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Abstract: Petroleum-based oils are widely used as processing aids in rubber composites to improve
processability but can adversely affect rubber composite performance and increase carbon footprint.
In this research, liquid guayule natural rubber (LGNR), produced from guayule natural rubber,
was used as a renewable processing aid to replace naphthenic oil (NO) in Hevea natural rubber,
styrene-butadiene rubber (SBR) and guayule natural rubber (GNR) composites. The rheological
properties, thermal stability, glass transition temperature, dynamic mechanical properties, aging, and
ozone resistance of rubber composites with and without NO or LGNR were compared. Natural and
synthetic rubber composites made with LGNR had similar processability to those made with NO, but
had improved thermal stability, mechanical properties after aging, and ozone resistance. This was
due to the strong LGNR–filler interaction and additional crosslinks formed between LGNR and the
rubber matrices. The glass transition temperature of SBR composites was reduced by LGNR because
of its increased molecular mobility. Thus, unlike NO, LGNR processing aid can simultaneously
improve rubber composite durability, dynamic performance and renewability. The commercialization
of LGNR has the potential to open a new sustainable processing-aid market.

Keywords: processing aid; carbon black; dynamic mechanical properties; damping performance;
oil resistance

1. Introduction

Rubber has been developed as an essential elastomeric material for a myriad of
applications since the vulcanization process was invented in 1839 [1]. Styrene-butadiene
rubber (SBR), one of the most popular synthetic rubbers, is a raw material used for tires,
soles, belts and other products [2]. However, SBR is petroleum-based and non-renewable
because the monomers used for SBR polymerization are products of the petroleum industry,
although the bio-production of styrene is being studied [3]. Natural rubber (NR) is the
only large-scale renewable rubber material and its demand is increasing because of its
excellent physical properties and low-temperature flexibility [4]. However, Hevea (Hevea
brasiliensis, Muell. Arg., commonly known as the rubber tree) natural rubber (HNR) is
currently the only commercial NR. The growing area of HNR is restricted to tropical
regions, mainly in Southeastern Asia, because of climatic requirements and the endemic
fatal leaf blight (Pseudocercospora ulei) in South America [5,6]. NR production was over
11 million metric tons in 2020, which was higher than the 8 million metric tons of SBR
produced in the same year [7,8]. The production of NR was over 200 thousand metric
tons less than its consumption from January 2020 to November 2020 [7]. Alternative NR
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sources are needed to meet the increasing NR demand and to supplement HNR shortfalls.
Guayule (Parthenium argentatum, Gray) and the rubber dandelion (Taraxacum kok-saghyz)
are commercially promising NR plants [9]. Guayule is native to Texas and Mexico, can be
farmed in the United States, and its rubber and latex does not cause latex allergies [10–17].
Compared to HNR with a branched molecular structure, guayule natural rubber (GNR)
has linear molecules and more significant strain-induced crystallization, which garners
interest from the rubber industry [18–20]. In addition, GNR is known to have a faster SIC
rate than dandelion rubber [19].

Processability is important for rubber product manufacturing, since rubbers with
high molecular weight are highly viscous, making it difficult to mix them uniformly with
other ingredients into a rubber compound. Reinforcing filler particles can further increase
viscosity, especially when they flocculate [21]. Processing oils are used to partially solubilize
rubber molecules and reduce the overall mix viscosity to improve processability [22].
Processing oils also reduce the stiffness and modulus of the vulcanizate and lower the
processing cost [23].

Petroleum-based mineral oils, including aromatic, paraffinic and naphthenic oil (NO),
were the main processing aids in rubber products, but aromatic oil has been banned because
it is a human carcinogen [24]. Safe mineral oils such as naphthenic and paraffin oils are
still used as rubber plasticizers. However, these oils are non-renewable and contribute to
the high carbon footprint of current rubber products. Moreover, product durability and
thermal stability are compromised as mineral oils are added into rubber products [25].

Bio-based processing aids, including vegetable oils and low-molecular-weight rubber,
are possible alternatives to mineral-oil-based processing aids. Palm oil, soybean oil, castor
oil and cashew nut shell liquid can improve the thermal stability of natural and synthetic
rubber composites when used in place of mineral oils [21,25–27]. The oil resistance of nitrile
rubber was improved when linseed oil was used instead of dioctyl phthalate, another
non-renewable commercial plasticizer [28]. Palm and soybean oils have similar effects to
paraffinic oil and NO on the rheological properties of uncured ethylene–propylene–diene-
monomer rubber and SBR compounds, including storage modulus, loss modulus and
complex viscosity [21,26]. Cured SBR composites made with soybean oil exhibit similar
aging resistance to those made with NO [22]. HNR-derived epoxidized low-molecular-
weight rubber can also enhance the damping properties of carbon-black (CB)-filled NR [29].

Low-molecular-weight guayule rubber (LGNR) has a similar plasticizing effect to
NO, but increases the mechanical properties when used to replace NO in natural and
synthetic rubber composites [30]. However, the effect of LGNR on the durability and
dynamic mechanical properties of rubber composites must be understood before LGNR
can be introduced as a commercial processing aid. In this research, LGNR was used
as an alternative to naphthenic oil in HNR, SBR and GNR composites. The thermal
stability, dynamic mechanical properties, aging and ozone resistance of HNR, SBR and
GNR composites with NO or LGNR, or without a processing aid, were characterized.

2. Materials and Methods

HNR (SMR L) and Emulsion SBR (Emulprene 1502) were generously provided by
Momentum Technologies International (Uniontown, OH, USA). GNR was dried from
guayule latex in trays at 50 ◦C for 120 h (HVC 70 series oven, Conceptronic Inc., Portsmouth,
UK). The guayule latex was extracted from guayule plants as described [31]. LGNR
was made using thermal degradation of GNR in a lab oven (OMS180, Thermo Scientific,
Waltham, MA, USA) at 125 ◦C for 216 h. Stearic acid, zinc oxide, butyl benzothiazole
sulfonamide (TBBS), antioxidant (N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine
(6PPD)) and sulfur were generously provided by HB chemicals (Twinsburg, OH, USA). NO
(Corsol 2400, R.E. Carroll, Inc. (Ewing, NJ, USA)) was generously provided by Ford Motor
Company (Dearborn, MI, USA).

Rubbers (HNR, SBR and GNR) were compounded with CB, antioxidant and curing
packages (Table 1) in a Banbury mixer (Farrel-Birmingham CO, Buffalo, NY, USA) at a fill
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factor of 0.7. HNR compounds without fillers were mixed with antioxidant and curing
packages in the same Banbury mixer at a fill factor of 0.6, to investigate the effect of
LGNR and NO on unfilled rubber composites (Table 2). The weight of each CB-filled
compound was constant (1292 g) to permit accurate comparison of the energy consumption
of compounding, as recorded with Pro-server Ex software v1.3 (Pro-face Digital Electronics
CO, Osaka, Japan). Each rubber matrix (HNR, SBR and GNR) was first mixed with 50 parts
per hundred rubber (phr) CB (only for filled rubber compounds), processing aids and an
antioxidant (6PPD) for 12 min; then, a curing package consisting of stearic acid, zinc oxide,
TBBS and sulfur were added and mixed for an additional 3 min. After mastication, the
rubber compounds were passed nine times through a two-roll mill (roll diameter 15.24 and
33.02 cm width) (Rubber City Machinery Corporation, Akron, OH, USA). Compounded
samples were vulcanized using heat compression with 16 tons of force at 160 ◦C, according
to ASTM D3182. The curing time was T90 plus 5 min in order to completely vulcanize
each compound.

Table 1. Carbon-black-filled rubber compound compositions.

Material phr

HNR 100 100 100 0 0 0 0 0 0
SBR 0 0 0 100 100 100 0 0 0
GNR 0 0 0 0 0 0 100 100 100

Carbon black N330 50 50 50 50 50 50 50 50 50
Sulfur 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
ZnO 5 5 5 5 5 5 5 5 5
TBBS 1 1 1 1 1 1 1 1 1

Stearic acid 1 1 1 1 1 1 1 1 1
6PPD 2 2 2 2 2 2 2 2 2
NO 0 20 0 0 20 0 0 20 0

LGNR 0 0 20 0 0 20 0 0 20

Rubber compounds were made without processing aids (abbreviated as N/A is the text) or with 20 phr naphthenic
oil (abbreviated as 20NO in the text) or with 20 phr liquid guayule natural rubber (abbreviated at 20LGNR in
the text).

Table 2. Unfilled rubber compound composition.

Material phr

HNR 100 100
Sulfur 4.5 4.5
ZnO 5 5
TBBS 1 1

Stearic acid 1 1
6PPD 2 2
NO 0 10

LGNR 10 0

The storage modulus (G′), loss modulus (G”) and complex viscosity of CB-filled rubber
compounds were measured using a Premier RPA (Alpha Technologies, Hudson, OH, USA),
to characterize the effects of NO and LGNR on HNR, SBR and GNR compounds before
vulcanization. Rubber compounds were tested from 0.07% to 300% strain amplitude, with
a constant temperature of 90 ◦C and a constant frequency of 0.63 rad/s. Tan Delta (tan δ)
was calculated as G” over G′. The G′s of HNR compounds made with 10 phr NO or LGNR,
but no filler, were measured using an RPA 2000 (Alpha Technologies, Hudson, OH, USA)
similar to Premier RPA, before vulcanization. Rubber compounds were tested from 0.5%
to 1% strain amplitude, with constant temperature and frequency of 70 ◦C and 6.3 rad/s,
respectively. The mean Gs at various strain amplitudes were statistically compared using
t-tests (α = 0.05) in JMP Pro 12 software (SAS Institute Inc., Cary, NC, USA).
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Thermal stability was analyzed using a thermogravimetric analyzer (TGA Q50, TA
instruments, New Castle, DE, USA). Cured rubber composites were heated from 25 ◦C to
800 ◦C with a heating rate of 20 ◦C/min. The temperature at which samples lost 5% of their
weight was recorded to evaluate the thermal stability.

The heat–flow curves and glass transition temperature of composites made with
NO and LGNR and without processing aids were measured using differential scanning
calorimetry (DSC 2500, TA instruments, New Castle, DE, USA) under a nitrogen atmo-
sphere. The samples were first heated to 80 ◦C at a rate of 10 ◦C/min and kept at 80 ◦C for
5 min, in order to eliminate thermal history. Then, the samples were cooled to −90 ◦C at a
cooling rate of 10 ◦C/min before starting the tests. Finally, the heat flow was recorded as
samples were heated up from −90 to 50 ◦C at a heating rate of 10 ◦C/min. Glass transition
temperatures were analyzed with the TA Universal Analysis software (TA instruments,
New Castle, DE, USA).

The loss modulus E” and storage modulus E′ of the cured composites were measured
using a dynamic mechanical analyzer Q800 (TA Instruments, New Castle, DE, USA), using
a sample size of 18 mm × 3 mm × 2 mm (length × width × thickness). Testing conditions
were 1 Hz from −90 ◦C to 90 ◦C at 3◦C/min. The 0.5% strain amplitude, tan δ, which esti-
mates the relative amount of viscous and elastic portions in the composite, was calculated
using the ratio of E” over E′. Rolling resistance (energy loss during continuous deformation)
and wet grip (friction between wet surface and rubber material) were estimated using tan δ

at 60 ◦C and 0 ◦C, respectively [32–34].
The evaluation of static and dynamic stiffness is particularly important to understand

the performance of the materials used in anti-vibration applications. Natural rubber is the
most common polymer used in anti-vibration applications due to its unique viscoelastic
behavior and strain-induced crystallization, so only GNR and HNR were evaluated for
this purpose.

The static stiffness (Ks) was determined according to ASTM D575. Rubber discs
12.8 mm tall and 28.6 mm in diameter were tested under compression at a rate of
12 ± 3 mm/min using an MTS Model 831 (Eden Prairie, MN, USA). In order to remove
Mullin’s effect, mechanical conditioning of the samples was performed by applying two
pre-cycles followed by the measurement of force vs. displacement in the third cycle.
The slope of the linear region of the force vs. displacement curve was reported as the
static stiffness.

There are currently no defined standard testing conditions for dynamic stiffness.
Hence, the testing conditions used in this study were selected based on the existing lit-
erature and considering general guidelines for the dynamic testing of elastomers using
vibratory methods (ASTM D5992-96). The dynamic properties of elastomers are dependent
on the frequency, amplitude and preload applied to the polymer. For the screening and
comparison of new materials, frequency sweeps at multiple amplitudes are recommended.
In this study, dynamic stiffness (Kd), phase angle and transmissibility (Tr) were evaluated
as a function of frequency (1–500 Hz). Amplitude selection depends on the frequency of
the vibration. For instance, low frequencies (0–150 Hz) are mainly associated with high-
amplitude vibrations, and high frequency (>150 Hz) occurs at low amplitudes. The preload
used in the dynamic testing is based on the load deflection behavior of the material. There-
fore, two different amplitudes (0.01 and 0.316 mm peak-to-peak (p-p)) were tested using
a 500 N pre-load. The same cylindrical sample shape used for the static testing was used
for the dynamic testing. All samples were evaluated at room temperature using an MTS
Model 831.

Cured rubber composites were cut with a die D (CCSi Inc., Akron, OH, USA) to
prepare accelerated aging samples, according to ASTM D412. Accelerated aging samples
were suspended vertically in a lab oven (Quincy Lab Inc., Chicago, IL, USA) for 168 h at
100 ◦C, according to ASTM D 573. After aging, the mechanical properties, namely tensile
strength, modulus at 100% and elongation at break, were measured using a tensiometer
(Model 3366, Instron, Norwood, MA, USA) at ambient temperature (23 ± 2 ◦C), according
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to ASTM D412. The strain level was calibrated using an elongation axial extensometer
(Model 3800, Epsilon Technology Corp., Jackson, WY, USA). The hardness number of the
aged samples was measured using a Shore A durometer (Model 408, PTC Instruments, Los
Angeles, CA, USA) fixed on an operating stand type 2 (Model 472, PTC Instruments, Los
Angeles, CA, USA), according to ASTM D 2240.

The accelerated aging samples (0.5 g) were immersed in toluene to measure the
crosslink density, according to the Flory–Rehner equation [35]:

− ln(1−Vr)−Vr − χVr
2 = Vsηswell

(
V

1
3

r −
Vr

2

)
(1)

where χ is the rubber–solvent interaction parameter; χ for HNR-toluene, SBR-toluene
and GNR-toluene are 0.391, 0.310 and 0.391, respectively [36,37]; ηswell is the crosslink
density of rubber (kmol/m3); and the molar volume of toluene, Vs, is 106.27 cm3/mol [38].
The volume fraction of the rubber in swollen gel, Vr, was measured by the equation:

Vr =
Vrubber

Vsolvent + Vrubber
=

(
md −mb × f

ρrubber

)
÷

[
ms −md
ρsolvent

+

(
md −mb × f

ρrubber

)]
(2)

where Vrubber and Vsolvent are the volume of rubber matrix and toluene in swollen gel, which
are calculated by weight and density; mb, ms, md are the weights of the sample: mb is the
sample weight before swelling tests, ms is swollen weight and md is the weight measured
after drying the swollen samples; ρrubber and ρsolvent are the densities of the rubber matrices
(HNR, SBR and GNR) and toluene, respectively; ρrubber of HNR, SBR and GNR were 0.91,
0.85 and 0.92 g/cm3, which were measured using an analytical balance (Model ME54E,
Mettler Toledo, Columbus, OH, USA); ρsolvent was 0.867 g/cm3; and f is the weight fraction
of the non-rubber components (filler, curing packages, processing aids and antioxidant).

mb, ms, md of the cured rubber samples were weighed to an accuracy of 1 mg using an
analytical balance (Model ME54E, Mettler Toledo, Columbus, OH, USA). Samples were
immersed in 40 mL toluene at 21 ◦C for 96 h. Toluene was replaced every 24 h, according
to ASTM D6814. The ms of the swelled sample was weighed after samples were blotted
with clean wiper, then md was weighed after 24 h of drying the swollen samples at 100 ◦C.

As described in ASTM D 1149, the HNR, SBR and GNR composites were cut into
rectangular strips of 100 mm × 10 mm × 21 mm (length × width × thickness). The strips
were clamped in an environmental test chamber (Corporate Consulting Services Inc, Akron
OH) for 10 h, at 40 ◦C, in an ozone concentration of 0.001 mg/L. During the treatment,
samples were stretched and released repeatedly at 0.5 Hz, within a 0–25% strain. After
ozone treatment, the crack ratio of the stretched samples at a 20% strain was calculated
using optical microphotographs at a 6.3× magnification (Leica Camera, Wetzlar, Germany).
The crack ratio was calculated as the ratio of the crack area to the total area of the sample
surfaces. A higher crack ratio indicates worse ozone resistance, so ozone resistance was
calculated as the reciprocal of the crack ratio.

3. Results and Discussion
3.1. Rheology Tests

The values of the G′ of all rubber compounds decreased with increasing strain because
of the “Payne effect” [32] (Figures 1 and 2), caused by filler–filler interactions at low strain
levels. CB networks formed in the rubber compound can trap rubber molecules and restrict
the mobility of rubber, resulting in a higher G′ and an effective filler volume fraction at
a low strain level. However, the rubber releases after the CB networks are broken at a
high strain level. Therefore, the modulus and effective filler volume fraction are reduced
at a high strain amplitude. Both LGNR and NO had lowered G′ compared to the rubber
compounds without processing aids, which can be explained by the plasticizing effects of
LGNR and NO.
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Figure 1. Storage modulus (G′) of rubber composites made with or without processing aids from
0.07% to 200% strain amplitude: (a) Hevea natural rubber (HNR); (b) styrene butadiene rubber (SBR);
(c) guayule natural rubber (GNR). N/A: rubber compounds without processing aids; 20 NO: rubber
compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule
natural rubber.
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Figure 2. Storage modulus (G′) of unfilled Hevea natural rubber (HNR) compounds with LGNR
or NO from 0.5% to 300% strain amplitude. 10NO: rubber compounds with 10 phr naphthenic oil;
10LGNR: rubber compounds with 10 phr liquid guayule natural rubber.

HNR and SBR compounds made with LGNR had higher G′ than the ones made with
NO (Figures 1 and 2), which can be explained by strong interactions between the LGNR
and rubber matrices [39]. The molecular weight of LGNR was 80,570 g/mol, substantially
higher than the 540 g/mol of NO. The long-chain structures of LGNR increased effective
intermolecular friction and rubber chain entanglements. In addition, strong LGNR–rubber
and LGNR–CB interactions enhanced the hysteresis and effective volume fraction of fillers,
which resulted in higher G” than those made with NO [32](Figure 3).

Unlike HNR and SBR compounds, GNR compounds made with LGNR had lower G′

and G” than those made with NO, because NO has poor compatibility with GNR, and the
plasticizing effect of NO in GNR compounds is limited. (Figure 1). LGNR derived from
GNR has some structural similarities and, so, has good compatibility; this is evinced by the
homogenous and smooth appearance of the composite (Figure 4b). In contrast, NO was
poorly compatible with GNR, and NO caused blistering of the composite surface as NO
bled form the composite (Figure 4a).

Both processing aids reduced the complex viscosity, which indicates that LGNR can
facilitate rubber processing by reducing compound viscosity (Figure 5). The complex
viscosity of HNR and SBR compounds made with LGNR was slightly higher than those
made with NO, due to the high molecular weight of LGNR. In contrast, GNR compounds
with LGNR had lower complex viscosity than GNR compounds with NO due to the poor
compatibility of NO with GNR.
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Figure 3. Loss modulus (G”) of rubber compounds with or without processing aids from 0.07%
to 200% strain amplitude: (a) Hevea natural rubber (HNR); (b) styrene butadiene rubber (SBR);
(c) guayule natural rubber (GNR). N/A: rubber compounds without processing aids; 20 NO: rubber
compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule
natural rubber.
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Figure 4. Cured guayule natural rubber (GNR) composites: (a) with 10 phr naphthenic oil; and
(b) with 10 phr liquid guayule natural rubber.
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Figure 5. Complex viscosity of rubber compounds with or without processing aids from 0.07%
to 200% strain amplitude: (a) Hevea natural rubber (HNR); (b) styrene butadiene rubber (SBR);
(c) guayule natural rubber (GNR). N/A: rubber compounds without processing aids; 20 NO: rubber
compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule
natural rubber.

3.2. Thermal Analysis

SBR composites had higher thermal stability than HNR and GNR composites (Figure 6).
All the rubber composites made with LGNR had higher thermal stability than those with
NO, but lower stability than the rubber composites made without processing aids (Figure 6).
The improved thermal stability was due to the long-chain structure of LGNR. The molecular



Materials 2022, 15, 3605 10 of 24

weight of LGNR was higher than NO, but lower than the rubber matrices [30]. Thus,
thermal stability was improved by replacing NO with LGNR (Figure 7).
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Figure 6. The 5% weight-loss temperature of HNR, SBR and GNR composites made with or without
processing aids at 5% weight loss. N/A: rubber compounds without processing aids; 20 NO: rubber
compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule
natural rubber.
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Figure 7. Weight–temperature curves of NO and LGNR. NO: naphthenic oil; LGNR: liquid guayule
natural rubber.
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LGNR and NO had little effect on the glass transition temperature of HNR and
GNR rubber composites but reduced the glass transition temperature of SBR compos-
ites (Figure 8). The different glass transition temperatures of the rubber matrices and
processing aids may explain this phenomenon. The glass transition temperatures of
the GNR and HNR composites without the processing aids were −59.4 and −59.0 ◦C,
respectively, which were close to the glass transition temperatures of NO and LGNR
(Table 3). However, the glass transition temperature of the SBR composite was −44.5 ◦C,
higher than NO and LGNR.

Materials 2022, 15, 3605 11 of 25 
 

 

composites without the processing aids were −59.4 and −59.0 °C, respectively, which were 
close to the glass transition temperatures of NO and LGNR (Table 3). However, the glass 
transition temperature of the SBR composite was −44.5 °C, higher than NO and LGNR. 

 
Figure 8. Glass transition temperatures of HNR, SBR and GNR composites made with or without 
processing aids. N/A: rubber compounds without processing aids; 20 NO: rubber compounds with 
20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule natural rubber. 

Table 3. Glass transition temperatures of naphthenic oil (NO) and liquid guayule natural rubber 
(LGNR). N/A: rubber compounds without processing aids; 20 NO: rubber compounds with 20 phr 
NO; 20 LGNR: rubber compounds with 20 phr LGNR. 

Processing Aids Glass Transition Temperature (°C) 
NO −54 

LGNR −62 

3.3. Dynamic Mechanical Analysis 
The E’ of GNR and HNR composites was reduced by NO, but changed little with 

LGNR (Figure 9a,c). SBR composites made with LGNR had higher E’ than those made 
with NO, and SBR composites made without processing aids had the highest E’ (Figure 
9b). The additional crosslinks formed between LGNR and rubber may explain the higher 
E’ of rubber composites made with LGNR, compared to those made with NO. In addition, 
the reinforcing effect of LGNR discussed in our previous study (Ren et al., 2020) can 
explain the higher E’ of rubber composites made with LGNR than with NO, because 
LGNR increases rubber–filler interactions and the effective filler volume fraction [21]. 

The E”s of HNR and GNR composites were independent of the added processing 
aids in their glass states, because the rubber matrices and processing aids had similar glass 
transition temperatures (Figures 8 and 10a,c and Table 3). However, SBR composites made 
with NO had higher E”s than the other two SBR composites, due to the high plasticizing 
effect of NO (Figure 10b). Although LGNR also acted as a processing aid, the additional 
crosslinks formed between LGNR and rubber reduced the mobility of SBR molecules. E” 
peaks indicate the glass transition zone of rubber composites where rubber composites 
transfer from glass to a rubbery state with increasing temperature. In the rubbery state, 
the E”s of LGNR rubber composites were higher than those of NO, but were similar to the 
rubber composites without processing aids; this is because the long-chain structures of 
LGNR increased the intermolecular friction and energy dissipation under dynamic 
loadings. The molecular weight of LGNR is about 80,000 g/mol—much larger than that of 
NO (540 g/mol). In contrast, low-molecular-weight NO reduced the viscoelasticity of the 

-59.0 -59.5 -59.8

-44.5
-47.4 -46.2

-59.4 -58.8 -59.5

N/A 20 NO 20 LGNR N/A 20 NO 20 LGNR N/A 20 NO 20 LGNR

HNR SBR GNR

0

-10

-20

-30

-40

-50

-60

G
la

ss
 tr

an
si

tio
n 

te
m

pe
ra

tu
re

 (°
C

)

Figure 8. Glass transition temperatures of HNR, SBR and GNR composites made with or without
processing aids. N/A: rubber compounds without processing aids; 20 NO: rubber compounds with
20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule natural rubber.

Table 3. Glass transition temperatures of naphthenic oil (NO) and liquid guayule natural rubber
(LGNR). N/A: rubber compounds without processing aids; 20 NO: rubber compounds with 20 phr
NO; 20 LGNR: rubber compounds with 20 phr LGNR.

Processing Aids Glass Transition Temperature (◦C)

NO −54
LGNR −62

3.3. Dynamic Mechanical Analysis

The E′ of GNR and HNR composites was reduced by NO, but changed little with
LGNR (Figure 9a,c). SBR composites made with LGNR had higher E′ than those made
with NO, and SBR composites made without processing aids had the highest E′ (Figure 9b).
The additional crosslinks formed between LGNR and rubber may explain the higher E′ of
rubber composites made with LGNR, compared to those made with NO. In addition, the
reinforcing effect of LGNR discussed in our previous study (Ren et al., 2020) can explain the
higher E′ of rubber composites made with LGNR than with NO, because LGNR increases
rubber–filler interactions and the effective filler volume fraction [21].
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Figure 9. Storage modulus (E′) of rubber composites made with or without processing aids from
−90 ◦C to 90 ◦C: (a) Hevea natural rubber (HNR); (b) styrene butadiene rubber (SBR); (c) guayule
natural rubber (GNR). N/A: rubber compounds without processing aids; 20 NO: rubber compounds
with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule natural rubber.

The E”s of HNR and GNR composites were independent of the added processing aids in
their glass states, because the rubber matrices and processing aids had similar glass transition
temperatures (Figures 8 and 10a,c and Table 3). However, SBR composites made with NO
had higher E”s than the other two SBR composites, due to the high plasticizing effect of NO
(Figure 10b). Although LGNR also acted as a processing aid, the additional crosslinks formed
between LGNR and rubber reduced the mobility of SBR molecules. E” peaks indicate the glass
transition zone of rubber composites where rubber composites transfer from glass to a rubbery
state with increasing temperature. In the rubbery state, the E”s of LGNR rubber composites
were higher than those of NO, but were similar to the rubber composites without processing
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aids; this is because the long-chain structures of LGNR increased the intermolecular friction
and energy dissipation under dynamic loadings. The molecular weight of LGNR is about
80,000 g/mol—much larger than that of NO (540 g/mol). In contrast, low-molecular-weight
NO reduced the viscoelasticity of the rubber composites, similar to what was observed when
jet fuel was added to nitrile rubber composites [40].
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Figure 10. Loss modulus (E′ ′) of rubber composites made with or without processing aids from
−90 ◦C to 90 ◦C: (a) Hevea natural rubber (HNR); (b) styrene butadiene rubber (SBR); (c) guayule
natural rubber (GNR). N/A: rubber compounds without processing aids; 20 NO: rubber compounds
with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule natural rubber.
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Rubber composites made with NO had higher tan δ peaks than those with or without
LGNR because of the plasticizing effect of NO (Figure 11a–c). Low-molecular-weight NO can
increase the free space between rubber molecules and the mobility of rubber molecules. In
contrast, the additional crosslinks formed by LGNR and strong LGNR–CB interactions may
restrict the mobility of rubber molecules, resulting in lower tan δ peaks of rubber composites
made with LGNR. These tan δ peaks were also lower for rubber composites made without
processing aids. The tan δ peaks of NO and LGNR SBR composites were further to the left than
the tan δ peaks of SBR composites made without processing aids (Figure 11b), because both
processing aids lowered the glass transition temperature of the SBR composites.
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Figure 11. The tan δ of rubber composites made with or without processing aids from −90 ◦C to
90 ◦C: (a) Hevea natural rubber (HNR); (b) styrene butadiene rubber (SBR); (c) guayule natural rubber
(GNR) composites. N/A: rubber compounds without processing aids; 20 NO: rubber compounds
with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule natural rubber.
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The tan δ at 0 and 60 ◦C is generally used to estimate wet traction and rolling resistance,
respectively, for tire applications [32]. Both LGNR and NO had little effect on the estimated
wet traction (tan δ at 0 ◦C) of any of the rubber composites (Table 4). The estimated rolling
resistance (tan δ at 60 ◦C) was slightly increased by LGNR, but was similar as composites
with or without NO.

Table 4. The tan δ of rubber composites at 0 and 60 ◦C. N/A: rubber compounds without processing
aids; 20 NO: rubber compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with
20 phr liquid guayule natural rubber.

Rubber Matrix Processing Aids tan δ at 0 ◦C tan δ at 60 ◦C

HNR N/A 0.21 0.12
HNR 20 NO 0.21 0.11
HNR 20 LGNR 0.24 0.16
SBR N/A 0.21 0.09
SBR 20 NO 0.23 0.11
SBR 20 LGNR 0.21 0.12
GNR N/A 0.23 0.16
GNR 20 NO 0.25 0.16
GNR 20 LGNR 0.26 0.18

3.4. Static and Dynamic Stiffness

All the GNR and HNR composites were able to withstand the same maximum load
in compression (5kN). However, composites containing processing aids had a lower Ks
to those without processing aids, as shown by the larger displacements at equal load
(Figure 12). This is due to the softening effect of lower-molecular-weight processing aids.
Nevertheless, similar to with the E′s, LGNR increased the Ks of the composites when used
instead of NO.
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Figure 12. Force–displacement curves of natural rubber composites.

The dynamic stiffness (Kd) of GNR, represented by the complex stiffness K* parameter,
was reduced by both processing aids at both amplitudes evaluated (Figures 13a and 14a).
Nevertheless, GNR composites containing LGNR had higher Kd than composites made
with NO. A similar trend was obtained for HNR composites, although the Kd of the HNR
composite with LGNR was closer to that of the HNR composites without processing aids.
The higher Ks and Kd of LGNR composites can be explained by a higher crosslink density
and a good polymer–filler interaction, which increased the effective filler volume.
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The damping of elastomers represents the ability of the material to transform applied
mechanical energy to heat. Therefore, it is the result of internal friction caused by the
rearrangement of polymers. By increasing the free volume with the addition of a plasticizer,
the polymer chains can better rearrange and dissipate the energy. HNR made with LGNR
had similar damping behavior to composites without processing aids at 0.01mm, and
more damping than those containing NO (Figure 13b). Meanwhile, GNR composites made
with processing aids had more damping than those without. At the higher amplitude
of 0.316 mm (Figure 14b), GNR composites containing LGNR had similar damping to
composites made without processing aids, and more than those made with NO, while HNR
made with LGNR had the most damping among the HNR composites. NO does not add
to the hysteresis of the material, but LGNR can add both a plasticizing effect and more
damping to both rubbers. This is due to the presence of lower-molecular-weight polymer
and pendant chains, which increase hysteresis as a result of chain slipping when the strain
is applied.

Isolation and damping are different but related properties. Isolation of a material
is determined by measuring the force transmitted through the material. At the peak
of the transmissibility (Tr) curve, also known as the natural frequency of the material,
there is amplification of the vibration. The extent of the peak amplitude depends on
the amount of damping provided by the material. Beyond the natural frequency, most
of the vibrations are suppressed. The addition of processing aids shifted the natural
frequency of the composites to a lower frequency, while also narrowing the range of
frequencies transmitted (Figures 13c and 14c). However, this shift was smaller for HNR
and GNR composites made with LGNR, which had transmissibility curves very similar
to the composites without processing aids. This behavior is consistent with the decreased
dynamic stiffness obtained. The natural frequency of a material is directly proportional
to the stiffness and inversely proportional to the mass of the sample. Therefore, the
overall results indicate that the addition of LGNR can have an additive function, to
enhance the material’s performance for damping applications in addition to serving as
processing aid.

3.5. Aged Mechanical Properties

Aging reduced the tensile strength and elongation at break but increased the modulus
at 100% strain and the hardness number, because of post-curing and oxidative coupling
(Figures 15–18). Free sulfur remaining in the cured composites with conventional curing
system continues to crosslink rubber molecules during aging in all natural and synthetic
rubber composites [41–43]. Oxidative groups formed during aging, such as -C=O and
-C-OH, can react to form oxidation-induced crosslinking structures, such as -C-O-O-C-,
which also increase crosslink density and stiffness; however, they reduce elongation at
break, as well as tensile strength [44,45].

LGNR increased the tensile strength, elongation at break, modulus at 100% strain
and hardness number of natural and synthetic rubber composites when used to replace
NO, as was discussed in our previous study [30]. Aged HNR, SBR and GNR composites
made with LGNR also had higher tensile strength, elongation at break, modulus at 100%
strain and hardness number than composites made with NO, which is attributed to strong
LGNR–CB interactions.

LGNR may act as an anti-aging agent in rubber composites by diverting chain scission
to the unsaturated bonds of LGNR, reducing scission of the rubbers’ backbones. This was
not seen in NO composites because NO only acted as a plasticizer and had no reaction
with oxygen.
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Figure 15. Aging effects on the tensile strength of HNR, SBR and GNR composites made with
or without processing aids. N/A: rubber compounds without processing aids; 20 NO: rubber
compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule
natural rubber.
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Figure 16. Aging effects on the elongation at break of HNR, SBR and GNR composites made with
or without processing aids. N/A: rubber compounds without processing aids; 20 NO: rubber
compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule
natural rubber.



Materials 2022, 15, 3605 20 of 24

Materials 2022, 15, 3605 20 of 25 
 

 

compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule 
natural rubber. 

 
Figure 17. Aging effects on the modulus at 100% strain (M100) of HNR, SBR and GNR composites 
made with or without processing aids. N/A: rubber compounds without processing aids; 20 NO: 
rubber compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid 
guayule natural rubber. 

 

N/A 20 NO 20 LGNR N/A 20 NO 20 LGNR N/A 20 NO 20 LGNR

HNR SBR GNR

0

5

10

15

M
od

ul
us

 a
t 1

00
%

 s
tra

in
 (M

Pa
)

 unaged
 aged

N/A 20 NO 20 LGNR N/A 20 NO 20 LGNR N/A 20 NO 20 LGNR

HNR SBR GNR

0

20

40

60

80

100

H
ar

dn
es

s 
nu

m
be

r (
Sh

or
e 

A)

 unaged
 aged

Figure 17. Aging effects on the modulus at 100% strain (M100) of HNR, SBR and GNR composites
made with or without processing aids. N/A: rubber compounds without processing aids; 20 NO:
rubber compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid
guayule natural rubber.
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Figure 18. Aging effects on the hardness number of HNR, SBR and GNR composites made with
or without processing aids. N/A: rubber compounds without processing aids; 20 NO: rubber
compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule
natural rubber.



Materials 2022, 15, 3605 21 of 24

Accelerated aging increased the crosslink density of all rubber composites, confirming
that post-curing and oxidative coupling occurred (Figure 19). SBR composites had higher-
aged crosslink density than HNR and GNR composites. All rubber composites made with
LGNR had higher-aged crosslink density than those made with NO, but lower-aged ones
than those made without processing aids. Additional LGNR–LGNR and LGNR–rubber
crosslinks can be formed by post-curing due to the existence of unsaturated bonds in LGNR.
NO lacks unsaturated bonds and, so, only acts as a plasticizer by increasing the distance
between rubber molecules.
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Figure 19. Aging effects on the crosslink density of HNR, SBR and GNR composites made with
or without processing aids. N/A: rubber compounds without processing aids; 20 NO: rubber
compounds with 20 phr naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule
natural rubber.

3.6. Ozone Resistance

GNR composites were more sensitive to ozone than HNR and SBR composites
(Figure 20). The processing aids had little effect on the ozone resistance of SBR com-
posites, but NO reduced the ozone resistance of both HNR and GNR composites. Adding
LGNR as a processing aid to rubber composites maintained the ozone resistance of the
SBR and GNR composites and increased the ozone resistance of HNR composites. LGNR
produced by thermal degradation contains oxidative groups such as -C=O and -C-O-C-, and
those oxidative groups are more stable than the unsaturated bonds in ozone. In addition,
unsaturated bonds in LGNR can also scavenge free radicals generated by ozone. Thus,
LGNR can effectively protect rubber composites from an ozone attack.
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Figure 20. Ozone resistance of HNR, SBR and GNR composites made with or without processing
aids. N/A: rubber compounds without processing aids; 20 NO: rubber compounds with 20 phr
naphthenic oil; 20 LGNR: rubber compounds with 20 phr liquid guayule natural rubber.

4. Conclusions

LGNR—an innovative, sustainable, biobased processing aid—not only behaves as a
processing aid but improves the properties of cured rubber composites; this is because,
unlike diluent conventional aids, it is an active participant in the vulcanization reaction.
LGNR improved the processability, thermal stability and ozone resistance of natural and
synthetic rubber composites when used to replace petroleum-based NO. Unlike the op-
posite changes generally observed in NO, both flexibility and stiffness increased with
LGNR. Natural and synthetic rubber composites made with LGNR had similar dynamic
mechanical properties to those made with NO, indicating that LGNR can act as alternative
to traditional plasticizers for tire application. Replacing petroleum-based processing aids
with LGNR can improve product performance and reduce the carbon footprint, increasing
the sustainability of rubber products.

5. Patents

The work reported in this manuscript is under application for a patent (U.S. Patent
App. 16/367,987).
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