattering.
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The classical PF I (x,y) consists of two Gaussians [8], does not change over the depth
of the resist film z, is dimensionless and is normalized to unity [9,10]. It is written in the
following form:

I(x, y, α, β, η) =
exp

(
−
( r

α

)2
)

πα2(1 + η)
+ η

exp
(
−
(

r
β

)2
)

πβ2(1 + η)
(1)

where r2 = x2 + y2, η is the ratio of the total energy left by the reflected electrons to the energy
of the forward-scattered electrons. The first Gaussian in (1) describes the distribution of
the energy left in the resist by the forward-scattered electrons (characterized by parameter
α), and the second one describes the distribution of the energy left in the resist by the
back-scattered electrons (characterized by parameter β) [11,12].

From (1), it follows that for the practical use of PF it is necessary to know the values
of the parameters α, β, η. The experience of practical correction [10,13,14] and extensive
simulations [15–17] show that the three parameters found in the experiment are in most
cases quite enough to obtain the required lithography accuracy.

There is a large number of works devoted to calculations [12,18–20] and to experimen-
tal measurements of PF [21–23]. The MC method [24] has long been used for determining
the parameters of different functions describing the proximity effect [12,18–20] by fitting
the functions to the MC calculated spatial (3D) distribution of absorbed energy. Figure 1
shows the distribution of the absorbed energy density G (r, z) for a PMMA film of thickness
H0 = 1um on a silicon substrate, calculated by the Monte Carlo method. It can be seen
that G (r, z) varies in the thickness of the resist and is really a 3D function. For fitting
the 2D proximity function to 3D data, usually a distribution of absorbed energy at the
boundary resist–substrate (i.e., G (r, z = H0)) was used [12,18–20]. However, our experience
has shown that consideration of the distribution only at the resist–substrate interface or
averaging over the resist thickness does not allow one to obtain PF parameters that are in
good agreement with the experimental values [21]. A particularly large discrepancy arises
in the determination of the η parameter. Obviously, the cause is ignoring the process of
development. Experimental methods for determining the PF parameters inevitably include
development processes in the measurement procedure. When considering experimental
methods, we prefer methods using resist development time (“vertical” methods) [21,22],
over methods using measurements of the transverse dimensions of test features such as
line widths or ring widths (e.g., [23]) (“horizontal” methods). Experimental determination
of PF parameters is a laborious process and can take [21] several days or even weeks. The
Monte Carlo calculation takes a few minutes.

Therefore, the purpose of this work will be to develop an exclusively computational
method for obtaining the parameters α, β, η of the 2D classical proximity function from
the 3D absorbed energy density calculated by the Monte Carlo method with careful con-
sideration of development. For comparison, experimental data αe, βe, ηe will be taken
from [21].
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Figure 1. The results of the Monte Carlo calculation of the integral density of the absorbed energy 
Gr(r, z). The values of the iso-levels of the density of the absorbed energy: 1, 2, 3, … eV/nm. The resist 
film thickness (PMMA) is 1 micron. The substrate is Si (300um). The initial energy of electrons is 25 
keV. The number of trajectories considered is 200,000. 
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proximation, the electron energy decreases, taking into account the length of the segment 
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Figure 1. The results of the Monte Carlo calculation of the integral density of the absorbed energy
Gr(r, z). The values of the iso-levels of the density of the absorbed energy: 1, 2, 3, . . . eV/nm. The
resist film thickness (PMMA) is 1 micron. The substrate is Si (300 µm). The initial energy of electrons
is 25 keV. The number of trajectories considered is 200,000.

2. Theory and Calculation
2.1. Calculation of Electron Scattering in Layered Materials by the Monte Carlo Method

We have developed an algorithm and implemented it in the ProxyFn program for
the fast simulation of electron scattering in layered materials [25,26]. The structure of
the algorithm is close to the one described in the work [24], but all expressions for the
calculation are taken from the book by L. Reimer [27].

In the Monte Carlo simulation, it is assumed that electrons “move” in a straight line,
continuously losing energy, until elastic scattering. A new direction of electron “moving”
is played out using a screened Rutherford cross section [27]. The length of the straight
segments is chosen randomly based on the total cross section of elastic scattering along
the trajectory. Before scattering, in correspondence to the continuously slowing down
approximation, the electron energy decreases, taking into account the length of the segment
and the current value of stopping power (for details see [12–17,24]).

In calculations, the sample is a layered structure consisting of an arbitrary number of
layers and arbitrary materials. For convenience, the sample is automatically divided into
cells by a grid. In the cells of the partition grid (ri, zj), the energy of electrons E (ri, zj) left by
them when passing through these cells and the number of stopped electrons N (ri, zj) are
remembered. Additionally, the coefficients of reflection and transmission of electrons from
the entire sample are determined, as well as the coefficients of the absorption of electrons
and energy in all layers. To start the calculation, it is necessary to know only the starting
energy of electrons, film thickness, chemical formulas of materials and their density. For
many elements and materials, the chemical composition and density can be selected from
the built-in database.

To speed up the calculation, a cylindrically symmetric and nonuniform grid ri, zj with
center r = 0 on the beam axis is used. The z axis is perpendicular to the layers and directed
from the outer boundary of the resist to the sample. z = 0, r = 0 is the point of entry of
electrons into matter. The partition grid is set automatically.
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The calculation does not consider the generation, scattering and absorption of sec-
ondary electrons, to which the fast electron gives up energy during deceleration. Although
it is the secondary electrons with energies up to 50 eV that do all the “work” of breaking
chemical bonds or forming bonds in resist molecules, their track length in materials does
not exceed 10 nm [28] and can be taken into account by the convolution of the calculated
absorbed energy density with the corresponding Gaussian. The Monte Carlo calculations
also do not take into account the charging of dielectric layers, which can significantly
change the trajectory of an electron. We believe that this problem can be effectively dealt
with in electron lithography (for example, by applying a conductive film to the resist and
grounding it, or by using a conductive resist). The PF calculation time for ten thousand
trajectories takes several minutes.

2.2. Integral Proximity Function: Fitting of Absorbed Energy Distribution by Elementary Functions

It is not very difficult to implement the Monte Carlo algorithm for simulating electron
trajectories. Difficulties arise when analyzing the calculation results and fitting the simu-
lation results. After enumerating a large number of options, the following function was
chosen to interpolate the density of the distribution of the electron absorbed energy G(x,y,z)
in the sections z = const:

G(x, y, z) = Cδ(z)δ(x)δ(y) +
Ca(z)(

1 +
(

r
α(z)

)2
)2

πα2(z)

+

Cb(z) exp
(
−
(

r
β(z)

)2
)

πβ2(z)
(2)

where r is the distance to the beam axis. The first (delta-shaped) element in expression (2)
describes the electrons of the primary beam, which have not experienced one scattering
on atomic nuclei. The second and third elements in (2) describe (on a qualitative level)
singly and multiply scattered electrons, respectively. The coefficient Cδ(z) in the first
approximation decreases exponentially with the penetration depth z, as

Cδ(z) = exp(−z/L f )

where Lf is the free length. It is inversely proportional to the total cross section of electron
scattering in the resist and is equal to several tens of nanometers (about 80 nm for 25 keV
electrons in PMMA). In the experiment, it is not easy to separate the first and second
elements in expression (2) due to the fact that the initial electron beam is not delta-shaped.

Note that the fitting parameters Cδ(z), Ca(z), Cb(z), α(z) and β(z) depend essentially on
the depth z and, in this case, the relation α(z) << β(z) is fulfilled.

To search for the fitting parameters Cδ(z), Ca(z), Cb(z), α(z) and β(z), it is convenient
to use not the distribution density G(x,y,z) itself, but the integral density of the absorbed
energy Gr(r,z) obtained from the expression:

Gr(r, z) =
∫ ∞

r
2πr′dr′G(r′, z) (3)

Note that the integral density Gr(r,z) can be given a physical meaning. Consider a
special structure in the form of an infinite plane with a cut out circle of radius r. It turns out
that exposure of such a structure with a single dose leads to the absorbed energy density
dE/dz at the center of the circle just equal to Gr(r,z).

Using (2)–(3), we obtain for the three-dimensional proximity function:

Gr(r, z) = Cδ(z)Θ(r) +
Ca(z)

1 +
(

r
α(z)

)2 + Cb(z) exp

(
−
(

r
β(z)

)2
)

(4)
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here

Θ(ρ) =

{
1, ρ = 0
0, ρ > 0

On the other hand, the integrated absorbed energy density Ir(x,y) in the case of the
classical proximity function (1) will be equal to:

Ir(r, α, β, η) =

∞∫
r

2πr′dr′ I
(
r′, α, β, η

)
=

exp
(
−
( r

α

)2
)
+ η exp

(
−
(

r
β

)2
)

1 + η
(5)

Figures 1 and 2 show an example of calculating the integrated absorbed energy density
Gr(r,z) and its approximation for a 1 µm thick PMMA e-beam resist film on a 300 µm thick
silicon substrate at an initial electron energy of 25 keV. The number of trajectories considered
is 200,000. The classical PF consisting of two Gaussians does not approximate Gr(r,z) very
well, and function (4) completes it almost ideally in all sections z.
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Figure 2. The results of fitting the integral density of the absorbed energy, calculated by the Monte
Carlo method, by two different functions (4) and (5) for four cross sections in z: −25 nm, −225 nm,
−525 nm and −975 nm. The resist film thickness (PMMA) is 1 micron. The substrate is Si (300 µm).
The initial energy of electrons is 25 keV. The number of trajectories considered is 200,000.

Thus, the depth-dependent three-dimensional PF G(r,z) can, in principle, be used to
correct the proximity effect in e-beam lithography. However, a three-dimensional PF has
significantly more fitting parameters than a classical PF with only three fitting parameters
(б, в, з). This leads to a complication of calculations. On the other hand, as mentioned,
the practical use (to correct the “proximity effect”) of the classical PF leads to good results.
Therefore, our next purpose is to determine the effective parameters of a two-dimensional
PF from the three-dimensional Monte Carlo simulation results.

2.3. Fitting with Three Parameters: Analogue of Experiment

An experimental method for determining the classical PF I(x,y,α,β,η) (1) was proposed
in [21]. The idea of the method is to search for such parameters (б, в, з) so that the test
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structure, consisting of elements of different sizes, after correcting the proximity effect
(calculating the corrected dose based on the classical PF I(x, y, α, β, η)) and exposure the
positive resist, will be revealed exactly to the substrate in the center of each element. This
experimental method and the measured parameters б, в, з from [21] have been used for
more than 20 years to correct the proximity effect in the NanoMaker software and hardware
complex for electron-beam lithography (www.nanomaker.com, accessed on 26 May 2022)
with consistently good results.

A similar method to search for the parameters of the classical PF I(x,y,α,β,η) is used
in this work. As in the experimental method, the calculation of the exposure dose T(x,y)
(electron density per unit area) is based on the classical PF I(x,y,α,β,η) from expression (1),
but the simulation is performed instead of actual exposure and development. The absorbed
dose (density of absorbed energy per unit volume) D(x,y,z) in the simulation is calculated
based on the three-dimensional PF G(x,y,z) obtained by Monte Carlo from expression (2).
For the dimensionless classical PF I(x,y,α,β,η), the distribution of the absorbed dose D(x,y)
is as follows:

D(x, y)/D0 =
x

I(x− x′, y− y′, α, β, η)T(x′, y′)/T0dx′dy′ (6)

The development of a positive e-beam resist is simulated in the approximation of
isotropic, local etching [29,30]. Then, the development rate V can be written as follows:

V/V0 = (D/D0)
γ (7)

where γ is the contrast of the resist; and D0, V0 are the technological constants. For a positive
e-beam resist, the sensitivity T0 is defined as the exposure dose at which an element with
dimensions much larger than в is revealed in the center exactly to the substrate.

A brief description of the approach presented in Appendix A is as follows. The
proposed method consists in considering a number of circular elements of different sizes R.
Exposing a circle with a uniform exposure dose results in an absorbed dose distribution
with a maximum exactly at the center of any circular element at all resist depths z. From
isotropic local etching theory [26,30], it follows that the development front reaches the
substrate for the first time namely at the center of the round. Development times TR and Ti

R
calculated for two different exposure models (for classical PF (5) and for three-dimensional
PF (4)) are dependent on element radius R. Due to the simplicity of the elements, these
times can be easily calculated by formulas. Further, such parameters of the classical PF б, в,
з are searched with a special procedure that minimizes the objective function (9) using the
ratio of the times TR/Ti

R.
To search for б, в, з, a set of 10 round elements of radius Rn (n = 1, . . . ,10) was used.

The Rn value varied from the minimum value α(z) to the maximum value β(z), 0 ≤ z ≤ H0,
where α(z), β(z) are the interpolation parameters of the integrated density of the absorbed
energy Gr(r,z).

The Appendix (A4) shows that the exposure dose ratio

TR

Ti
R
=

(
H0∫
0

dz
Grγ(0,z)

)1/γ

(1− Ir(R, α, β, η))

(
H0∫
0

dz
(Gr(0,z)−Gr(R,z))γ

)1/γ
(8)

does not contain technological parameters D0, V0, t0 and can be calculated relatively easily.
The exposure dose ratios (8) were calculated (for the given parameters б, в, з) for the entire
set of circles Rn, and the objective function was composed from them.

S = ∑
n

(
TR,n

Ti
R,n
− 1

)2

(9)

www.nanomaker.com
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Further, the values of the parameters αs, βs, ηs were determined by minimizing S(α, β,
η). This method allows us to calculate quickly the parameters of a classical PF, depending
on the thickness of the resist, the type of substrate (including the possible layered structure
of the substrate), electron energy, etc.

3. Results and Discussion

A comparison of the experimental parameters αe, βe, ηe and those obtained from
the simulation based on Monte Carlo calculations αs, βs, ηs бs is necessary to verify the
correctness of our chosen physical and mathematical models of electron scattering and
resist development, as well as to verify the accuracy of calculations. It seems to us that a
quantitative assessment of the accuracy of the Monte Carlo calculation (at least for thick
resists) has not been performed before.

The experimental data were taken from [21]. In the experimental method used in this
work, each of the three parameters αe, βe, ηe was measured in a separate test. All tests
used a PMMA electronic positive resist (chemical formula CH2C(CH3)(COOCH3), density
1190 kg/m3). In calculations based on the Monte Carlo method, all three parameters αs, βs,
ηs were searched simultaneously.

First, the data on the beam size б will be compared, and then the results of calculating
в and з. The value of б depends on the energy, thickness and material of the resist and
does not depend at all on the type of a substrate. In addition, the experimental value of бe
is influenced by the initial beam size б0, which is determined by the electron microscope
setting (focusing, astigmatism) and beam jitter. In fact, the value of бs obtained by the

Monte Carlo method should be compared with parameter
√

α2
e − α2

0.
Table 1 shows a comparison of the size of the forward-scattered electron beam б,

obtained from the бe experiment (except the initial beam size б0) and calculated on the
basis of the Monte Carlo method бs for three energies E = 15, 25 and 35 keV and a set
of resist thicknesses H0 = 100, 200, 500, 1000 and 1500 nm on a silicon substrate. The
experimental data бe were interpolated by the formula α2

e = AEH3
0 /E2 + α2

0, where the
constants AE and the initial beam dimensions б0 for different energies E were obtained from
the experiment [21]. In the Monte Carlo calculation, the beam was assumed to be absolutely
thin. Table 1 shows that the experimental data for бe and the results of calculating бs are in
good agreement.

Table 1. Comparison of the parameters of the proximity function αs, (obtained by the method
described above based on the Monte Carlo calculation) and αe, (calculated from the results of
interpolation of experimental data [21]), for three values of the electron energy E and different
thicknesses H0 of the PMMA resist. The substrate is Si.

E, keV 15 25 35

H0, nm αe, nm αs, nm αe, nm αs, nm αe, nm αs, nm

100 6 4 3 2 2 1

200 16 12 10 6 7 5

500 64 56 39 30 28 20

1000 182 183 110 96 79 65

1500 334 342 202 196 145 130

A comparison of the calculated (βs, ηs) and experimental (βe, ηe) for various substrates
and accelerating voltages can be carried out using the data in Tables 2–4. For all cases,
a positive PMMA resist 500 nm thick with a contrast γ = 3 was used. The values of αs,
βs, ηs turned out to be stable with respect to the change in contrast, and hardly changed
for г = 2.5, 3 or 4. For comparison, the experimental data for Si, GaAs, Al2O3 and mica
from [21] were used; the data for Ge and C (diamond) substrates were specially measured
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for this work by the method [21]. The calculated values of βs with an accuracy of ŷ10%
coincided with the experimental values of βe, for з the accuracy was ŷ25%.

Table 2. Comparison of the parameters of the proximity function obtained in the experiment βe, ηe

and as a result of calculating βs, ηs for different energies of electrons E and Si and GaAs substrates.
The PMMA resist (ERP-40) 0.5 µm thick.

Substrate Si GaAs

Density 2330 kg/m3 5350 kg/m3

E, keV βe βs ηe ηs βe βs ηe ηs

11 0.9 0.85 - 0.93 - 0.73 - 1.23

15 1.5 1.33 - 0.87 - 0.92 - 1.24

20 2.2 2.11 - 0.79 1.2 1.17 - 1.23

25 3.1 3.01 0.7 0.73 1.5 1.48 1.4 1.16

30 4 4.08 - 0.69 2 1.85 1.11

35 5.8 5.32 - 0.66 2.3 2.29 - 1.07

39 - 6.39 - 0.63 2.6 2.66 - 1.04

Table 3. Comparison of the parameters of the proximity function obtained in the experiment βe, ηe

and as a result of calculating βs, ηs for different energies of electrons E, Al2O3 substrates and mica.
The PMMA resist (ERP-40) 0.5 µm thick.

Substrate Al2O3 KAl2Si3O10(OH)2 (mica)

Density 3970 kg/m3 2850 kg/m3

E, keV βe βs ηe ηs βe βs ηe ηs

11 - 0.76 - 0.76 0.75 0.81 - 0.81

15 1. 1.02 - 0.72 1.2 1.19 - 0.75

20 - 1.47 - 0.65 2 1.82 - 0.62

25 2 2.05 0.8 0.59 2.7 2.58 0.5 0.61

30 - 2.71 - 0.56 3.7 3.53 - 0.59

35 3.4 3.48 - 0.53 4.8 4.59 - 0.56

39 - 4.19 - 0.52 - 5.54 - 0.54

Table 4. Comparison of the parameters of the proximity function obtained in the experiment βe, ηe

and as a result of calculating βs, ηs for different energies of electrons E, Ge substrates and diamond.
The PMMA resist (ERP-40) 0.5 µm thick.

Substrate Ge C (Diamond)

Density 5323 kg/m3 3500 kg/m3

E, keV βe βs ηe ηs βe βs ηe ηs

11 - 0.73 - 1.26 0.7 0.79 - 0.51

15 0.7 0.92 - 1.28 1.0 1.08 - 0.41

20 1.1 1.15 - 1.24 1.6 1.61 - 0.33

25 1.4 1.46 1.1 1.18 2.1 2.23 0.4 0.3

30 1.8 1.84 - 1.12 2.6 2.96 - 0.29

35 2.5 2.27 - 1.08 3.6 3.87 - 0.26

39 - 2.67 - 1.06 - 4.63 - 0.25
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Note that the parameters в and з did not depend on focusing (if αs << βs) and were
determined only by the properties of the resist, substrate and the initial energy of electrons;
therefore, they have a fundamental value.

4. Conclusions

The algorithm for the fast calculation of the absorbed energy density of electrons G(r)
by the Monte Carlo method for layered materials was described.

To interpolate the calculated absorbed energy density of electrons G(r), a fitting func-
tion (2) was proposed, which described well the distribution of the absorbed energy of
electrons in layered materials depending on the distance to the center of the beam r and on
the depth z. The power member describing the scattering of primary electrons seemed to
be nontrivial and was considered for the first time.

A numerical procedure was proposed that takes into account the development of the
resist and makes it possible to replace the complex 3D distribution of the absorbed energy
with a classical (two-dimensional) proximity function with three parameters б, в, з.

The examples of calculating the parameters αs, βs, ηs of the proximity function were
shown for different energies of electrons and substrates and their comparison with the
experimental data αe, βe, ηe. Calculations of в with an accuracy of ŷ10% coincided with
the experiment; for з, the accuracy was ŷ25%.

Thus, it can be argued that the experimental confirmation of the accuracy of calculating
PF by the Monte Carlo method and the procedure of interpolating PF with three parameters
(б, в, з) has been obtained.
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Appendix A

The ratio of exposure doses is found for classical and three-dimensional proximity
functions. The density of absorbed energy (dose) in the center of a circle with the radius R,
exposed with a constant dose T (density of electrons per unit area), is expressed through
the integral proximity function:

D(R, z) = (Gr(0, z)− Gr(R, z)) T (A1)

For the classical dimensionless PF I(x,y,б,в,з), the absorbed energy distribution is
written as follows:

D
D0

= (Ir(0, α, β, η)− Ir(R, α, β, η))
T
Tr

= (1− Ir(R, α, β, η))
T
T0

(A2)

In order for the resist to reveal exactly in the center of the circle to the substrate, the
following condition should be held: D/D0 = 1.
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Then, it follows from (A2) that the exposure dose TR should be equal to:

TR =
T0

1− Ir(R, α, β, η)

The “ideal” exposure dose Ti
R is calculated using the three-dimensional PF. In the

center of each element, the absorbed dose has a maximum on the XY plane in each section
z = const; therefore, a positive electron resist is revealed vertically along the z axis in the
center of the circle [30]. The absorbed dose DR(z) in the center of a circle with the radius
Rn exposed with a certain dose T is obtained from expression (A1). The time t for the
development of a positive resist with a thickness H0 to the substrate in the center of the
circle is t =

∫ H0
0

dz
V(z) . Then for a circle with the radius R:

tR =

(
D0

T

)γ H∫
0

dz
(Gr(0, z)− Gr(R, z))γV0

(A3)

The “ideal” exposure dose Ti
R can be obtained from expression (A3), at which a circle

with the radius R in the center is revealed to the bottom for a given development time t0:

Ti
R =

D0

(V0t0)
1
γ

 H0∫
0

dz
(Gr(0, z)− Gr(R, z))γ


1
γ

The sensitivity of the positive resist T0 can also be calculated using this expression at
R = ∞:

T0 =
D0

(V0t0)
1
γ

 H0∫
0

dz
Grγ(0, z)


1
γ

As a result, the ratio of exposure doses TR/Ti
R is obtained, which does not contain

unknown technological parameters D0, V0 and t0:

TR

Ti
R
=

(
H0∫
0

dz
Grγ(0,z)

)1/γ

(1− Ir(R, α, β, η))

(
H0∫
0

dz
(Gr(0,z)−Gr(R,z))γ

)1/γ
(A4)
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