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Abstract: The electrical and thermal characteristics of AlGaN/GaN high-electron mobility transistor
(HEMT) devices with a dual-metal gate (DMG) structure are investigated by electrothermal simulation
and compared with those of conventional single-metal gate (SMG) structure devices. The simulations
reveal that the DMG structure devices have a 10-percent higher transconductance than the SMG
structure devices when the self-heating effect is considered. In the meantime, employing the DMG
structure, a decrease of more than 11% in the maximum temperature rise of the devices can be
achieved at the power density of 6 W/mm. Furthermore, the peak in heat generation distribution at
the gate edge of the devices is reduced using this structure. These results could be attributed to the
change in the electric field distribution at the gate region and the suppression of the self-heating effect.
Therefore, the electrical and thermal performances of AlGaN/GaN HEMT devices are improved by
adopting the DMG structure.

Keywords: electrothermal simulation; AlGaN/GaN HEMT; dual-metal gate; self-heating effect

1. Introduction

Group III-nitride semiconductors represented by gallium nitride (GaN), which have
the advantages of a wide bandgap, high-breakdown electric field and high electron mobility,
are ideal materials for realizing high-frequency, high-power, and high-voltage electronic de-
vices [1–3]. With the rapid development of epitaxial technology, AlGaN/GaN heterostruc-
tures are capable of forming two-dimensional electron gas (2DEG) with high concentration
and high mobility at the interface due to the polarization effect. Therefore, high-electron
mobility transistors (HEMT) based on AlGaN/GaN heterojunctions are widely used in
high-frequency and high-power devices [4–6].

However, the non-uniform electric field distribution caused by the combined effect of
gate and drain voltages has a significant impact on electron motion at the AlGaN/GaN
heterojunction interface, resulting in a lower electron velocity on the source side than on
the drain side, which lowers the carrier transport efficiency [7]. Related strategies for
controlling the electric field distribution, such as field plate technology [8] and a dual-metal
gate (DMG) structure [9], have recently been investigated. DMG structures, in particular,
can significantly regulate the electric field distribution in the channel, leading to a higher
output current in the devices without considering the self-heating effect [10], as well as
suppressing short-channel effects such as drain-induced barrier lowering (DIBL) [11]. This
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gate structure, which is made up of two materials with different work functions, is respon-
sible for improving the electrical performance of the devices. The gate material close to
the source has a higher work function than the gate material near the drain. Furthermore,
the non-uniform electric field distribution causes a strong localization of Joule heating in
AlGaN/GaN HEMT devices, which causes a high-temperature region under the gate edge
of the devices (hotspot) [12]. A high hotspot temperature decreases electron mobility and
other fundamental properties, reducing the output power, transconductance (gm), cut-off
frequency, maximum oscillation frequency, and reliability of the devices [13]. Therefore,
for the development and design of AlGaN/GaN HEMT devices, a comprehensive under-
standing of the impact of heat generation and temperature rises on the performance of the
devices, as well as the relationship with the internal electric field of the devices, is critical.
The Joule heating effect of AlGaN/GaN HEMT devices with the single-metal gate (SMG)
structure has been widely studied, with experiments [14,15] and simulations [16,17]. In
addition, Pinchbeck et al. performed theoretical simulations of the electrical performance of
AlGaN/GaN HEMT devices with the DMG structure without considering the self-heating
effect. It is suggested that devices with the DMG structure have the advantages of sup-
pressing the DIBL effect and improving electrical performance compared to devices with
the SMG structure [18]. Recently, experiments have demonstrated that using the DMG
structure improves the electrical performance of AlGaN/GaN HEMT devices [17,19]. How-
ever, the self-heating effect of AlGaN/GaN HEMT devices with the DMG structure, which
is the main target of this study, has not yet been investigated. Therefore, exploring the
physical origin of the self-heating and the internal heat generation mechanism of the DMG
structure AlGaN/GaN HEMT devices is essential for the design and development of high-
frequency, high-power GaN devices, which will also provide some theoretical guidance for
the experimental investigation into the DMG structure of AlGaN/GaN HEMT devices.

In this work, we theoretically investigate the electrical and thermal characteristics of
AlGaN/GaN HEMT devices with a DMG structure, and the heat generation mechanism
of the devices is explored. The AlGaN/GaN HEMT devices with the DMG structure are
analyzed and compared to conventional devices with the SMG structure using electrother-
mal simulation. The transfer and output characteristics of the devices, as well as the heat
generation distribution, channel temperature, and electric field distribution inside the
devices, are studied to evaluate the overall performance of the DMG structure GaN/AlGaN
HEMT devices.

2. Models and Methods

To investigate the electrical and thermal characteristics of AlGaN/GaN HEMT devices
with DMG structure, an electro-thermal model is established, and a systematic comparison
with AlGaN/GaN HEMT devices with an SMG structure is performed. Figure 1 illustrates
the cross-sectional schematics of AlGaN/GaN HEMT device layouts with DMG and SMG
structures, respectively. The AlGaN and GaN layers of the devices investigated in this
study have thicknesses of tAlGaN = 25 nm and tGaN = 1.475 µm, respectively. Both AlGaN
and GaN layers have an unintentional background doping level of 1 × 1015 cm−3. The
top of the AlGaN layer is passivated with 100 nm of SiN to avoid surface state issues [20].
The total gate length for both devices is LG = 1 µm, with LSG = 2 µm and LGD = 4 µm for
gate-source and gate-drain spacing, respectively. The gate metal of the SMG structure
devices has a work function of 5.2 eV, whereas the gate metal of the DMG structure devices
is comprised of two metals with different work functions of 5.2 and 4.4 eV, respectively. For
instance, palladium (Pd) and titanium (Ti) with work function of 5.2 and 4.4 eV can be used
as a gate metal for the DMG structure devices. The gate metal with a higher work function
near the source is referred to as Gate 1 and the gate metal with a lower work function near
the drain is referred to as Gate 2. The gate lengths of both Gate 1 and Gate 2 are 0.5 µm.
The detailed fabrication steps for the proposed AlGaN/GaN HEMT devices with DMG
structure can be found in the previous literature [18]. Moreover the most common method
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of realizing the DMG structure AlGaN/GaN HEMT on diamond substrate is the diamond
substrate transfer technique [21].
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Figure 1. Schematics of AlGaN/GaN HEMT devices with (a) the SMG structure, and (b) the DMG
structure, respectively.

A commercial ATLAS TCAD device simulator was used to perform electrothermal
simulations of AlGaN/GaN HEMT devices with the SMG and DMG configurations [22].
The material parameters used in the simulation are given in Table 1. The electron and heat
transport equations were solved simultaneously in the simulation using the drift-diffusion
model. The simulations consider spontaneous polarization and strain-induced piezo-
electric polarization to induce the formation of 2DEG at the AlGaN/GaN interface. The
Shockley–Read–Hall model, the high-field-dependent mobility model, and the Farahmand
Modified Caughey Thomas (FMCT) mobility model for the low field were also employed
in the simulation studies [23].

Table 1. Material parameters used in the simulation.

Material Property AlGaN GaN Diamond

Permittivity, ε 8.8 8.9 5.5
Energy band gap, Eg (eV) 3.87 3.43 5.47

Electron affinity, χ (eV) 4.01 4.31 1.30
Electron mobility, µ (cm2/Vs) 300 1200 2000

Saturation velocity, vs. (107 cm/s) 1.1 2.5 1.0
Conduction band state density, Nc (1018/cm3) 2.74 2.24 5.0

Valance band state density, Nv (1019/cm3) 1.98 2.51 1.80

The boundary conditions for the heat flow calculation assume that the bottom of the
substrate is a constant-temperature surface with an ambient temperature of 300 K, while
the other exterior surfaces are adiabatic. The thermal boundary resistance (TBR) at the
interface between diamond and GaN materials, as well as the temperature-dependent
thermal conductivity (κ(T)), were considered in the model for realistic modeling. The
diamond–GaN interface had a TBR of 2.06 × 10−8 m2K/W [24]. Kirchhoff transform
was used to describe the nonlinear thermal conductivity of AlGaN, GaN, and diamond
materials [25]:

k(AlGaN)= 25·
(

T
300

)−1.44
(1)

k(GaN)= 160·
(

T
300

)−1.42
(2)

k(Diamond)= 1480·
(

T
300

)−0.55
(3)
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3. Results and Discussion

The transfer and output characteristics of AlGaN/GaN HEMT devices with the DMG
and SMG structures were calculated to better understand the electrothermal behavior of
devices with the DMG structure. Figure 2a illustrates the drain current (IDS) versus gate
voltage (VGS) transfer characteristic and gm of AlGaN/GaN HEMT devices for both the
DMG and SMG configurations when the drain voltage (VDS) is 5 V. The threshold voltage
(Vth) for both devices with the DMG and SMG structures was about −4.2 V, as can be
observed. Moreover, the maximum gm value of the DMG structure devices (0.164 S/mm)
is 10.0% higher than that of the SMG structure devices (0.149 S/mm), which is consistent
with the experimental results reported by Pinchbeck et al. [18] and Visvkarma et al. [19].
Figure 2b shows the ID-VDS output characteristics of the DMG structure and SMG structure
devices at various VGS ranging from −3 V to 0 V with a step of 1 V. The devices with a DMG
structure have a larger saturation output current than the SMG structure devices, which
is consistent with the obtained results without accounting for the self-heating effect [11].
When the self-heating effect is taken into account, the saturation output currents of the DMG
and SMG structure devices exhibit a drain current degradation as the drain bias voltage in-
creases, especially at a high VGS. The drain current in the saturation region of both devices
is hardly decreased at a low VGS due to the higher thermal conductivity of the diamond
substrate, which rapidly exports heat from device hotspots. The analysis of the characteris-
tics demonstrates that the DMG structure devices still have a higher gm and higher output
current than the SMG structure devices when considering the self-heating effect.
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Figure 2. (a) IDS-VGS and gm-VGS transfer curves of AlGaN/GaN HEMT devices with SMG and
DMG structures at VDS = 5 V. (b) IDS-VDS characteristics of AlGaN/GaN HEMT devices with SMG
and DMG structures at various VGS ranging from −3–0 V with a step of 1 V.

To further understand the thermal characteristics of AlGaN/GaN HEMT devices,
we examined and analyzed the heat generation distribution under the gate of the SMG
structure and DMG structure devices at the same power density P = 6 W/mm, as shown
in Figure 3. To reach P = 6 W/mm, the drain voltages of the SMG structure and DMG
structure devices are VDS = 10.8 V and VDS = 9.6 V, respectively, while the gate voltage is
set to VGS = 0 V. The heat generation distribution of the SMG structure devices illustrated
in Figure 3a is highly localized at the gate edge on the drain side of the devices, with a little
heat generation distribution in other regions of the 2DEG channel. Figure 3b shows that
the heat generation distribution peak of the DMG structure devices is also present at the
edge of the gate on the drain side; meanwhile, in comparison to the SMG structure devices,
the presence of the DMG causes the hotspot to slightly move toward the source side and
a moderate amount of heat generation to spread along the 2DEG channel, resulting in a
reduction in heat generation in the hotspot region. The peak heat generations of the SMG
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and DMG structure devices are 1.80 × 1013 and 1.50 × 1013 W/cm3, respectively. These
results indicate that the DMG structure can reduce the peak in heat generation distribution
of the devices and enables a greater extension of the heat generation along the 2DEG
channel direction.
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Figure 4 depicts the temperature distribution profiles of AlGaN/GaN HEMT devices
with the SMG and DMG structures at the power dissipation of 6 W/mm. Temperature
peaks are located at the gate edges in both devices, and heat propagates along the 2DEG
channel and substrate directions. Figure 5 illustrates the temperature rise distribution
along the 2DEG channel, which is extracted from the temperature distribution of the
SMG and DMG structural devices. The highest temperature rise for the SMG structure
devices is 51.8 K, while the temperature rise for the DMG structure is 46.0 K. The peak
temperature rise in the DMG structure devices is around 11.2% lower than that of the
SMG structure devices. In addition, we estimated the thermal resistance of the SMG and
DMG structure devices, which was calculated as (Rth = (Tj − Tref)/(P)), where Tj and Tref
are the hotspot temperature and substrate bottom surface temperature, respectively. At
the same power density (P = 6 W/mm), the DMG structure device has lower thermal
resistance (Rth = 7.67 K mm/W) than the SMG structure device (Rth = 8.63 K mm/W). The
lower-temperature peaks contribute to the reliability and electrical characteristics of the
devices, and these findings show that the DMG structure devices have better thermal
management than the SMG structure devices.

Figure 6 presents the distributions of electric field and heat generation along the 2DEG
channel of the SMG and DMG structures devices, which is used to further understand the
mechanism of heat generation in the channel of the devices. Figure 6a shows that the SMG
structure devices have a strong electric field peak in the channel, but the DMG structure
devices have two electric field peaks in the channel. Furthermore, compared to the SMG
structure devices, the DMG structure devices have a lower-intensity electric field peak
at Gate 1 edge as well as a significant reduction in the intensity of the electric field peak
at Gate 2 edge on the drain side. This acts in a similar manner as field plates, spreading
out the peak field seen along the device channel [26]. The peak electric field accelerates
electrons at the gate edge, leading to very high phonon scattering, which generates a large
amount of heat at the gate edge on the drain side, greatly reducing the electron mobility
and seriously affecting the electrical performance of the devices. Therefore, the electric field
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distribution of the DMG structure device helps to reduce the peak temperature at the gate
edge and improve the electrical performance of the devices. Moreover, according to the
heat generation distribution in the 2DEG channel in Figure 6b, the heat generation peaks
of both devices are highly localized at the gate edge on the drain side, while the DMG
structure devices have a smaller heat generation peak at Gate 1 edge in addition to a higher
heat generation peak at Gate 2 edge, which corresponds to the electric field distribution.
Therefore, these results prove that the DMG structure can be used to regulate the electric
field and heat generation distribution, reducing the hotspot temperature and suppressing
the self-heating effect of AlGaN/GaN HEMT devices.
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Device self-heating in switching applications is the duty cycle, pulse period, and other
parameters. In addition the reliability of the devices is affected by self-heating and the
operating time. As a result, as shown in Figure 7, transient simulations of AlGaN/GaN
HEMT devices with the SMG and DMG structures are performed using a power density
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of 6 W/mm over ten pulse repetition periods. The pulse period is 2 µs and the pulse
width is 1 µs. Figure 7a shows that the drain current for all devices decreases with time
during one period, and the maximum drain current of the DMG structure devices is greater
than that of the SMG structure devices. Transient simulations were also employed to
evaluate the channel temperature rise in the SMG and DMG structure devices, as illustrated
in Figure 7b. The thermal response is demonstrated to vary rapidly in response to a
sudden increase in power owing to Joule heating, with the trend being that the channel
temperature first rises instantly and then continues to grow approximately linearly with
increasing load power time throughout the ON-state. The channel temperature decreases
immediately as the power returns to 0 W at the OFF-state. These results are consistent
with the reported results in [27]. At the same time, the thermal response is consistent
over pulse repetition cycles, while the channel temperature rise is nearly constant, due to
the excellent thermal conductivity of the diamond substrate, which allows for heat to be
exported quickly. Furthermore, at the same operating power, the channel temperature rise
of the DMG structure devices is lower than that of the SMG structure devices.
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4. Conclusions

In summary, the electrical and thermal characteristics of AlGaN/GaN HEMT devices
on diamond substrates with the DMG structure are investigated by electrothermal simu-
lations and compared with those of the conventional SMG structure devices. The DMG
structure can effectively improve the transconductance and output current of the devices.
The maximum gm value of the DMG devices (0.164 S/mm) was found to be 10.0% higher
than that of the SMG devices (0.149 S/mm). In addition, the DMG structure changes the
electric field distribution in the channel of the devices, decreasing the peak electric field
at Gate 2 edge on the drain side and thus reducing the scattering between phonons and
between phonons and electrons in the channel. This result leads to a reduction in the
heat generation peak of the devices with the DMG structure. Moreover, the electric field
peak at the Gate 1 edge of the devices with the DMG structure contributes to some heat
generation extending along the channel and into the GaN buffer layer. AlGaN/GaN HEMT
devices using the DMG structure achieve a reduction in maximum temperature rise of
over 11% compared to the devices with an SMG structure. These results suggest that the
DMG structure effectively improves the electrical characteristics and reduces the hotspot
temperature of AlGaN/GaN HEMT devices; thereby, AlGaN/GaN HEMT devices with
the DMG structure are a potential candidate for high-power electronics applications.
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