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Abstract: Aluminum alloy is widely used in aerospace structures. However, it often suffers from a
harsh corrosion environment, resulting in different damage such as pitting corrosion, which leads
to a reduction in the service life of aerospace structures. In the present study, the pitting corrosion
with a radius of 1 mm and a depth of 0.6 mm was manufactured using hydrofluoric (HF) acid on
a 2024-T3 aluminum alloy plate (400 mm × 400 mm × 2 mm) to simulate the corrosion state of
equipment. A signal acquisition system with a square sensor network of 12 piezoelectric transducers
(PZTs) was established. The sensor path weighting reconstruction algorithm for the probabilistic
inspection of defects (SPW-RAPID) is proposed based on corrosion damage characteristic parameters
including signal correlation coefficient (SDC), root mean squared error (RMSE), and signal energy
damage index (E1) to explore the monitoring efficacy of pitting corrosion. The sensor path weight w,
which is the product of value coefficient a and impact factor l, is established to modify the corrosion
damage characteristic parameters. The results indicate that the SPW-RAPID algorithm can improve
the accuracy and clarity of image reconstruction results based on SDC, RMSE and E1, which can
locate the pitting corrosion with a radius of 1 mm and a depth of 0.6 mm, and the positioning error is
controlled within 0.1 mm. The research work may provide an available way to monitor tiny corrosion
damage on an aluminum alloy structure.

Keywords: pitting corrosion; PZTs; SPW-RAPID; SDC; RMSE; E1

1. Introduction

Aluminum alloy is widely used in aerospace structures because of its excellent prop-
erties such as low density, high strength, good mechanical properties and low cost [1].
Meanwhile, pitting damage is a kind of pervasive, hazardous and insidious corrosion dam-
age that can easily emerge on a boldly exposed surface of aluminum alloy [2]. Exposure to
acidic agents such as chlorides and sulfides will cause corrosion of metals, which brings
about tiny substances peeling off from the surface. Importantly, once the corroded metals
are subjected to mechanical stress, the pitting corrosion will finally cause other damage,
such as fatigue cracks and deeper corrosion [3,4]. This progress is of large concern with
respect to aging aircraft, because maintained aging aircrafts with pitting corrosion could
lead to disastrous air accidents when exposed to an aggressive environment [2,3]. So,
monitoring pitting corrosion initiation early provides valuable data for structure health
monitoring and aids in reducing the cost of aircraft maintenance.

Existing pitting corrosion identification methods can be roughly divided into visual
inspection and mechanical methods. Current visual tests include the application of opti-
cal instruments such as optical microscopy (OM), scanning electron microscopy (SEM),
scanning acoustic microscopy (SAM), energy dispersive X-ray spectroscopy (EDS), and
so on. In this way, the outline, size and depth of pitting can be directly observed. For
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instance, since 1998, the OM, SEM and EDS have been used to observe the initiation and
development trend of pitting corrosion on a 2024-T3 aluminum alloy plate; finally, it is
founded that combined with this equipment, the location and range of pitting corrosion
can be determined [1]. In 1999, Frantziskonis et al. adopted a white light interference
microscope and inspected pitting corrosion on 2024-T3 aluminum alloy as well [5]. In 2001,
a study demonstrated that image analysis based on light microscopy can be effectively
used as a tool to quantitatively characterize the morphology of pitting corrosion [6]. Until
now, some scholars evaluated the intensity and depth of corrosion pits on aluminum alloy
7050 using SAM, and the results were cross-checked by OM [7].

Traditional mechanical methods are composed of passive sensing using acoustic
emission (AE) and active sensing using guided wave. AE generates elastic waves by
piezoelectric transducers (PZTs) to detect the rapid energy release inside the structure,
which can be used to measure the existence of damage, and it has already been proven as a
helpful tool for early-stage detection of pitting corrosion [7–9]. In 1995, Mazille was the
first one to apply AE to detect and study the development of pitting corrosion on AISI 316L
austenitic stainless steel [8]. Trdan et al. applied AE during accelerated electrochemical
potentiostatic tests and found it a reliable method for the early detection of pitting corrosion
of investigated Al alloy and for general monitoring of corrosion activity [7].

Active sensing is a method that can generate and sense ultrasonic guided waves with
a number of transducers such as embedded or surface-bonded PZTs and laser doppler
vibrometer [2,10]. In recent studies, due to the ability of detecting damages across a wide
area with fewer sensors, active sensing is widely used in health monitoring in aluminum
alloy plate [11]. Lamb wave tomography based on PZTs can apply imaging methods
to locate pitting damage, such as the phased array-based imaging method, spatial filter-
based imaging method and reconstruction algorithm for probabilistic inspection of defects
(RAPID). For example, a combination of dispersion compensation and deconvolution in
phased-addition algorithm is used; therefore, simulated pitting corrosion could be well
detected within the dynamic range of the array measurement [12]. Some studies have
revealed that a method using scanning laser Doppler vibrometer (SLDV) can detect a
cluster of pits which are arranged in 3 × 3 × 3 array and have the diameter of 2 mm and
the interval of 2 mm in aluminum plate, but most pits except the one at the center of
cluster can be identified [13,14]. Recently, Cao et al. proposed the NI, which can link the
degree of nonlinearity to the size of pitting damage, and both the PZTs network and RAPID
algorithm are used to visualize pitting damage, but only an approximate range of pitting
corrosion can be located [15].

However, the limitations of visual inspection include big subjective factors, disturbing
human interference, and a time-consuming and laborious process. The most inconvenient
is that it is unable to observe damage in real time. Although passive acting using AE can
determine whether pitting exists in the structure in real time, it cannot accurately determine
the specific position, shape and size of pitting damage. Laser doppler vibrometers are
limited in its heavy weight, which is unrealistic to carry on the aircraft for use. To overcome
these problems, PZTs are a good choice, which are light-weight, inexpensive, highly efficient
and flexible [10]. In addition, different shapes of sensor network with PZTs can be used to
monitor damage in specified areas [16].

In this paper, hydrofluoric (HF) acid is used to produce pitting corrosion with a radius
of 1 mm and depth of 0.6 mm on a 2024-T3 aluminum plate. Both the network with
12 piezoelectric sensors (PZTs) and ScanGenie-II integrated structural health monitoring
scanning system is built. The proposed SPW-RAPID algorithm based on different corrosion
damage characteristic parameters is used to locate the pitting corrosion and characterize its
outline and size. Finally, the pitting corrosion with a radius of 1 mm and a depth of 0.6 mm
on a 2024-T3 aluminum plate can be successfully detected.
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2. Tomography Algorithm
2.1. Conventional RAPID Algorithm

The RAPID algorithm is identified as a critical probabilistic method for reconstructing
damage images, which can characterize the difference between the signals interacting with
damage and the baseline signals without damage [17]. The signal comparison is mostly
on account of damage characteristic parameters, which can sense the subtle change in
transmitted signal and evaluate the damage severity of the detected area [17], such as
signal difference coefficient (SDC), root mean squared error (RMSE), damage index based
on signal energy E1, E2, E3 and normalized correlation moment (NCM). All of them can be
applied to the RAPID algorithm to identify the signal difference, which are calculated as
follows respectively:

1. Signal Difference Coefficient [18]:

SDCij = 1−

∣∣∣∣∣∣ ∑N
n=1
[
xij(n)− µ

][
yij(n)− µ

]√
∑N

n=1
[
xij(n)− µ

]2
∑N

n=1
[
yij(n)− µ

]2
∣∣∣∣∣∣ (1)

2. Root Mean Squared Error [19]:

RMSEij =

√√√√ 1
N

N

∑
n=1

[
xij(n)− yij(n)

]2, (2)

3. Damage index based on signal energy E1 [20]:

E1ij =
∑N

n=1
∣∣xij(n)

∣∣2
∑N

n=1
∣∣yij(n)

∣∣2 , (3)

4. Damage index based on signal energy E2 [21]:

E2ij =
∑N

n=1
∣∣xij(n)− yij(n)

∣∣2
∑N

n=1
∣∣yij(n)

∣∣2 , (4)

5. Damage index based on signal energy E3 [22]:

E3ij =
∑N

n=1
∣∣xij(n)

∣∣2 −∑N
n=1
∣∣yij(n)

∣∣2
∑N

n=1
∣∣yij(n)

∣∣2 , (5)

6. Normalized Correlation Moment [23]:

NCMij =
∑N

n=1 nk
∣∣rxy(n)

∣∣−∑N
n=1 nk|rxx(n)|

∑N
n=1 nk|rxx(n)|

, (6)

rxy(n) =
N

∑
n=1

xij(n)yij(N − n), (7)

rxx(n) =
N

∑
n=1

xij(n)xij(N − n). (8)

Here, µ is the mean of the corresponding signal, xij(n) is the health signal from the
transmitter i and receiver j sensor pair, and yij(n) is the damage signal from the transmitter
i and receiver j sensor pair. N is the sampling length. rxy(n) is the cross-correlation function
between health signal and damage signal. rxx(n) is the auto-correlation function of health
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signal. k is the order of statistical moment, and its value can be any positive number; when
0.01 is taken, the damage sensitivity is the highest [23].

After the damage index values of all sensor paths are calculated, the second step of this
algorithm is image reconstruction. The shape factor β can measure the size of the elliptical
distribution, which is usually greater than 1.0 [24]. The spatial distribution function sij(x, y)
is expressed as [17]: {

sij(x, y) =
β−Rij(x,y)

β−1 for β > Rij(x, y)
sij(x, y) = 0 for β ≤ Rij(x, y)

, (9)

where (x, y) are the coordinates of each point in a sensor array.
As shown in Figure 1, Rij(x, y) is the ratio of the sum of

−→
DAi and

−→
DiB to the distance

between transmitter–receiver pairs
−→
Di , which is expressed as [17]:

Rij =

√
(xi − x)2 + (yi − y)2 +

√(
xj − x

)2
+
(
yj − y

)2√(
xj − xi

)2
+
(
yj − yi

)2
, (10)

Figure 1. Illustration of RAPID algorithm.

Finally, Dij is defined as the damage characteristic parameters at each pixel, which
represents the value of SDC, RMSE, E1, E2, E3 and NCM. So, the damage probability of
each point (x, y) of the detected area is calculated as follows [17]:

P(x, y) =
N

∑
i=1

N

∑
j=1,j 6=i

DIijsij(x, y), (11)

In the following study, we try to characterize the behavior of SDC, RMSE, E1, E2,
E3 and NCM on monitoring pitting corrosion with the RAPID algorithm. In addition,
in this work, we tried to distinguish a clear cognition to the effect of various corrosion
damage characteristic parameters on image reconstruction so as to determine the best
monitoring method.

2.2. Sensor Path Weighting RAPID Algorithm

Generally speaking, the S0 mode and A0 mode have a similar effect on identifying
multiple structural damage. However, the size of pitting corrosion in this paper is too tiny,
and corrosion damage leads to the change of aluminum plate thickness. As we know, the
Lamb wave A0 mode is sensitive to thickness variations, which is superior to that of S0
mode [25]. Another essential property is that the A0 mode outperforms the S0 mode with
a shorter wavelength and larger signal magnitude at relatively low frequencies (such as
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110 kHz), which is beneficial to detect tiny damage [26]. So, the A0 mode is selected to
detect the signal differences caused by pitting corrosion.

In the process of extracting damage feature information from the signal, two consid-
erable factors are used to study the effect on the results, and both of them are related to
the status of the sensor path. The first factor is whether the sensor path directly passes
through the corrosion damage. Because when encountering damage, the ultrasonic signals
will obtain different waves, such as reflected waves, diffracted waves, energy-attenuated
waves and mode-converted waves [27]. Subsequently, the amplitude and phase of signals
are changed. So, it finally can represent whether a Lamb wave propagating on the sen-
sor path carries effective damage feature information or not. On those paths not directly
crossing through the corrosion part, the damage cannot interact with signals, which has a
subtle effect on the A0 mode. Simultaneously, with the increase of the distance between
sensor path and corrosion damage, the impact of damage on A0 mode gradually decreases.
Therefore, the linear distance from sensor paths to pitting corrosion is established as d0,
which can evaluate how sensor paths are affected by corrosion damage.

The second factor is the length of sensor path, which means the distance between
sensor pairs. As expected, if sensor paths meet the condition that different Lamb wave
modes can separate completely, it is convenient to obtain the damage feature information in
signals. On the contrary, short sensor paths cannot provide sufficient propagation distance
for signals, so the crosstalk in front, S0 mode and A0 mode will overlap with each other,
making it difficult to obtain the important part of scattered signals [28]. However, the
existing RAPID algorithm does not take into account these two factors. Based on this
problem, the algorithm needs to be modified.

The sensor path weighting RAPID (SPW-RAPID) algorithm is proposed on the basis of
the RAPID algorithm. The sensor path weight from the transmitter i and receiver j sensor
pair is established as wij, which can modify and optimize the values of corrosion damage
characteristic parameters. In addition, the value coefficient of sensor path from transmitter i
to receiver j is proposed as aij, which can describe how the sensor path is affected by pitting
corrosion based on the first factor. The impact factor of the sensor path from the transmitter
i to receiver j is put forward as lij, which can evaluate the behavior of sensor path length to
pitting corrosion identification based on the second factor. Finally, the sensor path is given
a certain weight, which is defined as the product of value coefficient and impact factor on
each sensor path, which is expressed as follows:

wij = aij × lij, (12)

where i represents the excitation sensor, and j represents the receiving sensor.
First of all, the value coefficient aij needs to be determined. As we know, the traditional

RAPID algorithm can roughly locate the pitting corrosion in the detected area and obtain
the original pitting location (x0, y0). A rectangular coordinate system is established based
on the sensor network. Then, the linear expression of each sensor path in the coordinate can
be obtained. According to the original pitting corrosion location (x0, y0), the perpendicular
distance from pitting corrosion to any sensor path can be calculated, as shown below:

d0 =

∣∣Axi + Byj + C
∣∣

√
A2 + B2

, (13)

where A, B and C represent the coefficients of the linear equation in a rectangular coordinate
system, x0 represents the horizontal ordinate of pitting position, and y0 represents the
longitudinal ordinate of the pitting position.

Secondly, the sensor path value is established as f, which describes the value level of
sensor paths according to d0 and finally defines the aij. The range of aij is 0 to 1, where
1 represents the highest value and 0 represents no value. For instance, when d0 is equal
to 0, the sensor path directly passes through the damage, where the signals can carry the
most useful damage feature information, so its value is very high and aij can be assigned as
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1. With the increase of d0, the damage is gradually away from the path. So, the damage
feature information carried by signals reduces correspondingly, which devalues the sensor
path and decreases the value of aij. Additionally, those paths with a value coefficient of 0
are mostly located at the boundary of the sensor network. There is little important damage
feature information in signals on the boundary path, which are vulnerable to plate edge
reflection [29].

The third step is to determine the impact factor, whose range is 0 to 1 as well, and
1 represents that the influence of sensor path is great. Instead, 0 represents that there is no
influence, because it is necessary to set a certain distance between sensors in order to extract
an integral A0 mode. The distance between sensor pairs needs to satisfy as follows [30]:

L
cA0
− L

cS0
>

n
f0

, (14)

where cA0, cS0 is the group velocity of the A0 mode and S0 mode, respectively; f0 is the
central frequency of the excitation signal; n indicates the number of cycles of the excitation
signal; L is the distance between sensor pairs.

The lij from transmitter i to receiver j is expressed as:

lij =
{

1 for L ≥ m cm
0.2 for L < m cm

, (15)

Finally, the weight on each sensor path and the original corrosion damage characteristic
parameters are multiplied to obtain the new corrosion damage characteristic parameters.
The spatial distribution function Sij and the damage probability P(x, y) are calculated
as usual.

In order to evaluate the quality of imaging results, the accuracy and precision are
put forward. Accuracy is the degree of closeness of barycentric coordinates between real
damage and predicted damage. Distance Root Mean Squared (DRMS) is a good indicator
to measure the distance between two points, as shown in Equation (16). The bigger the
DRMS value is, the larger the localization error is. Meanwhile, precision is the degree of
imaging clarity, which can be obtained by enlarging the images for comparison.

DRMS =
√

σ2
x + σ2

y , (16)

where σx represents the deviation of horizontal ordinate between real damage and predicted
damage in a sensor network, and σy represents the deviation of longitudinal ordinate
between real damage and predicted damage in a sensor network.

3. Experimental Procedure
3.1. Specimen Design

The specimen is made of aluminum 2024-T3 with the dimension of 400 mm × 400 mm
× 2 mm, as shown in Figure 2a. The material properties of the specimen are listed in
Table 1. A square sensor layout with 12 piezoelectric transducers is designed as shown
in Figure 2b. The pitch–catch configuration is adopted. So, there are 66 effective sensing
paths, as shown in Figure 2c.

Table 1. Material properties of specimen.

Specimen Material Grade Aluminum 2024-T3

Poisson’s ratio 0.33
Density 2.78 g/cc

Young’s modulus 73.1 GPa
Fatigue strength 130 MPa
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Figure 2. Designs (a) Test specimen. (b) Specimen diagram. (c) The layout of piezoelectric transducers
network.

3.2. Monitoring System Setup

The acquisition experiment of Lamb wave signals was conducted by a ScanGenie-II
integrated structural health monitoring scanning system produced by Acellent Technolo-
gies. The main technical indicators of the setup are listed in Table 2. The monitoring system
consists of the testing specimen, piezoelectric transducers, ScanGenie-II piezoelectric moni-
toring device, signal generator, digital acquisition software and connecting box, as shown
in Figure 3. This system equipped with a PZTs array is superior to acquire signals, because
it can achieve multi-site and multi-frequency monitoring scanning of a large area at once.

Figure 3. The experiment setup.

Table 2. Piezoelectric monitoring equipment technical indicators.

Device Number ScanGenie-II

Frequency 100–150 kHz
Conversion Rates 1.5, 6, 12, 24, 48 MHz

Integrated Power Amplifier ±50 V
Memory 16,000 Samples

Sampling Rates 130 MPa
Resolution 12-bit

ADC Range ±1 V

From the dispersion equations, the relationship between group velocity and the
product of frequency and specimen thickness is shown in Figure 4. As we can see, Lamb
wave signals contain two or more modes at frequency above 2000 kHz. Wave modes
at higher frequencies are inappropriate to detect the damage owing to its high energy
attenuation during large distance propagation. To figure out the A0 mode and S0 mode
completely and reduce the attenuation of wave mode, the frequency less than 2000 kHz is
suitable to be selected. So, the excitation frequency of 110 kHz is selected in this paper.
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Figure 4. Dispersion curve of the Lamb wave of a 2 mm thick aluminum plate.

The excitation signal is a five-peak sine tone burst, and the expression is expressed as
follows [31]:

u(t) = A
[

H(t)− H
(

t− N
fc

)]
×
(

1− cos
2π fct

N

)
sin 2π fct, (17)

where A is the signal amplitude, N is the number of crests, fc is the central frequency of
the signal, and H(t) is the Heaviside step function. The sampling rate is 24 MSPS, and the
sampling length is 10,000 points.

3.3. Pitting Corrosion Manufacture

After the preparation of experiment setup, simulated pitting corrosion with a radius
of 1 mm and the depth of 0.6 mm is manufactured artificially. A series of corrosion devices
include glass adhesive, hydrofluoric (HF) acid, glue dropper and medical syringe. The
corrosion process is successively shown in Figure 5. HF acid provided by Hengxing
Reagents was used to make artificial pitting corrosion on the specimen. The chemical
compositions of HF acid are shown in Table 3.

Table 3. The chemical composition of hydrofluoric acid.

Content Impurity Content (%)

Content of HF ≥40
Fe ≤0.0001
Cl ≤0.001

PO4 ≤0.0002
Heavy metal (Pb) ≤0.0005

Fluorosilicate (SiF6) ≤0.04
Others ≤0.004

An optimized method is proposed to directionally make an artificial pitting defect and
ensure the accuracy of simulated manufacturing. Firstly, we apply a circular glass adhesive
layer with the diameter of 1 cm and thickness of 5 mm in pre-etching area. Before the
adhesive is fully cured, a medical syringe with a needle diameter of 1 mm is used to drill a
small hole penetrating the adhesive layer in the pre-etching area. The simulated hole can
be formed until the adhesive is completely cured. Simultaneously, the corrosive solution
is prepared by HF acid and H2O with the ratio of 1:2. Subsequently, add the corrosive
solution into the hole using a medical syringe. During the course of corrosion, replace the
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solution every 15 min until the corrosion process is done. The pitting corrosion is controlled
by controlling the contact time between corrosive solution and specimen. As a result of
this etching of an aluminum plate, a single pitting with a radius 1.0 ± 0.01 mm and a depth
0.60 ± 0.01 mm is obtained, as shown in Figure 5c,d). The tests are carried out three times
to reduce error. At the beginning and the end of each test, the health signal and damage
signal are collected separately by the device for subsequent signal processing.

Figure 5. The manufacture process: (a) Undamaged specimen. (b) Corrosion process. (c) Damaged
specimen. (d) Enlarged view of simulated pitting corrosion.

4. Discussion and Results

Figure 6 clearly illustrates the simulated images using the conventional RAPID al-
gorithm with different parameters. The red part where the damage probability is high
represents that the pitting corrosion exists here. On the contrary, the blue part represents
there is no pitting corrosion, and the damage probability here is low. It can be observed that
images of SDC, RMSE and E1 exhibit the same as real corrosion, as shown in Figure 6a–c,
respectively. They all image the pitting corrosion in the middle, and the size of imaging
results is also similar to the reality. However, as shown in Figure 6c–e, the images of E2,
E3 and NCM are thoroughly not in line with real damage. Some inefficiency still exists
because there is another red artifact appearing in the image of RMSE. Although there is no
artifact in the image of SDC and E1, there are many disturbing points all over the images,
and the imaging clarity is low. The reason of poor imaging results is due to the small size
of pitting corrosion, resulting in subtle signal differences, and the characteristic parameters
cannot accurately distinguish those subtle differences.

On the basis of the method in Section 2.2, the imaging accuracy and clarity of 6 charac-
teristic parameters are verified by DRMS and enlarged images. The barycentric coordinates
of pitting corrosion are listed in Table 4. As we can see, the DRMS of SDC, RMSE and E1
are 0.141, 0.224, and 0.200 respectively, and the minimum deviation is only 0.200 mm. So,
their localization error is small, which can be neglected. However, the localization error of
E2, E3 and NCM is quite big, because the DRMS is up to 60.000 mm. The results revealed
that only SDC, RMSE, and E1 with the RAPID algorithm can strongly interact with pitting
corrosion and can roughly locate the damage position.

Table 4. The original DRMS of real defect and simulated damage.

Parameters (x0, y0) (xi, yi) σx/mm σy/mm DRMS/mm

SDC (0, 0) (−0.1, −0.1) 0.1 0.1 0.141
RMSE (0, 0) (−0.1, −0.2) 0.1 0.2 0.224

E1 (0, 0) (0, −0.2) 0 0.2 0.200
E2 (0, 0) (59.9, −0.2) 59.9 0.2 59.900
E3 (0, 0) (60.0, −0.2) 60.0 0.2 60.000

NCM (0, 0) (59.9, −0.3) 59.9 0.3 59.901
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Figure 6. Simulated images based on different corrosion characteristic parameters: (a) SDC. (b) RMSE.
(c) E1. (d) E2. (e) E3. (f) NCM.

Subsequently, the simulated images were enlarged to evaluate the imaging clarity.
Figure 7 shows the zoom-in view of simulated pitting based on SDC, RMSE and E1,
respectively. All of them can roughly show the outline of pitting corrosion. The clearest one
is E1, which contains no artifacts and characterizes the damage that is close to the real size.
The images of SDC and RMSE take second place, because the red part is slightly smaller
than the real state. All in all, the imaging quality needs to be improved.

Figure 7. Enlarged view of real defect and simulated damage: (a) real defect. (b) SDC. (c) RMSE.
(d) E1.
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Therefore, the SPW-RAPID algorithm in Section 2.2 is used to optimize the simulated
images. Based on the sensor network in Figure 2c, a rectangular coordinate system is built
up, and sensor 10 is taken as the grid origin, as shown in Figure 8. After calculation, the
distances between pitting corrosion and sensor paths refer to eight different lengths as
0 cm, 2.5 cm, 3 cm, 4.24 cm, 5.69 cm, 6.71 cm, 8.49 cm and 9 cm, respectively. As listed in
Table 4, there are six sensor paths with a distance of 0 cm defined as very high value, so
the aij is 1. All of them go directly through the pitting corrosion, such as paths 1–7. The
paths with a distance of 2.5 cm that can be greatly affected by damage are defined as good
value, such as paths 1–6, so the aij is 0.5. Those with distances ranging from 3.00 to 8.49 cm
are defined as general value, and the aij is 0.2. The number of paths at the boundary of the
sensor network is 24. On account of edge reflection, the aij is defined as 0. Finally, the value
and value coefficient are obtained as shown in Table 5.

Figure 8. Rectangular coordinate system based on sensor network.

Table 5. The optimized DRMS of real defect and simulated damage.

d0/cm Number of Paths f aij

0.00 6 High value 1
2.50 8 Good value 0.5
3.00 4 General value 0.2
4.24 4 General value 0.2
5.69 8 General value 0.2
6.71 8 General value 0.2
8.49 4 General value 0.2
9.00 24 No value 0

Next, the impact factor needs to be determined. In this sensor network, if the length
of the sensor path is less than 18.8 cm, the crosstalk in front and wave modes behind
will overlap with each other. For instance, as shown in Figure 9a, the S0 mode does not
appear at all on sensor paths 3–5, because it is covered by the crosstalk and A0 mode
absolutely. Meanwhile, the A0 mode only appears to have four peaks, and the amplitude
reduces relatively small compared to that of sensor paths 6–12. All in all, there are 44 paths
achieving this condition in the sensor network, whose A0 modes only carry incomplete
damage feature information, so they have little effect on pitting imaging; their impact factor
is defined as 0.2.

However, if the sensor path length is above or equal to 18.8 cm, the crosstalk ahead,
S0 mode and A0 mode can be completely separated. For example, the wave modes on
sensor paths 6–12 have a complete shape, as shown in Figure 9b. It is discovered that
the amplitude of the guided waves decreases with the increase of corrosion level, so the
amplitude of the A0 mode in the damage state is lower than that in the health state. In
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summary, when the length of the sensor path is above or equal to 18.8 cm, the impact factor
is defined as 1.

Figure 9. Comparison between health signal and damaged signal (a) on paths 3–5, (b) on paths 6–12.

Figure 10 shows the comparison between real defect and optimized simulated images.
As we can see, the location and the size of simulated pitting in optimized images are all
consistent with the real defect. It is worth mentioning that the red artifact has disappeared,
and bright spots have a big decline. The imaging clarity and accuracy are all improved.
Meanwhile, the image of SDC has the least disturbing bright spots, whose definition is the
highest. The image of E1 is the most symmetrical. Although there are still some disturbing
bright spots compared with another two, it is better than before and does not affect the
observation.

Figure 10. Comparison between real defect and simulated damage (a) real defect. (b) SDC. (c) RMSE.
(d) E1.

The following step is to judge the accuracy and clarity of optimized simulated images.
The DRMS is calculated, and the simulated pitting images are zoomed in, respectively.
According to Table 6, the maximum DRMS is only 0.1 mm. Compared with before, the
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position errors of SDC, RMSE and E1 are decreased by 100%, 55.4% and 50%, respectively.
So, it is concluded that there is almost no position deviation that can ensure the position
accuracy. As observed in Figure 11b–d, the sizes of simulated pitting in zoom-on images
are all consistent with the real defect after optimization. We observed that the color of the
red part is deepened and the outline is clearer. So, the clarity of imaging has been raised. It
is worthy of mentioning that the zoom-in image of E1 has the best clarity and symmetry
after amplification.

Table 6. Position error of real defect and simulated pitting.

Parameters (x0, y0) (xi, yi) σx/mm σy/mm DRMS/mm

SDC (0, 0) (0, 0) 0 0 0
RMSE (0, 0) (0, −0.1) 0 0.1 0.1

E1 (0, 0) (0, −0.1) 0 0.1 0.1

Figure 11. Enlarged views of real defect and simulated pitting corrosion (a) real defect. (b) SDC.
(c) RMSE. (d) E1.

Finally, we draw a conclusion that the SPW-RAPID algorithm using characteristic
parameters of SDC, RMSE and E1 can be used for locating and monitoring pitting corrosion
on an aluminate alloy plate. The adjustment of corrosion characteristic parameters with
sensor path weight can obtain better pitting images.

5. Conclusions

In this paper, the SPW-RAPID algorithm is proposed to monitor the pitting corro-
sion with a radius of 1 mm and a depth of 0.6 mm on a 2024-T3 aluminum alloy plate
(400 mm × 400 m × 2 mm). According to characteristics of defect and specimen, a method
for manufacturing pitting corrosion with ideal size is used. A square sensor network
including 12 PZTs is designed. A ScanGenie-II integrated structural health monitoring
scanning system is built to collect both the health signal and damage signal. The results are
as follows:
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1. The A0 mode of Lamb wave is extracted to obtain corrosion damage characteristic
information. The corrosion damage characteristic parameters including SDC, RMSE,
E1, E2, E3 and NCM using the conventional RAPID algorithm is explored successively
for imaging pitting corrosion. The results showed that the DRMS of the images based
on SDC, RMSE, and E1 is up to 0.224 mm, while the DRMS of the images based on
E2, E3 and NCM is up to 60.000 mm. So, it is found that only SDC, RMSE and E1 are
sensitive to the small signal difference generated by pitting corrosion, and they can
roughly locate the position of pitting corrosion. They were chosen as characteristic
parameters for the SPW-RAPID algorithm;

2. The SPW-RAPID algorithm based on the sensor path weight (w) is proposed, and
its monitoring effect is better than the conventional RAPID algorithm. The value
coefficient (a) is proposed according to the value of damage feature information
carried by signals on the sensor path, and the influence factor (l) is put forward to
evaluate the influence of the length of the sensor path on the extraction of pitting
feature information. Finally, it is demonstrated that the sensor path weight (w) can be
used to modify the corrosion damage characteristic parameters;

3. The image simulated results obtained by the SPW-RAPID algorithm based on SDC,
RMSE and E1 are all improved. As for image accuracy, the DRMS of images based
on SDC, RMSE and E1 is 0 mm, 0.1 mm, 0.1 mm, respectively. It is revealed that
the position errors of SDC, RMSE and E1 are decreased by 100%, 55.4% and 50%,
respectively. With regard to image clarity, the imaging area of SDC, RMSE and E1 is
increased and clearer. In summary, the proposed SPW-RAPID algorithm using SDC,
RMSE and E1 can locate the position of pitting corrosion with a radius of 1 mm and a
depth of 0.6 mm.
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