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Abstract: How to treat the iron tailings of mining solid waste with high value is an urgent problem
on a global scale. In recent years, the application of iron tailings in the building materials industry
has attracted the attention of many scholars. The conversion of iron tailings into green building
materials helps achieve carbon neutrality and high-value utilization of solid waste, and promotes
sustainable development. Although iron tailings have been extensively studied as supplementary
cementitious materials, the performance of concrete is not ideal due to its low activity. In this study,
the hybrid supplementary cementitious materials system was prepared by iron tailings, phosphorus
slag, and steel slag, and the effects of supplementary cementitious materials type, iron tailings
content, iron tailings grinding time, and supplementary cementitious materials content on concrete
performance were studied. The compressive properties, iron tailings properties, pore structure,
interfacial transition zone, and element distribution of hydration products of concrete were tested
by compressive strength tests, X-ray Diffractometer (XRD), X-ray Photoelectron Spectroscopy (XPS),
Mercury Intrusion Porosimetry (MIP), Backscattering Electron Tests (BSE), and Energy Dispersive
Spectrometer (EDS). The results show that further grinding improves the iron tailings activity. There
is a synergistic mechanism between steel slag and phosphorus slag in the composite supplementary
cementitious materials, which overcomes the low activity defect of iron tailings and produces concrete
with a compressive strength exceeding 40 MPa. The composite supplementary cementitious materials
can optimize the interfacial transition zone of the concrete interface and reduce the calcium–silicon
ratio of the hydration products. However, it will deteriorate the pore structure of the concrete
matrix, cause part of the concrete matrix to be damaged and lead to a loss of compressive strength,
and the loss is acceptable. This work broadens the methods of comprehensive utilization of iron
tailings and also provides a reference for a more detailed understanding of the properties of iron
tailings-based concrete.

Keywords: solid waste resourcing; ternary system; iron ore tailings; phosphate slag; steel slag; pore
structure; interface transition zone; compressive strength

1. Introduction

The continuous development of mineral resources forms many tailings, which is one
of the rich solid waste resources. The accumulation of tailings pollutes the environment
and poses a threat to the safety of surrounding people and buildings [1,2]. Iron tailings
(IOTs) account for the most significant proportion of the total tailings’ generation in China:
about 520 million tons, accounting for 40.9% of the total tailings’ generation [3,4]. With
extensive research on the recycling of IOTs at home and abroad, IOTs are now often used
for the recovery of metals from secondary resources [5], backfill materials [6,7], concrete
coarse and fine aggregates [8,9], and bricks [10,11].
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Due to the presence of SiO2 and Al2O3 in IOTs, many scholars have tried to prepare
supplementary cementitious materials (SCMs) using IOTs [12,13]. The majority of the
SCMs are silica-aluminous volcanic materials, which are widely used in concrete and are
thought to be an effective way to improve cement performance while lowering cement
costs [14,15]. The interfacial transition zone (ITZ) is often considered the weak link in
cementitious composites, which largely affects the mechanical properties and durability of
concrete [16]. Mixing auxiliary cementing materials, such as slag, fly ash, and silica fume,
can improve the structure of the ITZ [17]. SCMs can fill the pores by generating cementing
substances through volcanic ash reactions, reducing the wall effect and percolation reaction,
and improving the pore structure of the ITZ [18,19].

The mineral composition of IOTs is mostly inactive crystalline silica, so some means
will be used to activate the IOTs, and currently, the most commonly used means is me-
chanical activation [20]. It was found that the physical and chemical properties of solid
particles are changed to some extent under the action of mechanical forces, resulting in
a decrease in size, an increase in specific surface area, and an increase in chemical activ-
ity [21,22]. However, mechanically activated IOTs still belong to low active volcanic ash
materials [23,24], and when less than 10% admixture of active IOTs was used to prepare
concrete, the strength of the test piece only reaches 30 MPa [25]. It was found that slag or
fly ash (FA) can replace some of the IOTs to produce precast concrete, which can make the
precast concrete perform well [26,27]. The proposed composite SCMs system has important
reference significance for the comprehensive utilization of IOTs. With the acceleration of the
urbanization construction process, the demand for SCMs in the construction industry has
gradually increased. The price of traditional highly active SCMs, such as slag powder, fly
ash, and silica fume, has increased, and the reserves are limited. Therefore, more composite
SCMs systems need to be developed to achieve the purpose of IOTs elimination through
the use of higher activity SCMs and IOTs compounding.

Phosphorus slag (PS) is a by-product produced in the process of high-temperature
electric furnace phosphorus removal. China is the second-largest country globally with
abundant phosphorus reserves and a significant producer and exporter of yellow phos-
phorus, with an annual output of more than 8 million tons [28,29]. The main components
of PS are SiO2 and CaO, and the content of the glass phase can reach 85~90%, which
is similar to ground granulated blast furnace slag (GGBFS) and has particular potential
activity [28,30,31]. The hydration reaction of PS generates additional C-S-H gel, which
increases the density of the structure and reduces the number of harmful pores [28,32].
At the same time, PS can reduce the hydration heat of the reaction and has good durabil-
ity [33]. However, PS containing soluble P and F is not conducive to the early hydration
of cement [34,35], and steel slag can be added to eliminate the adverse effects of low early
strength and retardation [36].

Steel slag (SS) is a by-product of the steelmaking process, and the annual output of
SS in China reaches 100 million tons [37]. Since the mineral phase of SS is mainly C2S,
followed by C3S, it is considered a potential cementitious material [38,39]. However, the
utilization rate of SS in China is only 29.5%, and the effective utilization of SS is also a
vital issue.

In summary, it is potentially feasible to prepare a composite SCMs system using PS,
SS, and IOTs. In this study, based on mechanical grinding of IOTs and also to maximize
the use of IOTs, natural sand and gravel aggregates were prepared by replacing natural
sand and gravel aggregates with IOTs sand and iron ore waste rock. The effects of the type
of auxiliary cementing material, IOTs admixture, IOTs grinding time, and the admixture
of auxiliary cementing material on the compressive properties of concrete were analyzed.
The pore structure, ITZ, and the calcium–silica ratio of the ITZ of concrete were tested
using MIP, BSE, and EDS, respectively. Further, the relationship between the compressive
properties and the properties of the pore structure and ITZ was investigated. It provides a
reference for the development of auxiliary cementing materials for composite systems and
the utilization of IOTs in the full particle size range.
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2. Experimental
2.1. Raw Materials

IOTs, PS, and SS are used as SCMs to prepare concrete. IOTs are obtained from Waitou
Mountain in Liaoning Province, China. PS is produced in Yunnan Province, China. SS
is sourced from Shanghai, China. P·O 42.5 Portland cement complying with the Chinese
National Standard GB175-2007 [40]. Coarse aggregates (IOTs-CA) and fine aggregates
(IOTs-FA) for preparing concrete were taken from Liaoning Yilifang Sand Industry Co., Ltd
(Shenyang, China). The fineness modulus of fine aggregates was 2.0, and the size range
of coarse aggregates was 5–20 mm. The P-II water reducer (WR) used in this study was
produced by Shenyang Shengxinyuan Building Materials Co., Ltd (Shenyang, China). The
chemical composition of IOTs, PS, SS, and cement determined by X-ray fluorescence (XRF)
analysis is shown in Table 1. The particle size distribution of IOTs, PS, and SS is shown
in Figure 1, and SEM micrographs are shown in Figure 2. The IOTs determined by X-ray
diffraction (XRD) analysis are shown in Figure 3. It can be seen that the crystalline phase of
IOTs is mainly composed of quartz, calcite, and iron cordierite.

Table 1. Chemical compositions of IOTs, PS, steel slag, and cement (w/%).

Composition SiO2 Fe2O3 CaO MgO Al2O3 K2O Na2O P2O5

IOT 62.26 14.37 7.78 6.33 4.78 1.40 1.34 —
PS 39.08 1.14 47.45 2.90 3.94 0.87 0.60 2.34
SS 15.2 27.54 42.65 6.05 2.53 0.06 0.02 1.97

Cement 22.50 3.43 66.30 0.83 4.86 0.43 0.22 —
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Figure 1. Particle size distributions of IOT, PS, and SS. 
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2.2. Experimental Methods
2.2.1. Grinding

The IOTs were dried in an oven at 105 ◦C. After drying, the IOTs were sieved and
particles between 0.075–0.15 mm were selected for grinding to improve the crushing effi-
ciency and reduce the effect of ultra-fine powders smaller than 0.075 mm on the crushing.
The dried IOTs were ground in an XQM-4 laboratory ball mill (Tencan Powder, Changsha,
China) for 1.5 h, 2 h, and 2.5 h, respectively. We used Micromeritics ASAP 2460 (Micromerit-
ics, Shanghai, China) to determine the specific surface area and pore size distribution of
the milled iron tailings, and nitrogen was selected as the adsorbent. For degassing, the
temperature was increased to 90 ◦C for 1 h at 10 ◦C/min and then increased to 200 ◦C for
4 h at 10 ◦C/min. After degassing, the samples were cooled to room temperature, and the
samples were taken out and tested in liquid nitrogen at −196 ◦C.

2.2.2. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) was used to determine the surface binding
energy of Al, Si, and Ca elements in IOTs at different grinding times. The test conditions
were as follows: the vacuum of the chamber was 8.0–10 Pa, the excitation source was Al
K-rays with energy of 1.4867 keV, and the flux energies of the full and fine spectra were
100 eV and 30 eV, respectively, in steps of 0.1 eV, with a dwell time of 40–50 ms, and the
binding energy of C1s (284.8 eV) was used as the energy standard for charge correction.

2.2.3. X-ray Diffractometer

A Rigaku Ultima IV X-ray diffractometer (Rigaku, Beijing, China) with CuKaα radia-
tion (135 mA and 40 kV) was used to identify the main crystalline phases of the crushed
IOTs. The IOTs were well ground before the experiment and an appropriate amount of
samples was placed on a slide and flattened and compacted. Data were collected in 0.02◦

(instrumental) steps at a scanning speed of 3◦ per minute and a scanning angle of 5◦–60◦ (2).
Phase identification was performed using MDI Jade6 software.

2.2.4. Preparation of Specimens

The concrete mix ratios are listed in Table 2. Concrete samples (M1, I1, G0, and
C0) were used as reference samples. SCMs type (IOTs single blending (M1), IOTs-PS
double blending (M2), IOTs-PS-SS triple blending (M3)), IOTs content (IOTs blended with
15% (I15), IOTs blended with 10.5% (I10.5), IOTs blended with 6% (I6), IOTs blended with
1.5% (I1.5)), IOTs grinding time (IOTs grinding 0 h (G0), IOTs grinding 1.5 h (G1.5), IOTs
grinding 2 h (G2), IOTs grinding 2.5 h (G2.5)) and SCMs content (no SCMs mixed (C0),
SCMs mixed with 10% (C10), SCMs mixed with 20% (C20), SCMs mixed with 30% (C30)),
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were used as variables. Where I6, G2, and C30 are the same sample, M3 and I15 is the
same sample. Concretes of 100 × 100 × 100 mm were cast. Concretes were cured in a
room with a temperature of 20 ± 1 ◦C and relative humidity higher than 95% (Standard
curing condition).

Table 2. Mix proportions of concretes (kg/m3).

Samples Cement Water
SCMs

IOTs-FA IOTs-CA WR
IOT

Grinding TimeIOT PS SS

M1 294 185 126 0 0 740 1110 4.5 2 h
M2 294 185 63 63 0 740 1110 4.5 2 h
M3 294 185 63 32 32 740 1110 4.5 2 h

I15 294 185 63 32 32 740 1110 4.5 2 h
I10.5 294 185 44 41 41 740 1110 4.5 2 h

I6 294 185 25 50 50 740 1110 4.5 2 h
I1.5 294 185 6 60 60 740 1110 4.5 2 h

G0 294 185 25 50 50 740 1110 4.5 0 h
G1.5 294 185 25 50 50 740 1110 4.5 1.5 h
G2 294 185 25 50 50 740 1110 4.5 2 h

G2.5 294 185 25 50 50 740 1110 4.5 2.5 h

C0 420 185 0 0 0 740 1110 4.5 0
C10 378 185 8.5 17 17 740 1110 4.5 2 h
C20 336 185 17 34 34 740 1110 4.5 2 h
C30 294 185 25 50 50 740 1110 4.5 2 h

2.2.5. Compressive Strength

The compressive strength test of concrete is carried out concerning the “Standard for
test methods of concrete physical and mechanical properties” (GB/T 50081-2019) [41]. The
7 d, 14 d, and 28 d compressive strengths of concrete were determined using a Shenzhen
universal testing machine (2000 kN) with a loading rate of 0.7 MPa per second. The strength
results were converted, and the conversion factor was 0.95. The test results were taken as
the average of the strengths of the three specimens.

2.2.6. Mercury Intrusion Porosimetry

To ensure the uniformity of the pore structure test and the concrete compressive
performance test samples, the mercury compression test samples were taken from cubic
concrete specimens after 28 days of curing. Firstly, a 15 mm thick slice of concrete was
cut using a cutter parallel to the forming surface, and the plane at the cut was 15 mm
away from the forming surface; then a core sample was drilled using an electric drill and a
hollow drill bit (8–14 mm inner diameter of the drill bit), and the samples were all from
the same depth of the cutting surface, and the sample did not contain aggregate. The
sample does not need to ensure the uniformity of the rules and shape, and it is enough to
ensure that no cracks are produced by external forces. After sampling, the samples were
immersed in anhydrous ethanol for 7 days to terminate hydration, then dried for 3 days
and tested for mercury compression (drying temperature of 50 ± 2 ◦C). The porosity and
pore size distribution of the specimens were measured using an AutoPore IV 9510 fully
automatic mercury piezometer (Micromeritics, Shanghai, China) with a maximum pressure
of 414 MPa.

2.2.7. Backscattering Electron Tests and Energy Dispersive Spectrometer

The specimens were sliced after curing for 28 days. The thickness of the slices was
about 3–5 mm. The cutting direction was parallel to the forming surface. The first knife
was 15 mm away from the forming surface, and the second knife was 18–20 mm away
from the forming surface. Then the cores were drilled into the slices to take samples
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(containing aggregate and matrix). They were immersed in anhydrous ethanol for 7 days
to terminate the hydration, and the samples were put into the oven to dry for 3 days (the
drying temperature was 50 ± 2 ◦C). To prevent the samples to prevent the microstructure
of the samples from being destroyed during the sample making process, the samples were
immersed in epoxy resin for 24 h for natural hardening, followed by grinding, profiling,
ultrasonic cleaning, and drying (the drying temperature was 50 ± 2 ◦C), and finally, the
samples to be tested were obtained. The magnification of the backscattered images was
500 times, and the resolution of the images was 1024 × 768 Pixel. The images were
quantified and calculated using image processing software (Image J 1.8.0).

The samples after BSE testing were further used for Energy dispersive spectrometer
(EDS) testing. The calcium to silicon ratio of the product within the ITZ (100 µm from the
aggregate) was determined by EDS, and three line scans were randomly performed for
each sample.

3. Results and Discussion
3.1. Compressive Strength

Figure 4a shows the effect of the type of SCMs on the compressive strength of concrete.
The compressive strength of M2 increased by 11.3%, 6.9%, and 10.9% at 7, 14, and 28 days,
respectively, compared with M1. Some studies have shown that PS itself has a high
vitreous content and high volcanic ash activity [42]. Thus, the introduction of PS was
able to produce more C-S-H gels compared to the IOTs system alone, thus improving the
compressive strength of the concrete. This approach of compensating the deficiencies of one
material with the advantages of another has been reported by several authors. Han et al.
used slag powder to replace part of the IOTs to improve the performance of concrete [43].
Nano-silica can compensate for the loss of durability produced by fly ash on concrete [44].

Interestingly, the 7-day, 14-day, and 28-day compressive strengths of M3 increased
by 8.7%, 10.3%, and 5.6%, respectively, compared to M2 after the incorporation of SS. SS
admixture adds more CaO and promotes Ca(OH)2 crystallization [36]. Alkaline substances
can better stimulate the secondary hydration reaction of PS, and SiO2 and Al2O3 are
constantly dissolved in an alkaline environment to react with Ca(OH)2 to form C-S-H,
improving compressive strength. As a result, the addition of the third component SS in the
dopant stimulates the PS even more. The consumption of Ca(OH)2 by PS then facilitates
the activity of SS, and the two form a synergistic mechanism.

To further analyze the effect of the synergistic mechanism between IOTs, SS, and PS
on the compressive strength, the total amount of admixture was fixed at 30%, and the
compressive performance of concrete was tested with the amount of IOTs admixture as a
parameter. Figure 4b depicts the effect of IOTs admixture on concrete compressive strength.
The trends of the 7-day and 14-day compressive strengths of concrete did not show any
significant regularity. The 7-day compressive strengths of the left side of the boundary
(I15 and I10.5) are close to those of the 6% IOTs admixture, and the 7-day compressive
strengths of the right side of the boundary (I1.5) are significantly higher than those of
the left side of the boundary. With the decrease in IOTs admixture, the overall 28-day
compressive strength of concrete showed an increasing trend. This trend is the same as
the pattern of change in compressive strength exhibited when IOTs are used as a single
blend [45]. The above results show that the IOTs have a very low degree of reaction in
the early stages and contribute negligibly to the compressive strength of concrete. It also
proves that the synergistic mechanism of PS and SS can work in both early and late stages
to significantly improve the compressive strength of concrete.

Studies have shown that IOTs mainly play a filling, nucleation, and dilution role in the
cementitious material system. When the IOTs are fine, they can also play a certain volcanic
ash activity [43]. Figure 4c demonstrates the effect of grinding time on the compressive
strength of concrete. The compressive strength of concrete increased with the increase
in grinding time of IOTs. This indicates that mechanical grinding facilitates the physical
action and activity effect of IOTs, but the increase in concrete strength slows down after
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grinding time beyond 2 h. This is because the agglomeration effect occurs between the
IOTs particles after grinding for more than 2 h, and the IOTs mainly play the filling effect in
the SCMs. Although the IOTs activity is increasing under the action of mechanical force,
the strength increase is not obvious due to the reduction of the filling effect [46].
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The above results indicate the feasibility of using the synergistic mechanism between
SS and PS to compensate for the low activity of IOTs. To compare the compressive per-
formance difference between concrete containing ternary system admixtures and normal
concrete and to analyze the reasons for it, the admixture amount of IOTs can be adjusted to
6% and the grinding time is preferably 2 h. Figure 4d shows the effect of the admixture of
SCMs on the compressive strength of concrete, which gradually decreases with increasing
admixture. The most significant difference is shown in the early stage, where the 7 d com-
pressive strengths of C10, C20, and C30 decreased by 13.3%, 20.7%, and 22.9%, respectively,
relative to C0. There are two main reasons as followed: 1. SS reduces the formation of
AFt and inhibits the precipitation of CH and C–S–H [47]; 2. [PO4]3− in the PS inhibits
the formation of AFt, and [SO4]2− ions prevent the conversion of “hexagonal hydrate”
to C3AH6, and the early hydration of cement is inhibited [48]. The 28-day compressive
strength of C10 remained the same as that of C0, and the 28 d compressive strength of C30
only decreased by 7.6% compared with that of C0, indicating that it is feasible to choose a
30% admixture of SCMs.
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3.2. Mechanical Activation of IOT

The specific surface area of IOTs after grinding is shown in Table 3, and the particle
size distribution and accumulated sieve allowance are shown in Figure 5. With the increase
in grinding time, IOTs undergo brittle damage. Mechanical forces destroy their mineral
structure, the particles become smaller, and the specific surface area increases rapidly [22,46].
The specific surface area of IOTs particles reached a peak of 1587 m2/kg after 2 h of
mechanical grinding. As the particle size of IOTs particles became smaller, the material
particles started to agglomerate under the effect of van der Waals forces. In this process, the
free energy of the particles and the chemical potential energy of the system both decrease,
so the material particles undergo an agglomeration phenomenon, and the specific surface
area decreases [49]. Mechanical grinding produces fine particles of less than 1 µm in iron
tailings particles. As the grinding time increases, the cumulative sieve residual of fine
particles smaller than 1 µm increases. However, it is not possible to produce ultrafine
powders smaller than 0.1 µm by grinding.

Table 3. Specific surface area of IOTs at different grinding times.

Grinding Time/h 0 1.5 2 2.5

Specific surface area/m2·kg−1 646 1290 1587 1311
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The SEM micrographs of IOTs with different grinding times are shown in Figure 6. The
original IOTs particles are irregular in shape, in the form of irregular polyhedra with many
angles, with a relatively rough surface and no fine particles. After the mechanical grinding
process, the IOTs particles with many internal cracks and defects are rapidly crushed, and
the particles are gradually refined to appear as spherical particles, but most of them are
still in the form of irregular polygonal polyhedra [49]. After grinding for more than 2 h,
there is no significant change in particle size. Under the action of van der Waals forces, the
particles agglomerate and the grinding efficiency becomes low [50]. IOTs with different
grinding times showed similar morphology under SEM images, indicating that mechanical
activation can only change the particle size of IOTs, but not the IOTs particle morphology.

For inert silicate minerals such as IOTs, in which Al, Si, and Ca elements are present in
the form of oxides, detecting the change of surface binding energy between Al, Si, and Ca
elements and O elements can reflect the change pattern of the activity of alumina, silica,
and calcium oxide in IOTs [51]. To determine the effect of mechanical grinding on the
activity of IOTs, XPS analysis of IOTs powder with different grinding times was performed.
Figure 7 shows the XPS energy spectra of IOTs powders with different grinding times. The
surface binding energy of Al2p, Si2p, and Ca2p of mechanically activated IOTs decreased
significantly and showed different trends compared with the original IOTs. Mechanical
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activation has a reduction effect on the surface binding energy of Al, Si, and Ca elements
in IOTs, with a more significant reduction effect on Al elements. From the viewpoint of
oxides, mechanical activation improves the reactivity of alumina, silica, and calcium oxide
in IOTs by reducing the surface binding energy of the elements, with a significant increase
in the activity of alumina. Despite the agglomeration effect of IOTs after grinding for more
than 2 h, the activity of IOTs still increases as seen by XPS, which explains the continued
increase in the intensity of IOTs grinding for 2.5 h.
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To clarify the activation mechanism of IOTs by mechanical grinding, XRD spectra of
IOTs at different grinding times were tested, and the results are shown in Figure 8. Com-
pared with the original IOTs, the diffraction peak intensity of each phase of mechanically
activated IOTs became lower, the crystallinity of SiO2 decreased, and the activity of IOTs
was enhanced. This is because, during the mechanical grinding process, IOTs particles
with lattice defects will undergo lattice distortion, increasing the plastic deformation of the
particles and deepening the degree of amorphism, resulting in a decrease in the intensity of
diffraction peaks [52,53]. The intensity of the diffraction peaks of each phase continued to
decrease after grinding for more than 2 h, indicating that the activity of IOTs particles was
still increasing, and thus the intensity of grinding for 2.5 h was still increasing.
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3.3. Pore Structures

Figure 9 shows the variation of the pore structure properties of the concrete matrix
with the grinding time of IOTs. As shown in Figure 9a, the total pore volume of the concrete
matrix increases as the IOTs grinding time increases. As mentioned earlier, IOTs can play
the roles of filling, dilution, nucleation, and volcanic ash activity. As the fineness of IOTs
increases, the role played should be more significant. However, the total pore volume of
the concrete matrix showed an inverse trend. This result is consistent with the previous
findings that the total porosity becomes larger with increasing fineness [54]. A similar trend
appears in the pore size distribution test, as shown in Figure 9b, where the pore structure of
the concrete matrix deteriorates as the grinding time of IOTs increases, i.e., the pores larger
than 200 nm gradually increase. Although pores smaller than 20 nm were also increasing,
the increase and the proportion of pores larger than 200 nm were much less than those
larger than 200 nm.

Materials 2022, 15, x FOR PEER REVIEW 12 of 19 

5 10 15 20 25 30 35 40 45 50 55 60

§ ¨¨¨¨¨¨

¨

¨

¨ quartz  § calcite 

ªsekaninaite

2q/°

Grinding for 2.5h

Grinding for2h

Grinding for 1.5h

Grinding for 0h

ª

Figure 8. XRD patterns of IOTs at different grinding times. 

3.3. Pore Structures 

Figure 9 shows the variation of the pore structure properties of the concrete matrix 

with the grinding time of IOTs. As shown in Figure 9a, the total pore volume of the con-

crete matrix increases as the IOTs grinding time increases. As mentioned earlier, IOTs can 

play the roles of filling, dilution, nucleation, and volcanic ash activity. As the fineness of

IOTs increases, the role played should be more significant. However, the total pore vol-

ume of the concrete matrix showed an inverse trend. This result is consistent with the 

previous findings that the total porosity becomes larger with increasing fineness [54]. A 

similar trend appears in the pore size distribution test, as shown in Figure 9b, where the

pore structure of the concrete matrix deteriorates as the grinding time of IOTs increases, 

i.e., the pores larger than 200 nm gradually increase. Although pores smaller than 20 nm

were also increasing, the increase and the proportion of pores larger than 200 nm were 

much less than those larger than 200 nm. 

0.001 0.01 0.1 1 10 100 1000
0.00

0.02

0.04

0.06

0.08

0.10

C
u

m
u

la
ti

v
e 

in
tr

u
si

o
n

 /
 m

l/
g

Pore size diameter / μm

 G0

 G1.5

 G2

(a)

G0 G1.5 G2
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.0820

0.0739
C

u
m

u
la

ti
v

e 
p

o
re

 v
o

lu
m

e 
/ 

m
l/

g

 ＞200  50–200  20–50  ＜20 

0.0450

IOT Grinding Time

Figure 9. The influence of IOT grinding time on the (a) cumulative intrusion volume, and (b) pore

volume distributions of the 28-d concrete.

(b)

Figure 9. The influence of IOT grinding time on the (a) cumulative intrusion volume, and (b) pore
volume distributions of the 28-d concrete.

Figure 10 shows the variation of the pore structure properties of the concrete matrix
with the SCMs content. The total volume of pores in C20 and C30 is greater than that in C0,
as shown in Figure 10a. As for the pore size distribution, it is shown in Figure 10b. The
introduction of admixtures deteriorated the pore structure of the concrete matrix: the pores
less than 20 nm in C0 were significantly higher than those in C20 and C30, and the pores
larger than 200 nm were lower than those in C20 and C30.

There is significant inconsistency between the pore structure test results and the
compressive strength test, G0 has better pore structure properties than G1.5 and G2, while
the compressive resistance is the opposite. The pore structure is not the only factor that
affects the compressive properties of concrete. The ITZ, as the weakest region in concrete,
should be of concern. Therefore, the inconsistency between pore structure properties and
compressive strength will be further discussed.

3.4. Interfacial Transition Zone

Figure 11 shows the BSE pictures of the 28-day concrete, which show the presence of
unhydrated particles, micropores, and microcracks at the ITZ of each specimen. Compared
with G0, the crack width at the ITZ of G1.5 and G2 is reduced and the matrix is denser.
According to Figure 11d, there are more cracks at the ITZ when no SCMs are present, and
the ITZ improves when SCMs are present.
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Figure 12. Effect of IOT grinding time on (a) Porosity, and (b) Anhydrous profiles of 28-d concrete. 

Figure 11. Identified BSE images of samples at 28-d of (a) G0, (b) G1.5, (c) G2, (d) C0, (e) C20, and (f) C30.

To quantify the unhydrated particles and porosity near the transition zone at the
interface of different concrete specimens, strip segmentation, and threshold segmentation
were performed for the area within 100 µm of the aggregate, starting from the surface of
the aggregate particles. The porosity and the percentage of the area corresponding to the
unhydrated particles were determined for each segment using 5 µm as a section [55,56].
The result of the calculation is shown in Figures 12 and 13.
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Figure 12 shows the trend of porosity and unhydrated rate in the concrete ITZ with
the grinding time of IOTs. Porosity increases from small to large in the order of G2, G1.5,
and G0, as shown in Figure 12a. This indicates that extending the IOTs grinding time helps
to reduce the porosity in the ITZ. Similarly, the variation of the unhydrated rate from low
to high is G2, G1.5, and G0, as shown in Figure 12b. Extending the grinding time not only
reduces the porosity of the ITZ but also improves the hydration process of the cementitious
material in the ITZ. In contrast to the pore structure test results obtained in the MIP test,
the extended grinding time of IOTs increased the pore volume of the concrete matrix and
deteriorated the pore structure. Some scholars refer to the ITZ as the bridge between the
aggregate and the matrix [57]. Even if the matrix or aggregate has excellent properties, the
overall performance of concrete will be reduced due to the poor ITZ, which cannot transfer
high stresses from the matrix to the aggregate. This reveals the reason for the inconsistency
between matrix pore structure properties and compressive strength.

Figure 13 shows the trend of porosity and unhydrated rate in the ITZ of concrete with
dopant admixture. The porosity of the ITZ decreases with increasing SCMs content, as
shown in Figure 13a, which is the opposite of the trend of the porosity of the concrete
matrix. This is because the total amount of water and cementitious materials is certain.
The addition of SCMs can improve the ITZ by exerting a volcanic ash effect and a filling
effect, in which a certain percentage of fine particles can be closer to the aggregate and
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reduce the sidewall effect of the aggregate. At the same time, the auxiliary gelling material
can act as a nucleation point to reduce the orientation of calcium hydroxide crystals in
the ITZ [18,19]. The total amount of colloidal material in the matrix decreases, the water–
cement ratio increases, and therefore the matrix porosity increases. As shown in Figure 13b,
the unhydrated rate of C20 is lower than that of C0, whereas the unhydrated rate of C30
is greater than that of C0. This indicates that the admixture enhances the mechanical
properties of the ITZ by promoting the hydration process the ITZ. However, when the
dosage exceeds 20%, the promotion turns into inhibition. Although C30 has lower porosity
in the ITZ, due to its higher unhydration rate, the cohesion between particles in the ITZ is
poor, so the strength is lower than that of C0 and C20. C20 has better ITZ performance than
C0, but the strength is lower than that of C0, so it is speculated that part of the matrix is
damaged due to the deterioration of the matrix pore structure by the admixture.

To further support the results of the BSE image analysis, EDS line sweeps were
performed on the gelatinous material on the outside of the aggregate from the ITZ, and
more detailed information on the variation of the gelatinous material along the line element
concentration on the outside of the ITZ was obtained by the EDS line scan. The Ca/Si
ratio of each specimen is listed in Table 4, and when 0.8 ≤ Ca/Si ≤ 2.5 is judged to be a
hydrate rich in C-S-H [58]. For G0, the Ca/Si of G1.5 and G2 decreased, indicating that the
improvement of the ITZ was more significant after the grinding of IOTs. Compared with
C0, C20 and C30 have different degrees of decrease, i.e., the degree of Ca/Si decrease is
more obvious with the increase of dosing. It indicates that the auxiliary cementing material
can consume CH to generate C-S-H to improve the pore structure of the ITZ and reduce
the Ca/Si at the ITZ. The EDS analysis results are consistent with BSE [59].

Table 4. Ca/Si molar ratio estimated by EDS line analysis.

G0 G1.5 G2/C30 C0 C20

Ca/Si 1.76 1.74 1.14 1.81 1.42

4. Conclusions

In this study, the composite SCMs system was prepared by IOTs-PS-SS, and the effects
of the type of SCMs, IOTs admixture, IOTs grinding time, and SCMs admixture on the
concrete properties were investigated. The effects of mechanical grinding on the activity of
IOTs were explored by XRD and XPS. The compressive strength test, MIP, BSE, and EDS
were used to test the compressive properties, pore structure, ITZ, and elemental distribution
of hydration products of concrete, which provide a reference for the application of building
materials in the full particle size range of IOTs. The main conclusions are as follows:

1. Compared with using IOTs alone as SCMs, there are significant advantages of using
SCMs in the compounding system. PS makes up for the low activity of IOTs, and
the synergistic mechanism between SS and PS can further enhance the compressive
properties of concrete. Changing the fineness of IOTs can improve the compressive
properties of concrete thanks to its increased activity.

2. The pores of the ITZ of concrete were optimized after the introduction of composite
SCMs. When the dosage is increased by 20% or the grinding time of IOTs is increased,
it can reduce the porosity of the ITZ and promote the hydration of the particles within
the ITZ, thus reducing the calcium–silica ratio and achieving the purpose of enhancing
the ITZ.

3. Composite SCMs can deteriorate the matrix pores of the concrete. The increase in pore
volume and the coarsening of pore structure are mainly manifested by the increase
in the amount of SCMs or the change in the fineness of IOTs. This degradation will
be aggravated by the possibility of inducing matrix damage, which will lead to the
loss of concrete strength. However, the strength loss due to matrix pore deterioration
is within the acceptable range since concrete mostly suffers from interface damage.
Therefore, the recommended value of compound SCMs admixture is 20–30%.
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4. The introduction of composite SCMs makes concrete suffer from a common defect, i.e.,
lower early strength than normal concrete. The mechanism behind this phenomenon
and improvement measures will be the focus of subsequent research.
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