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Abstract: A numerical model was developed to simulate the real process of alumina powder bed
selective laser processing (PBSLP) to thoroughly investigate the residual stress and distortion ex-
perienced in printed parts when multi-layer scanning with a CO2 laser source is considered. The
model contains a user-defined function (UDF) for the laser source, temperature-dependent material
properties, scanning strategies, and build orientations, and it is solved using ANSYS 2020R2. In
addition, the model’s validation was confirmed with experimental results. The results revealed that a
high scanning speed (up to 1200 mm/s) and low laser power are effective for the PBSLP of alumina,
owing to alumina’s high absorptivity for CO2 lasers, and a high manufacturing rate can be achieved.
During the multi-layer printing simulation, the accumulated heat inside the part increased gradually
with an increased number of printed layers. Additionally, the calculated residual stress exceeded
the yield limit for all the studied build orientations due to the printed part’s high-temperature
difference. When preheating was applied, the residual stress decreased by 23% and the distortion de-
creased by 54%. For the successful PBSLP of ceramics, commercial printers cannot be used effectively.
A particular printer equipped with a temperature controller and a preheating system is required
for ceramics.

Keywords: selective laser processing; alumina; CO2 laser; build orientations

1. Introduction

Ceramic materials represent one of the most important material classes, with nu-
merous applications in a variety of fields due to their distinct mechanical and physical
properties [1]. These properties include low density, high hardness, biocompatibility, and
corrosion resistance [2–5]. Ceramic parts are manufactured using traditional methods
such as casting, extrusion, injection molding, and pressing [6–9]. The problem with these
techniques is that they cannot keep up with the current manufacturing revolution that
involves the production of highly complex designs. Furthermore, ceramic parts produced
using these traditional techniques require post-treatment operations to achieve the final
shape, which incurs additional costs and creates problems such as shrinkage [10,11].

Additive manufacturing (AM) technology has the potential to be an effective solu-
tion because of its ability to produce highly complex designs [12–14]. AM is a trending
manufacturing technology which is used to produce parts from 3D CAD models layer by
layer [15]. AM has seven techniques defined by ISO/ASTM 52900, i.e., powder bed selec-
tive laser processing (PBSLP), binder jetting, vat-photopolymerization, extrusion, direct
energy deposition, material jetting, and sheet lamination [15].

Nowadays, the AM of ceramics is undergoing rapid developments, whether in terms
of feedstock or the application of AM techniques. Many studies have been conducted on
the AM of ceramic materials using various techniques such as binder jetting, extrusion,
and PBSLP [16–29]. Among the techniques used, PBSLP is regarded as the most suitable
for ceramic materials because it can produce a dense structure with more accurate shape
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dimensions and without the need for initial powder or post-treatment operations to achieve
the final shape [30]. However, many problems hinder the optimal application of this
technique for the AM of ceramics, as in the case of metal materials. These problems are a
high melting/sintering point, low thermal conductivity, and laser absorptivity [31–34].

The high melting/sintering point of ceramics causes high thermal shock during the
PBSLP process, when the temperature increases from room temperature to more than
2000 K in a very short time [35,36]. The low thermal conductivity of ceramics hinders
the diffusion of the heat generated from the laser melting/sintering process through the
powder layer. This leads to nonhomogeneous heating of the layer, and as a result, cracks
generate because of the developed thermal stresses, which exceed the yield limit of the
material [30,37].

Ceramic materials are well-known for absorbing light energy with varying wave-
lengths depending on their optical properties [38,39]. For example, the absorptivity of
oxide ceramic is very high with a 10.64 µm wavelength and very low with a 1.064 µm
wavelength, but carbide ceramic behaves in an opposite manner. Thus, oxide ceramic’s best
light energy source is a high wavelength such as a CO2 laser. A study by Pham et al. [39]
supported this idea, in which alumina and silicon nitride milling were studied using an
Nd-YAG laser with a 1.064 µm wavelength. They found that the machining accuracy was
highly dependent on laser absorptivity.

Several previous studies have focused on the PBSLP of ceramics to overcome the
described difficulties. Liu et al. [33] investigated the effect of high-temperature preheating
on the PBSLP of yttria-stabilized zirconia (YSZ) ceramic to overcome the thermal stresses
and cracks that develop during the PBSLP. They found that preheating could effectively
reduce the developed cracks. Hagedorn et al. [31] used a CO2 laser preheating system to
heat up the deposited layer before scanning with a Nd-YAG laser to control the cracks.
They found that cracks were reduced, particularly as the preheating temperature was
increased. Zheng et al. [35] experimentally investigated the effects of scanning strategies on
developed cracks during the PBSLP of alumina using island and zigzag scanning strategies.
They found that the zigzag strategy resulted in both transverse and longitudinal cracks,
whereas the island strategy only resulted in transverse cracks. Additionally, Liu et al. [40]
investigated the effects of laser powers and scanning speeds on the microstructure and
density of YSZ parts produced with PBSLP. They found that when the laser energy density
was insufficient to melt/sinter the powder particles, many pores formed inside the sample,
influencing mechanical performance and density. It has, however, become a plentiful source
of crack initiations.

Other studies have focused on the difficulty related to laser absorptivity in ceramic
materials. Enrique et al. [36] mixed alumina with graphite and used a commercial SLM
printer for the PBSLP of alumina powder. The powder absorptivity was increased to
more than 50%. Segado et al. [41] investigated adding graphite to hydroxyapatite and
chlorapatite powders to increase laser absorptivity and found that adding graphite to the
mixture enlarged its processing window.

According to the presented literature review, researchers have carried out numerous
experimental trials and have spent considerable time determining the best process window
for the PBSLP of studied ceramic materials. Furthermore, previous numerical studies on
the PBSLP of ceramic materials have investigated either a single-track [27–29,42–45] or
one-layer simulation [46]. Using numerical modeling to predict the process output is a
powerful tool and should be considered in AM to obtain a general view about the effect
of the process parameters [47–49]. Concerning the laser heat source, several previous
studies [29,35,36,42] have focused on using either fiber or Nd-YAG lasers for the PBSLP of
alumina, despite the fact that the CO2 laser is considered to be the best choice based on its
interaction with alumina.

The aim of this study was to develop a numerical tool that could simulate the real multi-
layer PBSLP and to conduct an in-depth investigation of the melting/sintering process
of ceramic materials using a CO2 laser as the heat source. Furthermore, the developed
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model should take into consideration the thermal stress and distortion calculations for
alumina PBSLP.

2. Materials and Methods
2.1. Numerical Procedure

It is worth mentioning that the process of numerically modeling the melting/sintering
of the powder particles is complex. When the laser system starts scanning the powder
layer, part of the laser energy is used to process the powder particles, while the other part
is reflected into the printer chamber. Therefore, several assumptions were considered:
(1) the powder bed is homogenous and continuous media, (2) the molten pool top surface is
flat, (3) the laser heat source is uniformly distributed, and (4) no heat losses are considered
to be due to evaporation. In addition, heat transfer applied by conduction, radiation, and
convection was considered during the development of the model.

2.1.1. Numerical Model Development

A sintering/melting model was developed to simulate the multi-layer PBSLP process
as follows: Initially, the layer to be printed is deposited, and is modeled as alumina
powder; all the layers above this layer are modeled as an inert gas. Afterwards, the process
parameters (scanning speed, scanning strategy, laser power, and hatching distance) are
applied, and the scanning of this current layer continues until it is completed. The transition
from the current completed layer to the next layer waits until the spreading of a new layer.
Next, the material properties of the gas layer, which is above the previously scanned layer,
are changed from inert gas properties to alumina powder properties. Finally, all the above
steps are automatically repeated through the developed model until the entire part has
been simulated.

The developed numerical model contains a UDF for the scanning strategies, build
orientations, a laser heat source, and material properties, according to Moser et al. [50]. In
addition, solidification and melting calculations are also included in the model to monitor
the melted phase of the material.

The heat transferred to the powder from the laser source can be modelled by the
energy equation as follows [50,51]:

ρCp
∂T
∂t

= ∇·(K ∇ T) + Sh (1)

where ρ , Cp , T, and K are the density, specific heat, temperature, and thermal conductiv-
ity, respectively. For alumina powder, the thermal conductivity, specific heat, and other
properties are summarized in Table 1 as a function of temperature.

The heat source representing the laser beam is considered in Equation (1) by the heat
source term Sh and has a Gaussian distribution profile according to [50]. It can be described
as follows:

Sh = AIoα exp

(
−2

(x− vxt)2 +
(
y− vyt

)2

ω2 − αz

)
(2)

where A represents the material laser absorptivity; α represents the effective absorption
coefficient; Io represents the laser heat intensity;ω represents the characteristic radius of
the laser spot; and x, y, and z represent the location of the laser spot size of the powder
layer. According to [50]:

Io =
2P

π ω2 (3)

ω =
Db

2× 2.146
(4)
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where P is the laser power and Db is the laser spot size. The initial condition and the bound-
ary conditions used in this study are according to Equations (5) and (6), respectively [45],
and Figure 1 shows the boundary conditions applied in the developed numerical model.

T(x, y, z)t=0 = TO (5)

− k(
∂T
∂z

) =
.

Sh − hcov(Ta − Ts)− σε
(

T4
a − T4

s

)
(6)

where TO is the chamber initial temperature (300 K), hcov represents the convection coef-
ficient, Ta is the initial temperature of the powder layer, Ts is the surrounding medium
temperature, ε represents the emissivity, and σ represents the Stefan–Boltzmann constant.
All other material constants are summarized in Table 1.
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Table 1. Alumina material properties as a function of temperature and other constants.

Item Symbol Expression/Value Unit Ref.

Density ρ 3920 kg/m3

Specific heat 1 Cp

3 × 10−13 T5 − 3 × 10−9 T4 + 5 × 10−6 T3 −
0.0073 T2 + 5.0097 T − 190.71, (T ≤ 2450)

1360, (T > 2450)
J/kg-K

[42]

Thermal conductivity 1 K
−3 × 10−15 T5 − 3 × 10−11 T4 − 10−7 T3 +

0.0002 T2 − 0.203 T + 79.673, (T ≤ 2450)
5.5, (T > 2450)

W/kg-K

Melting point, 2327 K

Latent heat of melting, 1,137,900 J/kg

Emissivity ε 0.7

Stefan Boltzmann constant, σ 5.6704 × 10−8 W/m2 K4

Thermal convection coefficient, hcov 200 W/m2 K4

Absorptivity/CO2 laser A 0.96
[39]

Absorptivity/Fiber laser A 0.03
1 The temperature is expressed in Kelvin.
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The enthalpy technique described by [51] was used to model the sintering and so-
lidification during the PBSLP process. This technique depends mainly on the material
enthalpy, defined as the total heat content in the system, the sum of the internal energy, and
the pressure and volume product, as described by Equation (7). In addition, the enthalpy
equals the sensible heat and latent heat content in the system, as defined by Equation (8).

H = U + PV (7)

H = h + ∆H (8)

where U represents the internal energy of the system, P represents the system pressure,
V represents the volume change, h represents the sensible heat, and ∆H represents the
latent heat. According to [51], h and ∆H can be expressed as follows:

h = hre f + Cp ∆T (9)

∆H = βL (10)

where href, L, and β represent the reference enthalpy, the latent heat, and the liquid fraction,
respectively. The liquid fraction β can be estimated as follows [51]:

β =
T − Tsolidus

Tliquidus − Tsolidus
. (11)

The temperature T can be calculated by solving Equation (1), and then used to
measure β, which defines the melting or solidification within the solution domain ac-
cording to Equation (12):

β =


< 1
= 0
> 1

solid region
transition region
melting region

(12)

A finite element analysis (FEA) was used to calculate the residual stress and distortion
developed in the printed part though a coupled thermal-mechanical analysis. The FEA is
mainly based on the relation between the developed stress and strain. Firstly, this relation is
considered to be a linear relation (elastic region), and after yielding, it becomes a nonlinear
relation (plastic region). It is worth mentioning that the bilinear plasticity model was used
to describe the relationship between stress and strain as described in [52].

The mechanical properties of alumina used for the residual stress and distortion
calculation are expressed as a function of temperature as follows [53–56]:

E = 407.1− 7.3407× 10−2T (13)

α = −0.23036 + 7.0045× 10−4 T + 5.681× 10−8T2 (14)

σy = −0.154 T + 306 (15)

where E is the elastic modulus (GPa), α is the thermal expansion coefficient (10−6·K−1),
σy is the yield stress (MPa), and T is the temperature in K.

2.1.2. Numerical Model Geometry

Figure 2 shows the numerical model geometry used in this analysis, and the dimen-
sions are summarized in Table 2. The numerical model geometry consists of the base
plate, the laser working space, and the unscanned surrounding powder. The model was
generated using the ANSYS Design Modeler.
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Table 2. Numerical model geometry dimensions.

Dimension Base Plate (mm) Printed Part (mm)

Length 2 1.5

Width 1.5 1

Thickness 0.5 0.5 1

1 The printed part contains 10 layers; each layer has a thickness of 0.05 mm.

Figure 3 shows the computational domain used in this study where ANSYS Mesher
was used to create the computational domain (the mesh). Very fine discretization was
considered during the computational domain generation, especially for the scanned
powder region.

In order to avoid any errors coming from bad quality meshing, a grid independence
test was conducted to evaluate four different mesh sizes, i.e., 10, 5, 2.5, and 2 µm. The
maximum temperature was used to evaluate the effect of mesh density, and the results
are summarized in Table 3. The maximum temperature became stable after the mesh size
of 5 µm. Therefore, the 5 µm mesh size was used to reduce the calculation time. Figure 4
presents the steps followed during the numerical model solution.
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Table 3. Mesh density analysis.

Mesh Mesh Edge Size (µm) Elapsed Time to Solve
One Time Step (s) Temperature (K)

A 10 3.6 3365.95

B 5 4.6 3388.48

C 2.5 5.7 3395.23

D 2 5.8 3396.35

2.1.3. Alumina PBSLP Using the CO2 Laser

The PBSLP of alumina was investigated, considering a CO2 laser as the melting source.
Different power values and scanning speeds were investigated to determine the range
of the laser power and scanning speed that could be used successfully for the PBSLP of
alumina. Table 4 summarizes the range of the laser power, scanning speed, and other
process parameters investigated in this study.

Table 4. CO2 laser process parameters used in the study.

Item Value

Laser power range, W 15–50

Scanning speed range, mm/s 500–1200

Layer thickness, µm 50

Additionally, build orientation is another crucial parameter for the PBSLP of alumina
as it directly affects the mechanical properties of the printed part. Figure 5 shows the build
orientations which were investigated in this study.
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2.2. Experimental Procedure

The commercial SLM 125 printer, manufactured by RENISHAW® (Wotton-under-
Edge, England), was used to print the alumina parts and validate the numerical model.
This printer is equipped with a fiber laser source, a wavelength of 1070 nm, a maximum
laser power of 200 W, and a spot size of 70 µm. The process parameters used to produce
the alumina samples, i.e., a cube shape with a side length of 10 mm, were as follows: a
layer thickness of 100 µm, a laser spot size of 70 µm, a hatching distance of 50 µm, and
the zigzag scanning strategy. Alpha-alumina powder with a purity of 99.7%, supplied by
Alteo, was used as the feedstock. Due to the low absorptivity of alumina to fiber lasers, the
alumina powder was mixed with 0.1 vol% colloidal graphite to increase the absorptivity. A
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previous study described the mixing process in detail [36]. In Figure 6, the SEM images of
spray-dried alumina powder with a d50 size of 39.8 µm are presented.
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3. Results and Discussion
3.1. Numerical Model Validation

A numerical model was used to calculate and determine the laser power and scanning
speed that could achieve full melting of the alumina layer thickness and give a melting
temperature below the evaporation point of alumina. The alumina samples were printed
and used for the model validation. Based on our previous study [29], it was recommended
to use a low scanning speed with alumina to minimize the laser beam inertia effect on
the powder particles. Therefore, a scanning speed of 200 mm/s was considered. Table 5
summarizes the results obtained from the numerical model. It was found that using a laser
power ranging from 95 to 105 W satisfied the abovementioned conditions.

Table 5. Temperature distribution and melting contour obtained from the numerical model (Nd-YAG).

Power, W Temperature Distribution Top Melting Contour Vertical Melting Contour

95
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Table 5. Cont.
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Additionally, the width of the melting path ranged from 65 µm to 75 µm for the
calculated laser powers. Therefore, a hatching distance of 50 µm was used to connect the
adjacent paths. Different alumina samples were printed successfully using the process
parameters obtained from the numerical model (Figure 7). Additionally, these success-
fully printed samples confirmed the validation of the developed numerical model and
proved the developed model’s ability to correctly estimate the appropriate values of the
process parameters.
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Measurements based on Archimedes’ principle were made to evaluate the relative
density of the printed samples, and the results are provided in Figure 8. The prominent
results were examined; a relative density of 68% was obtained when a 95 W laser power
was used, while it was possible to measure up to 75% of the relative density when the
laser power was increased to 105 W. The resulting relative density can be considered a
low relative density. The main reason for this is thought to be the relatively thick layer
thickness. The layer thickness used was 100 µm, and we could not decrease it due to
the used printer’s equipment capabilities. Using a low layer thickness and a compaction
system for the powder layer are suggestions to increase the relative density.
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Figure 8. Alumina samples’ relative density results.

The numerical model was validated, at the micro-scale level, by comparing the melting
path width experimentally and numerically. SEM images were used to measure the melt
path width experimentally, which was 142.9 µm, as shown in Figure 9a; a melt path width
of 128 µm for the two adjacent paths was obtained from the numerical model (Figure 9b).
It can be concluded that the two measurements were very close, with a calculation error of
8%, which confirms the validation of the developed numerical model.

Since the developed numerical model was used for the residual stress calculation,
it was crucial to ensure that the obtained temperature distribution from the model was
correct and validated. Therefore, the temperature distribution obtained from the developed
numerical model was compared with the available experimental data [50,57]. The laser spot
temperature contour data were captured using a thermal camera (TVS-2300ST, Avio Nippon
Avionics Co., Ltd., Kanagawa, Japan). It was found that the laser spot temperature contour
captured by the thermal camera [50,57] and the laser spot temperature contour obtained
from the numerical model at the same conditions (Figure 9c) showed good agreement with
a maximum error of 1.24% between the two contour temperatures.
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3.2. Process Window for the PBSLP of Alumina Using the CO2 Laser

The developed model was used to determine the appropriate laser power values
at each scanning speed based on the obtained temperature that should lie between the
melting and boiling point of alumina. Figure 10 shows the temperature values at different
powers with different scanning speeds using the CO2 laser. All the laser power values
with scanning speeds that give a temperature value in the grey region can be used for the
PBSLP of alumina. The values below this region cannot achieve melting, and the values
above it can cause boiling of the material and evaporation. It can be observed that the
laser power values are low, and the scanning speed values used with the CO2 laser are
very high compared with the values used with fiber or Nd-YAG lasers as described in
previous studies [36,42]. This can be attributed to the absorptivity of alumina for both the
Nd-YAG laser and the CO2 laser, where the absorptivity of alumina to the Nd-YAG laser
is very low, reaching 3%, while for the CO2 laser, the absorptivity is very high, reaching
96%. Therefore, using a CO2 laser can save laser power and increase the manufacturing
rate of the PBSLP of alumina. Additionally, no powder preparation is needed to increase
the powder absorptivity using a CO2 laser.
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Figure 10. Obtained maximum temperature at different powers and scanning speeds using the
CO2 laser.

To confirm that the values of the laser power and scanning speed, which give temper-
ature value within the grey region, could melt the layer thickness and produce connected
scanning paths, the developed model was used to investigate different values, as can be
seen in Table 6. The tested values gave connected scanning paths and could melt the whole
layer thickness.

Table 6. Temperature distribution and melting contour obtained from the numerical model.

Power, W Scanning
Speed, mm/s Temperature Distribution Top Melting Contour Vertical Melting Contour

30 600
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3.3. Temperature History during Part Printing

The temperature history during scanning is critical to obtain a comprehensive view
of the laser scanning process. The process window shown in Figure 10 was used to select
the appropriate laser power and scanning speed in order to investigate the temperature
history generated during the PBSLP of alumina. A laser power of 50 W, a scanning speed
of 1200 mm/s, and a hatching distance of 50 µm were selected. The numerical model
developed was solved using these process parameters and the build orientations depicted
in Figure 5.

Figure 11 shows the temperature history during the printing process for the whole-part
scanning using the island scanning build orientation (the part contains 10 layers). It also
shows the temperature history for one-layer scanning obtained from the developed multi-
layer PBSLP model. The green curve shows the temperature history for the whole-part
scanning while the red curve shows the temperature history for the one-layer scanning.
The temperature and scanning time axes for the whole-part scanning are positioned at the
right and the bottom of the figure, respectively, whereas, for the one-layer scanning, they
are positioned at the left and top of the figure, respectively.

The laser beam started to scan the first layer at a scanning time of 0 s, and it took
0.025 s to finish the scanning. The scanning time was very short as the dimensions of the
layer were small, as described in Table 2. During the first layer scanning, the temperature
history was between the melting and boiling limits. After finishing the first layer scanning,
the temperature went down to above room temperature After finishing the first layer
scanning, the temperature went down to above room temperature, which means there
was heat accumulation inside the part, and the laser beam waited for the deposition of the
second layer. The deposition time was set to be 10 s, which can be adjusted according to the
specifications of the used printer, shown in Figure 11. After the second layer deposition, the
laser beam started scanning. All the previous steps were repeated until finishing all layers.
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By following the temperature history for the whole-part scanning, it is obvious that
the temperature history increased gradually with the deposition and the scanning of
consecutive layers. This was mainly due to the gradually increasing heat accumulated
inside the printed part. The heat accumulation increased gradually inside the part due
to the low thermal conductivity of alumina and the little time available for releasing the
heat away from the part. The accumulated heat inside the part caused the temperature of
the last four layers to exceed the boiling point (as shown in Figure 11). This could lead to
defects in the form of porosities and cracks. Additionally, unlike the observed trend in all
layers, the temperature history of the last layer was less than the previous layers, and this
was mainly because the last layer had sufficient time to release the heat as no powder was
deposited above it to keep the heat inside.

It can be concluded from monitoring the temperature history that PBSLP printers for
ceramic materials should be equipped with a temperature controller to hold the temperature
between the melting and boiling limit during the printing process. The temperature can
be adjusted by controlling either the laser power or the scanning speed. The temperature
history for the other build orientations is almost the same as the island scanning build
orientation and, therefore, was not presented.

3.4. Residual Stress and Distortion

The residual stress calculation is entirely dependent on the temperature distribution of
the printed part. To calculate the residual stress for each build orientation, the temperature
distribution was used as a thermal load in the coupled thermal-mechanical FEA model.
Figure 12 depicts the temperature distribution obtained from the multilayer PBSLP model
for each build orientation just after the printed part solidifies. The temperature distribution
reflects the scanning strategy used in each build orientation, as indicated by the last
scanned layer.

The von Mises equivalent stress criterion (σe) was used to investigate and assess
the residual stress developed in the printed parts. Because the thermal and mechanical
properties of the printed part, particularly the yield stress (σy), vary with temperature, the
von Mises equivalent should be normalized by dividing the von Misses equivalent stress at
a specific point by the yield stress at the same point.

The von Mises equivalent stress normalization provides an accurate indication of
the state of stress through the printed part. On the other hand, when the normalized
von-Misses equivalent stresses are greater than or equal to one, the stress state is considered
to be unsafe and there is a high possibility of crack formation. The stress state, on the
other hand, is safe when the normalized von Misses equivalent stresses are less than one.
Figure 13 shows the normalized von Mises stress (σe/σy) developed in the printed part at
different build orientations. It can be observed from the stress contours that all the cases
gave a normalized stress more than one. This means that there is a high possibility of crack
formation for all the studied build orientations.

Figure 14 shows the distortion contours for the studied build orientations. The ob-
tained distortion values are very small, in the order of 0.3 microns, and this is because
of the small model dimensions (we could not consider large model dimensions as they
require high computational capabilities, and one build orientation took almost one month
to finish). It can be observed that the distortion values at the bottom of the part are very
small, reaching zero, and increase gradually with the part’s height. This is because the
bottom of the part (bottom layers) is attached to the base plate and has a temperature
very close to room temperature. The upper layers are free to deform and have a higher
temperature than the lower layers. The distortion value for all build orientations is very
close, with the island scanning build orientation yielding the highest value.
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Figure 15 depicts a bar chart for the normalized von Mises stress and distortion for the
investigated build orientations. For the linear build orientations, the long-linear orientation
had the highest residual stress, i.e., 13.3 percent above the yield limit, while the linear-short
and linear-long-short orientation had the lowest residual stress, i.e., 12.2 percent above the
yield limit. All of the linear build orientations produced nearly identical distortion results.
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Figure 15. Residual stress and distortion for different build orientations.

The zigzag build orientations resulted in a high residual stress of 13% above the yield
limit, as well as a minor distortion lower than the linear build orientations. The island
build orientations generated residual stress that was more than 12% higher than the yield.
Additionally, the heat accumulation generated by the short scanning paths in a small area
caused the island build orientation to have a high distortion value compared to the other
build orientations. This trend did not appear in the reverse-island orientation, mainly due
to the repeated layer scanning orientation changes.

Based on residual stress and distortion, it can be concluded that the linear-short and
linear-short-long build orientations are the most effective.

3.5. Effect of Preheating

Preheating of 800 K was applied to the model for the linear-long-short build orientation.
It can be seen from Figure 16a that the normalized von Mises stress decreased by 23%
(from 1.22 to 0.947), and the developed distortion decreased by 54%. The reduction in
developed stress and distortion is mainly due to the decrease in the temperature difference
that the part has undergone. Therefore, it can be concluded that the PBSLP of alumina
cannot be successful, i.e., free of cracks and defects, without preheating, and the available
commercial printers cannot be used effectively for ceramic materials. Special printers
equipped with a preheating system for ceramic materials are needed.



Materials 2022, 15, 3498 20 of 23Materials 2022, 15, x FOR PEER REVIEW 22 of 25 
 

 

  

(a) (b) 

Figure 16. Normalized von Mises stress and distortion obtained using a preheating temperature of 
800 K: (a) normalized von Mises stress; (b) distortion. 

4. Conclusions 
A multi-layer PBSLP model coupled with an FEA model was developed to simulate 

the real process of PBSLP and to investigate the appropriate selection of the process pa-
rameters, such as laser power, scanning speed, hatching distance, scanning strategies, and 
build orientations. Additionally, the model was used to investigate the effectiveness of 
using a CO2 laser for the PBSLP of alumina. The following points were concluded: 
1. The model can be used to select the appropriate values of laser power, scanning 

speed, and hatching distance. 
2. The CO2 laser can be effectively used for the PBSLP of alumina with a low power 

value and high scanning speed leading to a high manufacturing rate and energy con-
servation. 

3. The model can obtain the printed part’s temperature history, temperature distribu-
tion, residual stress, and distortion. 

4. The developed residual stress for the printed part exceeds the yield limit for all the 
studied build orientations. When preheating by 800 K is applied, the developed re-
sidual stress is reduced by 23% and the distortion by 54%. The linear-short and linear-
short-long build orientations both gave low distortion and residual stress compared 
to other build orientations. 

5. Commercially available printers cannot be used effectively for the PBSLP of ceramic 
materials, and a special printer equipped with a preheating system for the powder 
and temperature controller is needed. 
For future work, the PBSLP of alumina using a preheating system should be consid-

ered. 

Author Contributions: Conceptualization, M.A. and G.K.; investigation, M.A. and G.K.; writing—
original draft preparation, M.A.; writing—review and editing, M.A. and G.K.; supervision, G.K.; 
project administration, G.K. All authors have read and agreed to the published version of the man-
uscript. 

Funding: This project has received funding from the European Union’s Framework Program for 
Research and Innovation Horizon 2020 (2014–2020) under the Marie Skłodowska-Curie Grant 
Agreement No. 764935. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: The authors give the Publisher the permission to publish the work. 

Conflicts of Interest: The authors declare that they have no conflicts of interest/competing interests. 
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800 K: (a) normalized von Mises stress; (b) distortion.

4. Conclusions

A multi-layer PBSLP model coupled with an FEA model was developed to simulate the
real process of PBSLP and to investigate the appropriate selection of the process parameters,
such as laser power, scanning speed, hatching distance, scanning strategies, and build
orientations. Additionally, the model was used to investigate the effectiveness of using a
CO2 laser for the PBSLP of alumina. The following points were concluded:

1. The model can be used to select the appropriate values of laser power, scanning speed,
and hatching distance.

2. The CO2 laser can be effectively used for the PBSLP of alumina with a low power
value and high scanning speed leading to a high manufacturing rate and
energy conservation.

3. The model can obtain the printed part’s temperature history, temperature distribution,
residual stress, and distortion.

4. The developed residual stress for the printed part exceeds the yield limit for all the
studied build orientations. When preheating by 800 K is applied, the developed
residual stress is reduced by 23% and the distortion by 54%. The linear-short and
linear-short-long build orientations both gave low distortion and residual stress
compared to other build orientations.

5. Commercially available printers cannot be used effectively for the PBSLP of ceramic
materials, and a special printer equipped with a preheating system for the powder
and temperature controller is needed.

For future work, the PBSLP of alumina using a preheating system should be considered.
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