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Abstract: In the numerical analysis of manufacturing processes of metal parts, many material
properties depending on, for example, the temperature or stress state, must be taken into account.
Often these data are dependent on the temperature changes over time. Strongly non-linear material
property relationships are usually represented using diagrams. In numerical calculations, these
diagrams are analyzed in order to take into account the coupling between the properties. An example
of these types of material properties is the dependence of the kinetics of phase transformations in
the solid state on the rate and history of temperature change. In literature, these data are visualized
Continuous Heating Transformation (CHT) and Continuous Cooling Transformation (CCT) diagrams.
Therefore, it can be concluded that time series analysis is important in numerical modeling. This
analysis can also be performed using neural networks. This work presents a new approach to
storing and analyzing the data contained in the discussed CCT diagrams. The application of Long-
Short-Term Memory (LSTM) neural networks and their architecture to determine the correct values
of phase fractions depending on the history of temperature change was analyzed. Moreover, an
area of research was elements that determine what type of information should be stored by LSTM
network coefficients, e.g., whether the network should store information about changes of single
phase transformations, or whether it would be better to extract data from differences between
several networks with similar architecture. The purpose of the studied network is strongly different
from typical applications of artificial neural networks. The main goal of the network was to store
information (even by overfitting the network) rather than some form of generalization that allows
computation for unknown cases. Therefore, the authors primarily investigated in the ability of the
layer-based LSTM network to store nonlinear time series data. The analyses presented in this paper
are an extension of the issues presented in the paper entitled “Model of the Austenite Decomposition
during Cooling of the Medium Carbon Steel Using LSTM Recurrent Neural Network”.

Keywords: recurrent neural network; time series; phase transformation; CCT diagrams

1. Introduction

The continuous development of knowledge in the area of technical fields places increas-
ing demands on modern engineers. Currently, both during the design and implementation
of manufacturing processes, special attention is paid to minimizing costs, reducing working
time, and improving the efficiency of technological processes. Due to the use in the design
of data contained in diagrams that bind the influence of various factors such as rate of
change, temperature, strain, displacement, etc., it is necessary to use the error-free diagram
analysis in models for autonomous optimization. Classical analysis based on the detection
of intersections of lines (e.g., cooling lines) with the boundaries of the areas of phase trans-
formation is both time-consuming and may not take into account all possible cases [1–3].
The certainty of taking into account all possibilities that may occur, for example, during
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optimization with the use of genetic algorithms (the occurrence of parameter combinations
that are illogical from the user’s point of view) gives the possibility of using artificial
intelligence tools for a mass search of solutions. For this reason, in this paper, the storage of
nonlinear data in a multilayer network of the LSTM type is proposed.

Long-Short-Term Memory recurrent neural networks are capable of modeling tasks
with multiple input variables [4,5]. This is a great advantage, especially in the case of
time series prediction, where classical linear methods may be difficult to adapt, e.g., due
to the amount of input data. LSTM is used in many very different fields of science and
technology [6]. Lindemann et al. [7] applied LSTM networks to detect anomalies in the time
series data. The detection is performed by evaluating the deviation of the actual system
performance from the expected performance predicted by the network. On the other hand,
Lee et al. [8] used two LSTM network models for real-time anomaly detection in their work.
This also applies to the detection of anomalies in nonlinear real systems described in the
work of [9]. Networks such as LSTM are often used for prediction in the field of machine
control or repair. Nemani [10] used LSTM to predict the remaining useful life of bearings,
providing better uncertainty estimates compared to traditional models.

Many theoretical and experimental papers on the application of LSTM in mechanics
and heat treatment of metals have also been published. Choudhary et al. [11], in their
paper, reviewed the literature on the application of deep learning in materials engineering.
However, the work related to the application of LSTM is more about extracting information
from textual data. In the method developed by Liu et al. [12], a convolutional neural
network (CNN) and LSTM neural networks were combined. This hybrid approach allows
the detection of defects in the weld pool. To enable multidimensional defect detection
in the method developed by Liu et al. [13], CNN and LSTM were combined. The CNN
model was used for image feature detection, while the LSTM was used to identify steel
surface defects. Based on the results, it was found that the defect detection rate for the
hybrid method was higher than that of the single CNN or LSTM method. Benabou [14]
used the LSTM network in his paper to predict the stress in a brazed joint based on strain,
strain rate, and temperature changes over time. The obtained results demonstrated good
agreement with the training data obtained from the FEM model. On the other hand, Rabe
et al. [15] compared the performance of deep learning methods—CNN, LSTM, and BiLSTM
for detecting internal weld defects during the friction stir welding (FSW) process. The
results demonstrate that CNNs are better suited for detecting internal voids than RNNs.
Haghighi [16] used LSTM to predict path-dependent plasticity associated with material
heterogeneity and anisotropy. The authors found that the LSTM-based model can capture
J2 plasticity responses for both monotonic and arbitrary loading paths. Whereas Abueidda
et al. [17] compared recurrent neural networks and a temporal convolutional network
(TCN) to a periodic elastoplastic material, as well as to a more complex solidification model
of thermo-viscoplastic steel.

Analyzing the above papers, it can be concluded that LSTM is used for prediction
rather than knowledge storage. In the present paper, the authors focus on information
storage via the LSTM network.

An important aspect of the analyzed processes are the phase transformations in the
solid state. Phase transformations in the solid state are an important part of the modelling
of many industrial processes (Figure 1) and taking them into account may have a strong
influence on the accuracy of the obtained results. Consideration of phase transformations
in the solid state is a necessary element that should be taken into account in the models
of the stress state in the elasto-plastic range. These transformations can not only lead to
improved properties of the heat-treated element but can also cause significant temporary
stresses leading to the formation of cracks in the material. Important factors affecting the
type of structures formed are the temperature and rate of heating and cooling, as well as the
austenitizing temperature, among others. Taking into account the phase transformations
can therefore lead to an optimization of the heat treatment process or the welding process
of steel elements through an appropriate choice of the temperature change scheme [18–20].



Materials 2022, 15, 3792 3 of 15

Thus, diagrams that take these factors into account store strongly nonlinear data, which is
a challenge for the users analyzing them or the algorithms using them.

Figure 1. Examples of processes in which phase transformations in the solid state should be taken
into account during modelling.

LSTM networks are a fairly modern tool in the time series analysis; their previous
applications are far from the scope of mechanical engineering or materials engineering.
The data for the LSTM network were determined based on a macroscopic model of phase
transformations in the solid state. Replacement of the model (in fact, quite simple equations)
however, based on strongly nonlinear diagrams, allows one to quickly determine the phase
transformations for one steel grade and one austenitizing temperature. An extension of the
work, after correct verification of the functionality for one diagram, may be a generalization
of the model for a specific group of steels. Storing information (network learning) for
several similar grades in the authors’ understanding will allow for the proper functioning
of such a model for chemical compositions’ intermediate to selected steel grades. Therefore,
the presented paper focuses on demonstrating that it is possible to take the first step in this
area and it is possible to replace the model and the diagram with the knowledge stored
in the LSTM network. In addition, the level of difference between the results from both
approaches will be so small that it will not affect the errors of the models using phase shares
in the solid state.

The presented paper consists of two main parts:

• The first part deals with the description of the numerical model, which is replaced by
a recurrent network and whose results represent learning, testing, and validation data.
This section characterizes the analyzed variants of the input data structure and other
parameters of the calculations.

• The second part deals with the presentation of the obtained results and the analysis of
the data, as well as the conclusions regarding the proposed new approach.

2. Parameters and Methods

Information from the CCT diagram was used as input to the RNN model (Figure 2).
However, the analyzed CCT diagrams do not provide information on the behaviour of
phase transformations between the start and end lines of the transformation. The use of
line interpolation is not consistent with the actual kinetics of transformations. Therefore,
the transition functions obtained from the Johnson–Mehl–Avrami–Kolmogorov (JMAK)
macroscopic model of phase transformations in the solid state were used.
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Figure 2. Analyzed diagram of phase transformations in the solid state [21].

Many models for the determination of the kinetics of phase transformations in the
solid state are presented in the literature, and they are characterized by different mathe-
matical descriptions, as well as the degree of adaptation to the physical phenomena taking
place during phase transformations. For the determination of the kinetics of diffusion
transformations, the empirical Johnson–Mehl–Avrami–Kolmogorov equation [22] or, in
the case of high heating rates, the modified Koistinen–Marburger equation [23] is most
often used. On the other hand, the basic equation to determine the kinetics of martensite
transformation is the Koistinen–Marburger equation.

To determine the increment of the austenitic phase, the JMAK equation of the form
was used [24–27]

η̃A(T, t) = 1− exp(−b(T)tn(T)) (1)

where η̃A is the share of austenite formed in the heating process, the functions n(T) and b(T)
are estimated according to the relation [21].

n(T) =

ln

(
ln(1− η f )

ln(1− ηs)

)

ln

(
t f (T)
ts(T)

) , b(T) =
−ln(1− ηs)

(ts)n(T)
(2)

where ts indicates the start time of the transformation, t f the end time of the transformation,
ηs and η f are the start and end shares of the forming phase. The start and end times of the
phases were determined from the continuous kinetics model [28].
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The values of phase fractions, i.e., ferrite, pearlite, and bainite, during the cooling
process, are determined from the JMAK equation

η(i)(T, t) = η%
i · (η̃A −∑

j 6=i
ηj)(1− exp(−b(T)tn(T))) (3)

where ηi is the share of the i-th phase created in the cooling process, and η%
i is the final

share of the phase (i) estimated from the CCT diagram.
The share of the martensite phase is calculated using the Koistinen–Marburger for-

mula [23]
ηM(T, t) = (η̃A − ∑

i 6=M
ηi)(1− exp(−k(Ms − T)n)) (4)

where Ms is the temperature of martensitic transformation start, n is an experimentally
selected constant (for medium-carbon constructional steel n = 1), while the value of the
coefficient k is calculated from the relation

k = − ln(1− ηMAX)

Ms −M f
(5)

where ηMAX = 0.99 is the maximum share of martensite and M f is the finish temperature
of martensitic transformation.

The accuracy of the model of the kinetics of phase transformations occurring dur-
ing cooling is determined by the appropriate analysis of the CCT diagrams. From these
diagrams, the start and end times of the phase transformations as well as their maxi-
mum possible shares are obtained. In this paper, a model that assumes that individual
transformations follow one global kinetics is used.

In the presented model, it has been assumed that the macroscopic model of phase
transformations in the solid state will be replaced by an RNN network. The choice of the
network resulted from the fact that the austenite decomposition function is approximated
as a time series. This model cooperates with the FEM model, which should take the
phase transformations into account to determine the stress level. The presented network
approximates the changes of transformations in time during the cooling process analogically
to the classical analysis of CCT diagrams [21,26,28]. All calculations were performed in
the software developed by the authors of the paper (phase transformation model in the
solid state—sets for RNN). The numerical model, based on which the learning sets were
determined, was verified experimentally based on dilatometric tests presented in the
paper [25]. Keras library [29,30] was used for calculations of recurrent networks. The
following computational parameters were assumed:

• The analysis starts when the Ac3 temperature exceeds 1058 °C (t = 0 s),
• The number of input data was equal to 3600 files,
• The set was divided proportionally into a 50% training set, 25% testing set, and 25%

validation set. Data were assigned to each set randomly without repetition,
• Number of epochs: 2000, 4000, 10,000—due to the lack of progress on the issue of

higher accuracy, after preliminary tests, the results obtained for 2000 and 4000 (taking
into account the initial learning) epochs were selected for presentation,

• Batch size: 100,
• Number of LSTM layers: 3,
• Number of input sequence—100,
• The length of sequences complemented with zeros—83 (for example: for a speed of

12 K/s all elements of the sequence is non-zero and for a speed of 80 K/s 20 non-zero
complemented with 63 zeros),

• One TimeDistributed layer,
• Number of iterations per 1 epoch—18,
• Cooling rate—from 10 to 80 K/s,
• Constant time step—0.5 s,
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• Termination of the calculation of transformations after reaching austenite values
below 1%.

• The learning process was carried out using Adam’s optimization method [31],
• The rectified linear unit activation function (ReLU) was used at the output of the

network [32].
• To illustrate the changes and compare the models for the full range of speeds, the

following control points were selected for analysis: point 1—cooling rate 10.4 K/s,
point 2—cooling rate 27.7 K/s, point 3—cooling rate 45 K/s, point 4—cooling rate
62.3 K/s, and point 5—cooling rate 79.6 K/s.

The selected range of cooling rates (Figure 3) is the most difficult area from the
analyzed CCT diagram due to the strong nonlinearity of the transformations and the
occurrence of all transformations in this area. The reference Figure 3 also shows the area of
occurrence of only ferritic–pearlitic transformation (rates from 10–12.41 K/s). Despite the
completely different transformation structure than in the rest of the area, the network model
does not introduce large errors here, except for the point where the areas are connected.
For this reason, the analysis of results for cooling rates below 12.41 K/s was limited.

Figure 3. CTP diagram divided into analysed ranges—input/output data for RNN.

Due to the large differences in the thermal and structural expansion of the individual
phases [26], the results of the analysis cannot be the sum of the transformations but they
must be given separately. It was determined based on tests that the results obtained for
single phases from the presented model give a very large error, especially for cases without
prelearning from the sum of phases. For this reason, cases of the extrapolation of data for
individual phases from differences between different sums were analyzed (Table 1). Thus,
a learning network was considered based on (Figure 4):

• Sum of all phases from the cooling process RNN1 (ferrite, pearlite, bainite, martensite),
• Sum of diffusion phases RRN2 (ferrite, pearlite),
• Sum of the quenching phases RNN3 (bainite, martensite),
• Bainite content RNN4,
• Martensite content RNN5.
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Based on the obtained results for the case of learning austenite distribution for the
number of epochs equal to 100,000 it was determined that for a greater number of epochs
the network error increases. This error does not mean that the network is overlearning
because it is not able to generalize, but it means that it is not able to reproduce learning
patterns with the same accuracy as for 4000 epochs. The error for 100,000 calculated by
the formula (Equation (6)) had a value more than 68% higher than for 4000 epochs. The
structure of underestimation/overestimation was similar for 4000 epochs.

Figure 4. The considered configurations of data determined by RNN: (a) sum of all phases, (b) sum
of ferrite and pearlite, (c) sum of bainite and martensite, (d) bainite, and (e) martensite.

Table 1. Analyzed configurations of the considered examples.

Case No. Operations

1 RNN1 − RNN3 ⇒ RNN2
2 RNN1 − (RNN4 + RNN5)⇒ RNN2
3 RNN3 − RNN4 ⇒ RNN5
4 RNN3 − RNN5 ⇒ RNN4

It was considered to obtain diffusion transformations based on the difference between
the sum of all phases and bainite and martensite calculated together or separately (Table 1).
Martensite was obtained from the sum of bainite and martensite minus bainite, while bainite
was obtained from the difference of the sum of bainite and martensite and martensite. All
these values were determined from the model with pre-learning of weights for the sum of
all phases (Figure 5). The determination of values for individual phases and their sums
without considering pre-learning were also taken into account (Table 2).

Table 2. Analyzed configurations of learning data and pre-learning.

Analysis No.

1 2 3 4 5 6 7 8 9 10

Number of RNN network RNN1 RNN2 RNN3 RNN4 RNN5
Initial weight 1 0 1 0 1 0 1 0 1 0



Materials 2022, 15, 3792 8 of 15

Figure 5. Kinetics of austenite transformation for selected points—consideration of weights in initial
learning. Comparison of data calculated by the JMAK numerical model and data determined by
the RNN.

Due to the fact that significantly better results were obtained when pre-learning was
applied, it was assumed that the results obtained for the sum of all phases from the model
presented in the authors’ previous work [28] could be used as pre-learning weights. The
above remark means that the architecture of the network is consistent with the architecture
in the mentioned work (Table 3).

Table 3. Summary of model parameters.

Layer (Type) Output Shape Param

lstm_1 (LSTM) (100, 83, 83) 28,220
lstm_2 (LSTM) (100, 83, 83) 55,444
lstm_3 (LSTM) (100, 83, 83) 55,444
time_distributed_1 (TimeDist (100, 83, 1) 84
activation_1 (Activation) (100, 83, 1) 0

Total params: 139,192
Trainable params: 139,192
Non-trainable params: 0

3. Results and Conclusions

Signal analysis for the ferrite–pearlite mixture from the three models based on the
RNN network and the analytical model indicates significant discrepancies in the obtained
results (Figure 6). Assuming that the individual models were based on the initial weights
obtained from the austenite distribution (Figure 5), accuracy was obtained with relative
error levels from −8 to 9. It can be noted that while the curve obtained from the model for
the determination of a single phase (in this case ferrite and pearlite together), maintains
the consistency of the derivative with the reference model (shape of the curve) and the
difference is only in the level of the obtained value, then the results obtained from the
difference of the network signals (austenite distribution minus bainite and martensite)
indicate a strong influence of the remaining learning data from the ranges below the line
of the end of the perlitic transformation. This error is cumulative for the deduction based
on a single lattice as the sum of bainite+martensite. The difference in levels is particularly
evident for the cooling rate range, where the maximum share of the ferritic–perlitic structure
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exceeds 20% (rates from 30 to 15 K/s), and at the same time the martensitic structure is
formed. As could be predicted, the smallest error (−1 to 3 K/s) is for the signal where the
transformation range is the largest (cooling velocities below 10.4 K/s). The absolute error
increases significantly as the cooling rate increases.

(a) (b)

Figure 6. Phase transformation kinetics—case No. 1 and case No. 2. (a) Phase transformation RNN2.
(b) The difference between JMAK and RNN models.

A similar trend in accuracy is observed in the martensitic transformation examples
(Figure 7). The best level of accuracy is obtained from single-phase determination—the
highest rates. With the use of the network signal difference for calculations in the case
of martensite determination, the value of the relative error multiplied with a tendency
of decreasing difference with decreasing cooling rate. The deviation of transformation
curves obtained from RNN models increases with a decreasing magnitude of change. The
error is significantly smaller for the curves with rapid changes. This can be observed
especially in Figure 7 (compare rates in point No. 5 and point No. 2), Figure 9 (austenite
distribution point No. 5 and point No. 2) and Figure 11b (increase in the sum of bainite
and martensite—point No. 5 and point No. 2). Note that the figure shows relative errors. If
we relate them to the size of the martensitic transformation, the errors for points No. 4 and
No. 5 will decrease further.

(a) (b)

Figure 7. Phase transformation kinetics—case No. 3. (a) Phase transformation RNN5. (b) The
difference between JMAK and RNN models.
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The error rates for the models describing the growth of the bainitic structure prove
different relationships than for the diffusion transformations (Figure 8). The error level
does not increase with decreasing rate (compare point No. 2 and point No. 3). On the error
of the solution from the RNN model, the austenite→ ferrite + pearlite transformation and
the austenite→ martensite transformation do not negatively affect the austenite→ bainite
transformation. The before and after signals are more of a corrective nature.

(a) (b)

Figure 8. Phase transformation kinetics—case No. 4. (a) Phase transformation RNN4. (b) The
difference between JMAK and RNN models.

Modelling the transformations does not increase the error, as the final level of the
transformation decreases. The curves for final shares at levels below 10% are not affected
by greater inaccuracies (Figures 6 and 8).

During performing numerical experiments it was noticed that the attempt to store
information by the LSTM network for single phases or pairwise sums leads to very high
errors. It can be assumed that for these cases the RNN network does not learn. For
this reason, it was decided to use initial weight values (Figure 5)—application of initial
learning. The initial weight values for the separated signal models were taken from the
sum-of-signals model (Figure 9).

Figure 9. Phase transformation kinetics—analysis No. 1 and analysis No. 2.
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One of the most important parameters is the rate of change adjustment over time
Figure 10). It is understood as the size of the time interval needed to reach a given level of
transformation with the occurrence of overestimation or underestimation. A small distance
in time between appropriate transformation levels do not significantly affect the calculation,
for example, the stress level in the heat-treated element. However, a large difference
between adjacent points and the accumulation of underestimations or overestimations can
result in the appearance of significant temporary stresses.

Figure 10. Analysis No. 1 and No. 2—rate of update of transformation kinetics.

Applying pre-learning at the signal sum level for recurrent networks results in:

• For diffusion transformations (Figure 11a) to obtain correct values with a maximum
absolute error of no more than 1% for the middle part of the interval (point No. 3). The
error decreases as the cooling rate value increases. It can be observed that when there
is no martensitic transformation (point No. 1) using the network with pre-learning
results in an error of only 1.03% for a transformation in the range of 99%. The largest
error of 3.7% can be observed when there is a significant amount of ferritic–perlitic
transformation and martensitic transformation (point No. 2–27.7 K/s);

• For quenching transformations (Figure 11b), increasing the cooling rate results in
a decrease in both the relative error (from 5 to 1%) with an absolute error of no
more than 0.1%. The error characteristics are indicative of the overestimation of the
transformation by the RNN,

• In the range of bainitic transformation (Figure 12a), no significant changes in error
values were observed with changes in cooling rate,

• In terms of martensitic transformation (Figure 12b), it cannot be concluded that the use
of pre-learning in every case is better than the use of networks without pre-learning.
However, on average, it can be demonstrated that the error is higher for the network
without pre-learning.

Failure to apply pre-learning at the sum-of-signals level for recurrent networks
results in:

• Correctly calculating the value for the last in-time component of the signal (martensite)
(Figure 12b),

• Lack of correct results for the initial and middle components of the signal both for
their sum and for their complete separation (Figures 11 and 12a).



Materials 2022, 15, 3792 12 of 15

(a) (b)

Figure 11. Analysis of phase transformation kinetics. (a) Analysis No. 3 and No. 4. (b) Analysis No. 5
and No. 6.

(a) (b)

Figure 12. Analysis of phase transformation kinetics. (a) Analysis No. 7 and No. 8. (b) Analysis No. 9
and No. 10.

The analytical model demonstrates that the maximum level of the residual austenite
after the cooling process is no more than 1%. This assumption is due to the adopted
parameters of the Equation (2) (ηs = 0.01, η f = 0.99). The error rate from the RNN model
after the cooling process gives information on how much of the transformation was missed.
These data are important and characterize the error rate of the network without taking into
account the delays or accelerations of the phase transformations that are visible in Figure 13
and Table 4.

ERRint =
∫ 80

10

∣∣∣ηA(RNN) − ηA(Analytical)

∣∣∣dCr (6)

where: ηA(RNN)—austenite share determined from RNN, ηA(Analytical)—austenite share
from FEM model, and dCr—cooling rate [K/s].

• ERR1—the difference between values calculated from RNN and values from the analyt-
ical model without consideration of preweights after the cooling process (2000 epochs),

• ERR2—the difference between the values calculated from the RNN and the values
from the analytical model with preweights included (4000 epochs),
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• ERR3—the difference between the values calculated from the RNN and the values
from the analytical model with preweights included for a temperature of 350 °C.

Figure 13. Visualization of the difference ηA(RNN) − ηA(Analytical) for a cooling rate range of
10–80 K/s.

Table 4. Summary of error values (residual austenite) according to Equation (6).

ERR1 ERR2 ERR3

Above baseline (y = 0) area 7.34 77.73 32.99
Below baseline (y = 0) area 89.27 8.05 15.50

Total area 96.61 85.79 48.49

Since the average error rate (unprocessed austenite level) from the RNN is not higher
than 1.25 (Equation (6)), it can be assumed that this error rate is moderately small. However,
it can locally reach up to more than 10 %. Thus, it is not important whether the austenite
has been completely transformed (no error in this range) but whether the kinetics of the
transformation proceeded according to the analytical model. After analyzing the results,
it can be indicated that the largest error will be generated by the occurrence of delays or
accelerations occurring locally in time.

The level of correlation between the values of the pre-learning weights (errors for the
pre-learning network) and the results obtained from learning for the cases: case No. 1—case
No. 4 and analysis No. 1—analysis No. 10 was checked (Figures 6–12)—no correlation was
found between the pre-learning and proper learning errors.

When analyzing the maximum values of errors, it can be concluded that appearing
local maxima and minima influence the level of errors in the nearest neighbours due to
the cooling velocity. The possibility of using the average of transformations for several
close cooling speeds should be considered. It should be noted, however, that averaging
the results in this way may lead to an increase in the error level if the difference in rates is
significant. The authors will analyze this case in upcoming papers.
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Due to its structure, the LSTM network can accurately determine the phase composi-
tion values not only at the end of the transformation but also during the cooling process
even for the changing values of rate. The presented results suggest that the discussed
LSTM model effectively replaces the model based on analytical equations. The levels
of differences between the analytical model and the RNN model for neighbouring rates
should not cause a high level of errors in practical applications of the discussed model,
e.g., in stress analysis of heat-treated steel. Such a promising level of accuracy makes it
possible to suppose that the approach described in the paper can be generalized for a model
of phase transformations for a specific group of steels or one steel grade with different
austenitizing temperatures. This will be further investigated by the authors.
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